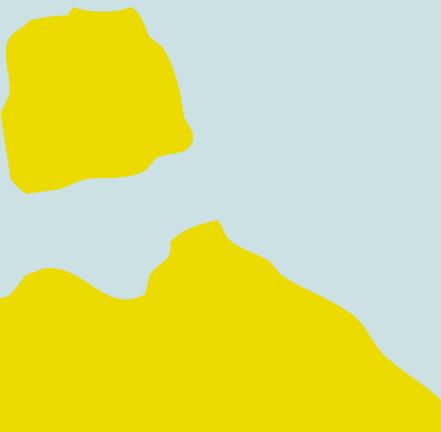
BEST. PROBLEMAS DE BIOESTADÍSTICA

Javier Llorca
Trinidad Dierssen Sotos
Inés Gómez Acebo
Jéssica Alonso Molero
Camilo Palazuelos Calderón
María Fernández Ortiz



Javier Llorca: Doctor en Medicina y licenciado en Ciencias Matemáticas. Catedrático de Medicina Preventiva y Salud Pública en la Universidad de Cantabria e investigador del Ciber de Epidemiología y Salud Pública (CIBERESP).

Trinidad Dierssen Sotos: Doctora en Medicina. Profesora Titular de Medicina Preventiva y Salud Pública en la Universidad de Cantabria, jefe de grupo de Epidemiología y Salud Pública del IDIVAL e investigadora del CIBERESP.

Inés Gómez Acebo: Doctora en Ciencias de la Salud. Profesora Titular de Medicina Preventiva y Salud Pública en la Universidad de Cantabria, investigadora del IDIVAL y del CIBERESP.

Jéssica Alonso Molero: Doctora en Biomedicina y Ciencias de la Salud. Profesora Ayudante Doctor de Medicina Preventiva y Salud Pública en la Universidad de Cantabria, investigadora del IDIVAL.

Camilo Palazuelos Calderón: Doctor en Ciencia y Tecnología. Investigador contratado en el IDIVAL.

María Fernández Ortiz: Ingeniera informática. Investigadora contratada en el IDIVAL. Confundadora y responsable SysAdmin/DevOps de Group4Layers®. Data manager del proyecto Cohorte Cantabria®.

BEST Problemas de BioESTadística

Consejo Editorial

Dña. Silvia Tamayo Haya Presidenta. Secretaria General, Universidad de Cantabria

D. Vitor Abrantes Facultad de Ingeniería, Universidad de Oporto

D. Ramón Agüero Calvo ETS de Ingenieros Industriales y de Telecomunicación, Universidad de Cantabria

D. Miguel Ángel Bringas Gutiérrez Facultad de Ciencias Económicas y Empresariales, Universidad de Cantabria D. Diego Ferreño Blanco ETS de Ingenieros de Caminos, Canales y Puertos, Universidad de Cantabria

Dña. Aurora Garrido Martín Facultad de Filosofía y Letras, Universidad de Cantabria

D. José Manuel Goñi Pérez Modern Languages Department, Aberystwyth University

D. Carlos Marichal Salinas Centro de Estudios Históricos, El Colegio de México

D. Salvador Moncada Faculty of Biology, Medicine and Health, The University of Manchester D. Agustín Oterino Durán Neurología (HUMV), investigador del IDIVAL

D. Luis Quindós Poncela Radiología y Medicina Física, Universidad de Cantabria

D. Marcelo Norberto Rougier Historia Económica y Social Argentina, UBA y CONICET (IIEP)

Dña. Claudia Sagastizábal IMPA (Instituto Nacional de Matemática Pura e Aplicada)

Dña. Belmar Gándara Sancho Directora. Editorial de la Universidad de Cantabria

BEST Problemas de BioESTadística

Javier Llorca
Trinidad Dierssen Sotos
Inés Gómez Acebo
Jéssica Alonso Molero
Camilo Palazuelos Calderón
María Fernández Ortiz

Llorca Díaz, Javier, autor

BEST : problemas de BioESTadística / Javier Llorca, Trinidad Dierssen Sotos, Inés Gómez Acebo, Jéssica Alonso Molero, Camilo Palazuelos Calderón, María Fernández Ortiz. — Santander : Editorial de la Universidad de Cantabria, 2021.

450 páginas. – (Manuales. Textos universitarios. Ciencias biomédicas ; 31)

ISBN 978-84-17888-54-1

1. Biometría-Problemas, ejercicios, etc. 2. Biomatemáticas. I. Dierssen Sotos, Trinidad, autor. II. Gómez Acebo, Inés, autor. III. Alonso Molero, Jéssica, autor. IV. Palazuelos Calderón, Camilo, autor. V. Fernández Ortiz, María, autor.

57.087.1(076.2)

THEMA: MBNS, 4Z-ES-AF

Esta edición es propiedad de la Editorial de la Universidad de Cantabria, cualquier forma de reproducción, distribución, traducción, comunicación pública o transformación sólo puede ser realizada con la autorización de sus titulares, salvo excepción prevista por la ley. Diríjase a CEDRO (Centro Español de Derechos Reprográficos, www.cedro.org) si necesita fotocopiar o escanear algún fragmento de esta obra.

Ilustración de cubierta: Elena Gómez Menéndez Digitalización: Manuel Ángel Ortiz Velasco [emeaov]

- © Javier Llorca, Trinidad Dierssen Sotos, Inés Gómez Acebo, Jéssica Alonso Molero [Universidad de Cantabria], Camilo Palazuelos Calderón, María Fernández Ortiz [IDIVAL]
- © Editorial de la Universidad de Cantabria Avda. de los Castros, 52 - 39005 Santander. Cantabria (España) Tlfno.-Fax: +34 942 201 087 www.editorial.unican.es

ISBN: 978-84-17888-54-1 (PDF)

DOI: https://doi.org/10.22429/Euc2021.029

Hecho en España-*Made in Spain* Santander, 2021

Sumario

Pr	efacio	5
M	aterial suplementario	9
Er	nunciados	11
1	Estadística descriptiva	13
	1.1. Introducción	. 13
	1.2. Descripción del estudio	
	1.3. Descripción de los datos	. 13
	1.4. Problemas	. 15
2	Probabilidad condicionada e independencia de sucesos	25
	2.1. Introducción	. 25
	2.2. Notación	
	2.3. Descripción del estudio	. 26
	2.4. Problemas	. 26
3	Distribuciones de probabilidad	35
	3.1. Introducción	. 35
	3.2. Notación	. 35
	3.3. Fórmulas fundamentales	. 36
	3.4. Problemas	. 37
4	Estimación de una media	55
	4.1. Introducción	. 55
	4.2. Fórmulas	
	4.3. Descripción de la base de datos	. 56
	4.4. Descripción del estudio	
	4.5. Problemas	

5	Comparación de dos medias	69
	5.1. Introducción	. 69
	5.2. Procedimiento	. 69
	5.3. Descripción de la base de datos	
	5.4. Descripción del estudio	. 71
	5.5. Problemas - Sin emparejamiento	. 71
	5.6. Problemas - Con emparejamiento	. 78
6	Comparación de tres o más medias	83
	6.1. Introducción	
	6.2. Procedimiento	. 83
	6.3. Descripción de la base de datos	. 84
	6.4. Descripción del estudio	. 85
	6.5. Problemas	. 85
7	Estimación de una proporción	93
	7.1. Introducción	. 93
	7.2. Fórmulas	
	7.3. Descripción de la base de datos	
	7.4. Descripción del estudio	
	7.5. Problemas	
8	Comparación de dos proporciones	101
•	8.1. Introducción	
	8.2. Notación	
	8.3. Fórmulas	
	8.4. Descripción de la base de datos	
	8.5. Problemas	
9	Tabla de contingencia	109
,	9.1. Introducción	
	9.2. Notación	
	9.3. Fórmulas	
	9.4. Descripción de la base de datos	
	9.5. Problemas	
10	Cálculo del tamaño de muestra	119
10	10.1. Introducción	
	10.2. Problemas	
	10.2. Problemas	. 120
11	Regresión y correlación	129
	11.1. Introducción	
	11.2. Descripción del estudio	
	11.3. Notación	
	11.4. Fórmulas	. 130

	11.5. Descripción de la base de datos	
12	Regresión lineal múltiple 12.1. Introducción	. 139
So	luciones	151
1	Estadística descriptiva	151
2	Probabilidad condicionada e independencia de sucesos	173
3	Distribuciones de probabilidad	189
4	Estimación de una media	233
5	Comparación de dos medias	271
6	Comparación de tres o más medias	311
7	Estimación de una proporción	347
8	Comparación de dos proporciones	361
9	Tabla de contingencia	381
10	Cálculo del tamaño de muestra	399
11	Regresión y correlación	417
12	Regresión lineal múltiple	437

Prefacio

La crisis provocada por la pandemia de COVID-19 nos va a obligar a modificar durante unos años la forma de enseñar en la universidad. La enseñanza cara a cara se va a reducir y está seriamente amenazada. Esto nos ha decidido a preparar un libro de problemas de bioestadística en el que las soluciones se presenten paso a paso, de forma que puedan ser seguidas por el alumno de forma autónoma.

La enseñanza de la bioestadística forma parte del cuerpo fundamental de la formación en ciencias de la salud, pero tiene una peculiaridad que la diferencia de la enseñanza de la bioquímica, la genética u otros campos: los conceptos y herramientas que se enseñan son muy elementales y permanecen estables durante muchas décadas, hasta el punto de que en la mayoría de los programas de bioestadística apenas aparece algún concepto posterior a 1950. Por poner los ejemplos más claros, el teorema de Bayes se publicó en 1763, la regresión lineal por mínimos cuadrados se aplicó por primera vez en 1809, la ji cuadrado fue desarrollada en 1900, la t de Student en 1908, el análisis de la varianza (ANOVA) en 1918. Solo si el temario llega hasta modelos de regresión no lineales se encuentra la regresión logística en 1943 y la regresión de Cox en 1972. Es decir, lo que enseñamos es muy básico, está muy lejos de ser puntero y es apenas el barniz mínimo necesario para poder entender los artículos de investigación más elementales. Porque ese es el problema fundamental en bioestadística elemental: la inmensa mayoría de los artículos científicos que vale la pena leer requieren conocimientos básicos de estadística para comprenderlos.

Hay muchos buenos libros de bioestadística. La mayoría de ellos desarrollan los mismos conceptos con enfoques ligeramente distintos. Lo que les diferencia fundamentalmente es el estilo. Algunos son más teóricos que otros, algunos hacen más hincapié en la realización de problemas o en el uso de paquetes estadísticos. Lo que no se encuentra con facilidad es un libro dedicado exclusivamente a hacer problemas. Eso es lo que presentamos aquí.

El libro es repetitivo. En algunos capítulos se propone una y otra vez el mismo tipo de problema con diferentes datos. Puede que la primera vez un alumno quiera ir directamente a la solución, pero hacer lo mismo en los siguientes problemas no le aportará nada: tiene que enfrentarse al papel en blanco para intentar encontrar la solución por sí mismo.

Nuestro enfoque es que saberse los comandos de un paquete estadístico no es lo mismo que saber estadística por el mismo motivo que aprender el funcionamiento de un ecocardiógrafo no le convierte a uno en cardiólogo. Por eso creemos que los problemas hay que hacerlos al menos una vez con calculadora para comprender bien qué es lo que uno se trae entre manos. Pero a lo largo del libro aportamos también soluciones con Excel o con Stata. La mayor parte de los capítulos parten de una base de datos en Excel accesible mediante los enlaces indicados en el texto. En algunos problemas, el primer paso es usar esa base de datos para generar una tabla a partir de la cual se puede realizar el resto del problema con calculadora. El alumno que no esté interesado en el manejo de Excel o Stata, puede saltarse ese paso, consultar directamente la tabla en las soluciones y seguir con el problema "a mano".

No queremos que nadie se llame a engaño: este no es un libro sobre cómo resolver problemas de bioestadística con Excel o con Stata. El eje del libro es la solución con calculadora. Las soluciones con Excel y Stata se aportan como complemento. El mensaje es: peléese usted con las fórmulas hasta que las entienda. Solo después de eso busque un programa con el que hacer las cuentas.

Las diferentes soluciones se identifican con un código de colores, rojo para la solución con calculadora, verde para Excel y azul para Stata, de la siguiente forma:

Solución con calculadora

En este recuadro se presentan las fórmulas y los resultados del problema con calculadora.

Solución con Excel

En este recuadro se presentan las fórmulas y los resultados del problema con Excel.

Solución con Stata

En este recuadro se presentan las fórmulas y los resultados del problema con Stata.

El libro está estructurado en doce capítulos. El primero se dedica a estadística descriptiva. El 2º y el 3º a las distribuciones de probabilidad (normal, binomial y de Poisson) y a conceptos elementales de probabilidad (probabilidad condicionada, sucesos independientes y teorema de Bayes). En los capítulos 4º a 6º se trabaja con la estimación de medias; los capítulos 7º y 8º se dedican al estudio de proporciones y el 9º al tema conexo de las tablas de contingencia. El cálculo del tamaño muestral se trata en el capítulo 10º. La relación entre dos variables continuas (correlación y regresión) se aborda en el capítulo 11º y la regresión lineal múltiple en el 12º. De momento, hemos excluido del libro los test no paramétricos y las regresiones no lineales.

La terminología estadística no siempre es uniforme. Hemos procurado ser coherentes a lo largo del libro, pero esta edición puede pecar de precipitada y probablemente tenga todavía cierto grado de incoherencia.

Otro aspecto de la terminología es el uso de los separadores de decimales y de miles. La Ortografía de la lengua española, de las Academias de la Lengua, -de acuerdo con el Sistema Internacional de Unidades- recomienda el uso del punto como separador de decimales, aunque sigue considerando válida la coma, y no admite el uso ni del punto ni de la coma como separador de miles. En este libro hemos seguido la recomendación y utilizamos siempre el punto como separador de decimales.

Este libro se elaboró durante el verano de 2020 y lo publicamos con **licencia Creative Commons**. Puede ser reproducido libremente sin finalidad comercial, reconociendo la autoría e indicando si se han realizado cambios. Puede encontrar más información sobre el significado de esta licencia en https://creativecommons.org/licenses/by-nc/3.0/es/. Agradecemos a la Editorial de la Universidad de Cantabria que lo haya acogido en el verano de 2021.

El resto de los autores queremos agradecer a María Fernández Ortiz su trabajo en la maquetación, edición y diseño del libro.

Santander, septiembre de 2021 Los autores

Material suplementario

- Bases de datos en Excel para realizar los problemas.
- Tablas estadísticas
- Tutoriales sobre el manejo de datos en Excel:
 - 1. Como instalar el analizador de datos
 - 2. Como aplicar filtros
 - 3. Autorellenar celdas (doble click mágico)
 - 4. Etiquetar variable completa
 - 5. Etiquetar variable parcialmente
 - 6. Administrador de nombres (de etiquetas)
 - 7. Formato de celdas
 - 8. Inmovilizar fila superior
 - 9. Trabajar con pestañas
 - 10. Tabla dinámica de una variable

Puede acceder al material suplementario en el Moodle de las asignaturas Bioestadística y Uso de Software Científico (Grado de Medicina, Universidad de Cantabria) y Bioestadística (Grado de Ciencias Biomédicas, Universidad de Cantabria). Si no tiene acceso a esos dispositivos, puede acceder mediante el siguiente link o puede solicitarlas por correo electrónico a mpsp.unican@gmail.com.

Estadística descriptiva

1.1. Introducción

La estadística descriptiva es la rama de la estadística que se encarga del análisis de las características de un conjunto de datos dado. El objetivo principal de la estadística descriptiva es la recolección, presentación y caracterización de los datos para poder llevar a cabo una correcta descripción de la muestra en estudio.

1.2. Descripción del estudio

Un hospital está repartido en dos edificios A y B. En el edificio A se están produciendo casos de una enfermedad inespecífica (conjuntivitis, dolor de garganta, rinitis, ...) desde hace tres años, lo que se achaca a las condiciones de deterioro del edifico, que deben producir algún tipo de contaminación ambiental.

La inspección de trabajo y el comité de empresa plantean que en el edificio A no deberían trabajar las mujeres embarazadas para no exponerse al agente contaminante.

Para aclarar si hay algún riesgo para el embarazo, se lleva a cabo un estudio de cohortes retrospectivo. En los 543 embarazos producidos en cualquiera de los dos edificios en los años 2017-2019, se obtiene información sobre antecedentes de la madre, desarrollo y control del embarazo, condiciones del parto y salud del recién nacido.

1.3. Descripción de los datos

La siguiente tabla presenta la descripción de todas las variables incluidas en la hoja estudioEmbarazadas del fichero datosProblemasBest.xlsx:

Variable	Descripción	Codificación
Id	Número de identificación del embarazo	Numérica
Building	Edificio en el que trabaja la embarazada	1: A 2: B
AgeMother	Edad de la madre en el mo- mento del parto	Numérica (años cumplidos)
DateLM	Fecha de la última menstrua- ción	Fecha
DateBirth	Fecha del parto	Fecha
DuraGest	Duración de la gestación	Numérica
DayFirst	Día del embarazo en que se produjo la primera consulta obstétrica	Numérica
Npregnanc	Número de embarazos pre- vios	Numérica
Smokes	Tabaquismo durante el	0: No
	embarazo	1: Sí
		2: Exfumadora
WeighNB	Peso del recién nacido	Numérica (gramos)
Hb	Menor nivel de hemoglobina	Numérica (mg/dL)
	en sangre durante el embara-	
	ZO	

Tabla 1.1: Descripción de las variables de estudio

PROBLEMAS

PROBLEMA 1.1

¿Cuál es la media, mediana y desviación típica de la duración de la gestación para las mujeres de esta cohorte? Para el cálculo a mano emplee los datos de las cinco primeras mujeres de la base de datos, que se presentan en la siguiente tabla.

Id	DuraGest
100228	246
100640	259
100706	236
101802	278
102373	270

Tabla 1.2: Datos de 5 mujeres de la cohorte

1.4. Problemas

PROBLEMA 1.2

Se desea conocer la media, la desviación estándar y la mediana de la edad a la que las mujeres se quedaron embarazadas en cada uno de los edificios (A y B). Para el cálculo a mano emplee los datos de las diez primeras mujeres de la base de datos, que se presentan en la siguiente tabla.

Id	Building	AgeMother
100228	1	28
100640	2	28
100706	2	31
101802	2	40
102373	2	28
103044	1	44
105117	2	40
107040	1	28
107537	1	29
107572	1	42

Tabla 1.3: Datos de 10 mujeres de la cohorte.

PROBLEMA 1.3

¿Qué porcentaje de recién nacidos han sido prematuros? Prematuro se define como duración del embarazo menor a 37 semanas. Para el cálculo a mano emplee los datos de las cinco primeras mujeres de la base de datos, que se presentan en la siguiente tabla.

Id	DuraGest (días)
100228	246
100640	259
100706	236
101802	278
102373	270

Tabla 1.4: Datos de 5 mujeres de la cohorte

1.4. Problemas

PROBLEMA 1.4

Se desea conocer la duración media, la desviación estándar y la mediana del tiempo de gestación en semanas para cada uno de los edificios y en general. Para el cálculo a mano emplee los datos de las diez primeras mujeres de la base de datos, que se presentan en la siguiente tabla.

Id	Building	DuraGest_semana
100228	1	35.14
100640	2	37.00
100706	2	33.71
101802	2	39.71
102373	2	38.57
103044	1	32.14
105117	2	39.29
107040	1	35.14
107537	1	33.86
107572	1	35.86

Tabla 1.5: Datos de 10 mujeres de la cohorte.

PROBLEMA 1.5

Se desea realizar un análisis descriptivo completo sobre los datos de los niveles de hemoglobina de todas las gestantes participantes en la cohorte. Para el cálculo a mano emplee los datos de las diez primeras mujeres de la base de datos, que se presentan en la siguiente tabla.

Id		Building	Hb
	100228	1	11.3
	100640	2	10.8
	100706	2	12.9
	101802	2	12.0
	102373	2	10.4
	103044	1	11.6
	105117	2	13.2
	107040	1	11.3
	107537	1	12.3
	107572	1	10.8

Tabla 1.6: Datos de 10 mujeres de la cohorte.

1.4. Problemas

PROBLEMA 1.6

Se requiere conocer qué porcentaje de niños ha nacido con bajo peso ($\leq 2500g$), con peso normal (2500-4000 g) o con sobrepeso ($\geq 4000g$) en esta cohorte. Para el cálculo a mano emplee los datos de las mujeres que aparecen en la siguiente tabla.

Id	WeighNB	Peso_cat
100706	1540	Bajo
101802	3280	Normal
105117	3200	Normal
109690	3580	Normal
109727	4160	Alto
111457	2670	Normal
116331	3890	Normal
118315	3240	Normal
123125	2760	Normal
125242	3460	Normal

Tabla 1.7: Datos de 10 mujeres de la cohorte.

PROBLEMA 1.7

¿Qué proporción de las mujeres tiene una edad igual o menor a 34 años en la cohorte? ¿Y en cada uno de los edificios? ¿Y cuántas son mayores de 39 años? Para el cálculo a mano emplee los datos de las diez primeras mujeres de la base de datos. Exprese los resultados en porcentaje.

Id	Building	AgeMother
100228	1	28
100640	2	28
100706	2	31
101802	2	40
102373	2	28
103044	1	44
105117	2	40
107040	1	28
107537	1	29
107572	1	42

Tabla 1.8: Datos de 10 mujeres de la cohorte.

1.4. Problemas

PROBLEMA 1.8

¿Qué proporción de mujeres padeció anemia durante el embarazo en el edificio A? ¿y en el B? ¿Qué media y desviación estándar de los niveles de hemoglobina presentaban las mujeres con anemia y sin anemia en cada uno de los edificios? Para el cálculo a mano emplee los datos de las mujeres que aparecen en la siguiente tabla. Nota: anemia se define como niveles de hemoglobina menores a 11 mg/dL. Exprese las proporciones en porcentaje.

Id	Building	Hb	Anemia
111428	1	11.7	No
111436	1	11.7	No
117651	1	10.4	Si
118661	1	10.3	Si
121262	1	10.4	Si
159658	2	13.3	No
159801	2	12.6	No
160336	2	10.6	Si
166116	2	10.7	Si
166256	2	13.6	No

Tabla 1.9: Datos de 10 mujeres de la cohorte

Probabilidad condicionada e independencia de sucesos

2.1 Introducción

En este capítulo se practicará el cálculo de:

- La probabilidad de un suceso.
- La probabilidad conjunta de dos sucesos.
- La probabilidad condicionada.
- La probabilidad esperada en caso de independencia de sucesos.
- Uso del teorema de Bayes para estimar una probabilidad condicionada.

Los problemas se realizarán sobre un estudio que relaciona el mesotelioma de pulmón con varios factores (la exposición profesional al asbesto y dos variantes genéticas).

2.2 Notación

Probabilidad de un suceso: P(A). Por ejemplo, la probabilidad de que un paciente tenga mesotelioma se denotará como P(mesotelioma).

Probabilidad conjunta de dos sucesos: $P(A \cap B)$. Por ejemplo la probabilidad de que un paciente tenga mesotelioma y también exposición al asbesto se denotará como $P(mesotelioma \cap exposición \ al \ asbesto)$.

Probabilidad de un suceso A condicionada a otro suceso B: $P(A \mid B)$. Por ejemplo, la probabilidad de que un paciente expuesto al asbesto (=la condición) tenga mesotelioma se denotará como $P(mesotelioma \mid exposicion \ al \ asbesto)$.

2.3 Descripción del estudio

Objetivo: Evaluar si la exposición al asbesto y dos polimorfismos genéticos se asocian a mesotelioma de pleura.

Ámbito: Estudio multicéntrico en una serie de empresas que trabajan con asbesto.

Criterios de inclusión:

- Casos: Todos los trabajadores de estas empresas a los que se ha diagnosticado un mesotelioma de pleura confirmado por anatomía patológica. La información del diagnóstico se extrajo de los registros médicos de las empresas, que se consideran exhaustivos. Un comité externo valoraba la aplicación de los criterios en anatomía patológica.
- Controles: Trabajadores de las mismas empresas sin diagnóstico de mesotelioma de pleura. La selección se realizó seleccionando los posibles controles al azar y emparejándolos por edad y sexo. El emparejamiento se hizo por frecuencia; es decir, se estima la distribución por edades de los casos y se seleccionan controles con la misma distribución; análogamente se procede con el sexo.

Recogida de información: La fecha reclutamiento de los casos es la del diagnóstico. De los registros de la empresa se obtuvo información sobre el tiempo de exposición a asbesto. De cada paciente se obtuvo una muestra de sangre o saliva para determinaciones genéticas. En el polimorfismo genético 1 (snp1), los dos alelos posibles son C y T. En el polimorfismo genético 2 (snp2), los alelos posibles son G y C. Como el material genético está duplicado, de cada polimorfismo hay dos copias por lo que pueden producirse tres genotipos según el número de mutaciones presentes (por ejemplo, en el snp1 puede haber 0, 1 o 2 copias del alelo T). Los dos polimorfismos se encuentran en distinto cromosoma.

PROBLEMAS

PROBLEMA 2.1

	Mesotelioma	No mesotelioma	Total
Exposición al asbesto	226	189	415
No exposición al asbesto	191	238	429
Total	417	427	844

Tabla 2.1: Relación entre exposición al asbesto y mesotelioma

Pregunta 2.1. Probabilidad de estar expuesto al asbesto.

Pregunta 2.2. Probabilidad de tener mesotelioma.

Pregunta 2.3. Probabilidad conjunta de tener mesotelioma y estar expuesto al asbesto.

Pregunta 2.4. Probabilidad conjunta de no tener mesotelioma y no estar expuesto al asbesto.

Pregunta 2.5. Probabilidad de estar expuesto al asbesto condicionada a tener mesotelioma.

Pregunta 2.6. Probabilidad de no estar expuesto al asbesto condicionada a tener mesotelioma.

Pregunta 2.7. Probabilidad de tener mesotelioma condicionada a estar expuesto al asbesto.

Pregunta 2.8. Probabilidad de no tener mesotelioma condicionada a no estar expuesto al asbesto.

2.4. Problemas

PROBLEMA 2.2

Genotipo del snp1	Mesotelioma	No mesotelioma	Total
TT	180	119	299
TC	189	223	412
CC	48	85	133
Total	417	427	844

Tabla 2.2: Relación entre genotipos del snp1 y mesotelioma

Pregunta 2.9. Probabilidad de tener cada genotipo.

Pregunta 2.10. Probabilidad de tener cada genotipo condicionada a tener mesotelioma.

Pregunta 2.11. Probabilidad de tener cada genotipo condicionada a no tener mesotelioma.

PROBLEMA 2.3

Genotipo del snp2	Mesotelioma	No mesotelioma	Total
CC	56	46	102
CG	223	197	420
GG	138	184	322
Total	417	427	844

Tabla 2.3: Relación entre genotipos del snp2 y mesotelioma

Pregunta 2.12. Probabilidad de cada genotipo.

Pregunta 2.13. Probabilidad de cada genotipo condicionada a tener mesotelioma.

Pregunta 2.14. Probabilidad de cada genotipo condicionada a no tener mesotelioma.

PROBLEMA 2.4

Se reproduce a continuación la Tabla 2.2, pero indicando solo los totales de cada fila y cada columna.

Genotipo del snp1	Mesotelioma	No mesotelioma	Total
TT			299
TC			412
CC			133
Total	417	427	844

Tabla 2.4: Relación entre genotipos del snp1 y mesotelioma

Pregunta 2.15. Calcule las siguientes probabilidades conjuntas asumiendo que el genotipo y la presencia o no de mesotelioma son independientes:

- $P(TT \cap mesotelioma)$
- $P(TC \cap mesotelioma)$
- $P(CC \cap mesotelioma)$
- $P(TT \cap no \ mesotelioma)$
- $P(TC \cap no \ mesotelioma)$
- $P(CC \cap no \ mesotelioma)$

Pregunta 2.16. Como consecuencia, complete la tabla anterior con el número de pacientes que habría en cada casilla si hubiera independencia.

El mesotelioma es una enfermedad rara. En la base de datos que estamos usando en este capítulo se ha hecho una selección de pacientes especial (lo que se conoce como un estudio de casos y controles) de forma que el porcentaje de pacientes con mesotelioma es anormalmente alta (casi el 50%). Esta forma de seleccionar hace que las siguientes probabilidades no tengan sentido:

```
P (mesotelioma | TT)
P (mesotelioma | TC)
P (mesotelioma | CC)
P (no mesotelioma | TT)
P (no mesotelioma | TC)
P (no mesotelioma | CC)
```

Es decir, por la forma especial de obtener la muestra, las probabilidades de tener o de no tener mesotelioma no se pueden calcular directamente.

En cambio, sí es correcto calcular:

```
P(TT \mid mesotelioma)

P(TC \mid mesotelioma)

P(CC \mid mesotelioma)

P(TT \mid no mesotelioma)

P(TC \mid no mesotelioma)

P(CC \mid no mesotelioma)
```

A partir de éstas y conociendo la probabilidad de mesotelioma es posible aplicar el **teorema de Bayes**.

Pregunta 2.17. En una población en la que 1 de cada 1000 personas tienen mesotelioma [es decir: P(mesotelioma) = 0.001], calcule las siguientes probabilidades usando el teorema de Bayes.

- \blacksquare P(mesotelioma | TT)
- P(mesotelioma | TC)
- P(mesotelioma | CC)
- \blacksquare $P(no\ mesotelioma \mid TT)$
- \blacksquare $P(no\ mesotelioma \mid TC)$
- P(no mesotelioma | CC)

PROBLEMA 2.6

Este problema no se hace con los datos que hemos usado en todo el capítulo.

Durante la pandemia de COVID-19 en la primavera de 2020, se ha discutido mucho sobre la validez de los test rápidos. Vamos a analizarla.

Se habló de test que tenían sensibilidad = 0.70 y especificidad = 0.99. Antes de seguir, hay que definir estos dos conceptos en forma de probabilidad condicionada. La sensibilidad se define como:

Sensibilidad = P(obtener un resultado positivo | haber pasado COVID-19)

Para simplificar, lo escribiremos así:

$$S = P(+ \mid COVID-19)$$

Análogamente, la especificidad se define como:

 $Especifidad = P(obtener\ un\ resultado\ negativo\ |\ no\ haber\ pasado\ COVID-19)$

Que simplificado se escribirá:

$$E = P(- \mid no\ COVID-19)$$

Pregunta 2.18. En España, se informó el 13 de mayo de que el 5% de los habitantes había pasado COVID-19 (es decir: P(COVID-19) = 0.05). Aplicamos un test rápido a una persona que vive en España y se obtiene un resultado positivo, ¿cuál es la probabilidad de que haya pasado COVID-19?

Pregunta 2.19. Por las mismas fechas, se informó de que en Nueva York P(COVID-19) = 0.20. Si una persona que vive en Nueva York da positivo, ¿cuál es la probabilidad de que haya pasado COVID-19?

Pregunta 2.20. Si un residente en España da negativo, ¿cuál es la probabilidad de que no haya pasado COVID-19?

Pregunta 2.21. Si un residente en Nueva York da negativo, ¿cuál es la probabilidad de que no haya pasado COVID-19?

Distribuciones de probabilidad

3.1 Introducción

En este capítulo no se utilizará ninguna base de datos. Se harán problemas sobre:

- Manejo de la tabla de la distribución normal.
- Uso de la tabla de la distribución normal para conocer cómo está distribuida una población.
- Cálculos sobre distribuciones binomiales.
- Cálculos sobre distribuciones de Poisson.
- Cálculos sobre distribuciones binomiales usando la aproximación de Poisson.
- Cálculos sobre distribuciones binomiales y de Poisson usando la aproximación normal.

3.2 Notación

Distribución normal de media (μ) y varianza (σ^2) : $N(\mu, \sigma^2)$

Distribución normal estandarizada: N(0,1)

Distribución binomial de parámetros n y p: B(n,p), donde n es el número de repeticiones (por ejemplo, el número de sujetos) y p la probabilidad de que ocurra el evento de interés.

Distribución de Poisson de parámetro μ : $P(\mu)$, donde μ es la media de eventos esperados en un periodo fijo de tiempo.

3.3 Fórmulas fundamentales

• Distribución de densidad de la distribución $N(\mu, \sigma^2)$.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Nota: esta fórmula es fundamental, pero no de utilidad práctica para los problemas de este libro.

• Fórmula para estandarizar una distribución normal (es decir, para convertir $N(\mu, \sigma^2)$ en N(0,1).

$$z = \frac{x - \mu}{\sigma}$$

• En una distribución B(n,p): probabilidad de que ocurran exactamente k eventos.

$$P(x = k|n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

• En una distribución B(n, p): probabilidad de que ocurran k eventos o *menos*.

$$P(x \le k | n, p) = \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$$

• En una distribución B(n,p): probabilidad de que ocurran más de k eventos

$$P(x > k|n, p) = \sum_{i=k+1}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} = 1 - P(x \le k|n, p)$$

• En una distribución $P(\mu)$: probabilidad de que ocurran exactamente k eventos.

$$P(x = k|\mu) = \frac{\mu^k e^{-\mu}}{k!}$$

• En una distribución $P(\mu)$: probabilidad de que ocurran k eventos o *menos*.

$$P(x \le k | \mu) = \sum_{i=0}^{k} \frac{\mu^{i} e^{-\mu}}{i!}$$

• En una distribución $P(\mu)$: probabilidad de que ocurran más de k eventos.

$$P(x > k|\mu) = 1 - P(x \le k|\mu) = 1 - \sum_{i=0}^{k} \frac{\mu^{i} e^{-\mu}}{i!}$$

Media, varianza y desviación típica de las distribuciones:

Distribución	Media	Varianza	Desviación típica
$N(\mu, \sigma^2)$	μ	σ^2	σ
B(n,p)	пр	np(1-p)	$\sqrt{np(1-p)}$
$P(\mu)$	μ	μ	$\sqrt{\mu}$

PROBLEMAS

PROBLEMA 3.1

El colesterol HDL se suele presentar en mg/dL. Supongamos que en la población española tiene una distribución N(38, 25).

Responda a las siguientes preguntas:

Pregunta 3.1. ¿Qué porcentaje de la población tiene más de 38 mg/dL?

Pregunta 3.2. ¿Qué porcentaje de la población tiene más de 43 mg/dL?

Pregunta 3.3. ¿Qué porcentaje de la población tiene entre 33 y 43 mg/dL?

Pregunta 3.4. ¿Qué porcentaje de la población tiene más de 30 mg/dL?

Pregunta 3.5. ¿Qué porcentaje de la población tiene entre 30 y 35 mg/dL?

Con la misma distribución de la pregunta anterior, responda a las siguientes preguntas:

Pregunta 3.6. ¿Qué valor HDL tiene el percentil 70 de la población?

Pregunta 3.7. ¿Qué valor HDL tiene el percentil 40 de la población?

Pregunta 3.8. Se decide considerar HDL bajo cuando esté por debajo del percentil 10. ¿Por debajo de que valor de HDL se considerará que es bajo?

PROBLEMA 3.3

Se realiza la determinación de osteoprotegerina en suero en 200 sujetos y se encuentra que tiene distribución N(0.17 ng/mL, 0.0009).

Responsa a las siguientes preguntas:

Pregunta 3.9. ¿Qué porcentaje de la población tiene más de 0.23 ng/mL?

Pregunta 3.10. ¿Qué porcentaje de la población tiene entre 0.17 y 0.23 ng/mL?

Pregunta 3.11. ¿Qué porcentaje de la población tiene entre 0.12 y 0.20 ng/mL?

Pregunta 3.12. ¿Qué porcentaje de la población tiene menos de 0.14 ng/mL?

Pregunta 3.13. ¿Qué porcentaje de la población tiene entre 0.14 y 0.16 ng/mL?

Con la misma distribución de la pregunta anterior, responda a las siguientes preguntas:

Pregunta 3.14. ¿Qué valor de osteoprotegerina deja por debajo al 45 % de la población?

Pregunta 3.15. ¿Qué valor de osteoprotegerina deja por encima al 30 % de la población?

Pregunta 3.16. ¿Qué valor de osteoprotegerina deja por encima al 5% de la población?

Pregunta 3.17. ¿Qué valores de osteoprotegerina dejan en el centro el 80 % de la población y un 10 % en cada cola?

PROBLEMA 3.5

En un paso posterior a los experimentos de Mendel, vamos a seguir trabajando con plantas de guisantes amarillos o verdes y lisos o rugosos. Estas dos características (color y lisura) dependen cada una de un gen. El gen color puede tener dos alelos: A -de amarillo- y v -de verde. Representamos el A en mayúsculas porque es dominante. El gen lisura puede tener los alelos L -de liso- y r -de rugoso. Los genes color y lisura se transmiten de forma independiente. En cada planta, el gen color y el gen lisura tienen dos alelos; esto hace que para color pueda haber tres genotipos (AA, Av, vv) y para lisura otros tres (LL, Lr, rr).

Tenemos una población de 100 plantas de guisantes que se han obtenido por sucesivos cruzamientos al azar. El número de cruzamientos se considera suficientemente alto como para que la distribución de los alelos sea estable.

Las proporciones que se encuentran de los alelos son:

$$P(A) = 0.6$$

$$P(v) = 0.4$$

$$P(L) = 0.8$$

$$P(r) = 0.2$$

Con esta información responda a las siguientes preguntas:

Pregunta 3.18. ¿Qué proporción de plantas tendrá cada genotipo del gen color?

- P(AA) =
- P(Av) =
- P(vv) =

Pregunta 3.19. ¿Qué proporción de plantas tendrá cada genotipo del gen lisura?

- P(LL) =
- P(Lr) =
- $\mathbf{P}(\mathbf{rr}) =$

Pregunta 3.20. Sabiendo que los alelos amarillo y liso son dominantes y que los dos genes se transmiten de forma independiente, ¿qué proporción de plantas tendrá cada fenotipo?

- P(plantas amarillas y lisas) =
- P(plantas amarillas y rugosas) =
- P(plantas verdes y lisas) =
- P(plantas verdes y rugosas) =

PROBLEMA 3.6

En este problema queremos generalizar los resultados obtenidos en las preguntas 3.18 y 3.19.

Un gen puede tener los alelos A y B. Se dispone de una población en la que los cruzamientos se producen al azar y hace tiempo que no se incorporan sujetos nuevos. En esta población, la frecuencia del alelo A es P(A) = p y, por lo tanto, la frecuencia del alelo B es P(B) = 1 - p.

Pregunta 3.21. ¿Cuál será la frecuencia de cada genotipo?

- P(AA) =
- P(AB) =
- P(BB) =

La fibrosis quística es una enfermedad genética autosómica recesiva; es decir, solo se tiene la enfermedad si las dos copias del gen tienen el alelo mutado. Se debe a mutaciones en el gen CFTR, que es un gen grande (con unas 180000 pares de bases). Se han descrito cerca de 2000 mutaciones en CFTR. En este problema simplificaremos mucho y asumiremos que solo hay una mutación. Llamemos A al alelo normal y a al alelo mutado. En España, la frecuencia de la mutación es de 1 de cada 30 personas.

Pregunta 3.22. ¿Cuál será la frecuencia de fibrosis quística en los recién nacidos?

Pregunta 3.23. ¿Cuál será la frecuencia de portadores en los recién nacidos? (Llamamos portador al que solo tiene una copia del alelo mutado).

PROBLEMA 3.8

Tras un trasplante de pulmón, se produce la enfermedad injerto contra huésped (EICH) en el 20% de los pacientes. En el hospital en el que usted trabaja, se pone en marcha un nuevo programa de trasplante pulmonar. Tras realizar 10 trasplantes, se han producido 4 casos de EICH. La pregunta clave es si algo falla en su programa y por eso están teniendo demasiados casos de EICH. Pero antes hay que saber si 4 casos de 10 son realmente demasiados o si podrían haber ocurrido al azar.

Pregunta 3.24. Si su probabilidad de tener un caso de EICH fuera realmente del 20 %, ¿cuál sería la probabilidad de que en 10 pacientes hubieran ocurrido 4 casos?

Pregunta 3.25. ¿Y cuál sería la probabilidad de que en 10 pacientes hubieran ocurrido 4 casos o más?

El 7% de los pacientes ingresados por COVID-19 han fallecido. Usted descubre que de 15 pacientes portadores de la mutación ApoE- ϵ 4 han muerto 3 (un 20%). Le preocupa saber si los portadores de esa mutación tienen más riesgo de morir por COVID-19.

Pregunta 3.26. Si la mortalidad es 7 %, ¿cuál es la probabilidad de que de 15 pacientes mueran 3?

Pregunta 3.27. ¿Y cuál es la probabilidad de que mueran 3 o más?

PROBLEMA 3.10

Un laboratorio farmacéutico lanza un nuevo medicamento para tratar el COVID-19. Según sus estudios, el laboratorio afirma que la mortalidad bajará al 4%. Usted quiere comprobar este resultado y para ello selecciona a 7 pacientes y los trata con el nuevo medicamento. Si la mortalidad es del 4%.

Pregunta 3.28. ¿Cuál es la probabilidad de que no muera ninguno?

Pregunta 3.29. ¿Cuál es la probabilidad de que muera 1?

Pregunta 3.30. ¿Cuál es la probabilidad de que mueran 2 o más?

Con el mismo medicamento del problema anterior, se lleva a cabo un estudio con 2000 pacientes.

Pregunta 3.31. ¿Cuál es la media y la desviación típica del número de fallecidos?

Pregunta 3.32. ¿Cuál es la probabilidad de que ocurran menos de 60 fallecimientos?

Pregunta 3.33. ¿Cuál es la probabilidad de que ocurran menos de 80 fallecimientos?

Pregunta 3.34. ¿Cuál es la probabilidad de que ocurran 90 fallecimientos o más?

PROBLEMA 3.12

En una población de 125000 habitantes, la media anual de muertes por leucemia mieloide aguda (LMA) es 5. En 2021 ocurren 8 muertes por LMA, lo que produce una gran alarma social. El responsable de sanidad tiene que hacer un estudio para saber si 8 muertes en un año es un fenómeno normal cuando la media es 5 o es un fenómeno tan infrecuente que debería hacerse una investigación para saber qué está ocurriendo. Para ello, tiene que responder a estas dos preguntas:

Pregunta 3.35. Si la media es 5 muertes al año, ¿cuál es la probabilidad de que ocurran 8 muertes en un año?

Pregunta 3.36. Si la media es 5 muertes al año, ¿cuál es la probabilidad de que ocurran 8 muertes o más en un año?

En una provincia de tamaño medio se produce cada año una media de 9 ingresos por enfermedad neumocócica invasiva (ENI). Para evitarlo, se pone en marcha la vacunación contra el neumococo en los grupos de riesgo (recién nacidos, mayores de 65 años, enfermos crónicos, esplenectomizados, inmunodeprimidos). Al año siguiente ocurren solo 6 ingresos por ENI. Queremos saber si el descenso de 9 ingresos a 6 se debe a la vacunación o si puede deberse a una variación al azar. Para ello, responda a las siguientes preguntas:

Pregunta 3.37. Si la media es 9 ingresos al año, ¿cuál es la probabilidad de que ocurran 6 ingresos en un año?

Pregunta 3.38. Si la media es 9 ingresos al año, ¿cuál es la probabilidad de que ocurran 6 ingresos o menos en un año?

PROBLEMA 3.14

En la misma provincia del problema 3.13, el número medio anual de casos de varicela es 27. Un año se producen 33. Necesitamos saber si este número es anormalmente alto (por lo que deberíamos llevar a cabo una investigación para saber qué está pasando) o pudiera ser debido a una variación al azar.

Pregunta 3.39. Si la media es 27 casos al año, ¿cuál es la probabilidad de que un año ocurran 33 casos o más?

El 27 de junio de 2020, Chu et al. Publicaron en The Lancet un metaanálisis sobre, entre otros, los efectos de la distancia interpersonal en la transmisión del SARS-CoV-2¹. Estimaron que la probabilidad de infección entre personas a menos de un metro de distancia es del 12.8 %, mientras que a más de un metro es del 2.6 %.

Pregunta 3.40. ¿Cuál sería la probabilidad de infección en una población en que la distancia fuera menor que un metro entre el 20% de las personas?

Pregunta 3.41. Si en Nochebuena todas las cenas familiares reunieran a exactamente 6 personas a una distancia de menos de un metro, ¿qué distribución seguiría el número de infectados en las cenas de Nochebuena?

Pregunta 3.42. ¿Cuál es la probabilidad de que, en una reunión de 20 personas en que todas están a menos de un metro de distancia, se infecten al menos 2?

Pregunta 3.43. ¿Y la de que, en una reunión de 1000 personas en que todas están a más de un metro de distancia, se infecten exactamente 10?

¹Chu, D. K. et al. "Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis". The Lancet, 395. 1973-1987 (2020)

Estimación de una media

4.1 Introducción

En este capítulo se practicará el procedimiento para calcular una media con su intervalo de confianza y saber posteriormente interpretarla.

En la estimación de una media vamos a seguir el siguiente **procedimiento**:

- 1. Calcular la media muestral (*m*)
- 2. Calcular la desviación estándar muestral (s)
- 3. Calcular el error estándar de la media (desviación estándar de la distribución de las medias)
- 4. Calcular el intervalo de confianza al 95%
- 5. Interpretar el intervalo de confianza al 95 %

A través del siguiente ejemplo, se muentran los **problemas** que pueden existir de **interpretación** del intervalo de confianza: Media = 170.0; IC95% = (166.8; 173.2)

Interpretaciones correctas:

- Tenemos una confianza del 95% de que la media de la población está entre 166.8 y 173.2.
- En mi muestra he obtenido una media de 170, pero Si repitiésemos el estudio 100 veces en 95 ocasiones los valores estarían comprendidos entre 167 y 173.

Interpretaciones erróneas:

- El verdadero valor de la media en la población estará entre 166.8 y 173.2 el 95% de las veces.
- El 95% de la población tiene una altura entre 166.8 y 173.2.

Los problemas se realizarán sobre un estudio que pretende saber si el balance hídrico, el tipo de suero utilizado y la hipercloremia en las primeras 24 horas son factores de riesgo del daño renal agudo.

4.2 Fórmulas

Concepto	Fórmula				
Muestras grandes					
Media	$m = \frac{\sum_{i=1}^{n} x_i}{n}$				
Varianza	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - m)^{2}}{n - 1}$				
Desviación estándar	$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}}$				
Estimación de una media	$EEM = \frac{s}{\sqrt{n}}$				
	$m \pm z_{\alpha/2} \times \frac{s}{\sqrt{n}}$ $m \pm t_{\alpha/2;n-1} \times \frac{s}{\sqrt{n}}$				
	La distribución normal no funciona bien para muestras pequeñas (n< 60) y en su lugar se utiliza la distribución t de Student				
Valores de z para diferentes intervalos de	Para IC 80%: $z_{\alpha/2} = 1.28$				
confianza (consejo: compruebe estos	Para IC 90 %: $z_{\alpha/2} = 1.64$				
valores en la tabla de la distribución	Para IC 95%: $z_{\alpha/2} = 1.96$				
normal del material suplementario)	Para IC 99%: $z_{\alpha/2} = 2.58$				

4.3 Descripción de la base de datos

La siguiente tabla presenta la descripción de todas las variables incluidas en la hoja estudioDañoRenal del fichero datosProblemasBest.xlsx:

Nombre	Descripción	Codificación
Id	Número de identificación del sujeto	Numérica
Caso	Variable identificadora	1: Necesita diálisis
	del caso	0: No necesita diálisis
Edad	Edad en años cumplidos	Numérica
Sexo	Sexo	1: Varón
		0: Mujer
Apache	Puntuación Apache II	Numérica

Nombre	Descripción	Codificación
Hta	Variable indicadora de	1: Sí
	hipertensión arterial	0: No
DiabMell	Variable indicadora de	1: Sí
	diabetes mellitus	0: No
Epoc	Variable indicadora de	1: Sí
	enfermedad pulmonar	0: No
	obstructiva crónica	
Cardiopatia	Variable indicadora de	1: Sí
	cardiopatía	0: No
Sepsis	Variable indicadora de	1: Sí
	sepsis	0: No
CreatIng	Creatinina en sangre al ingreso en UCI	Numérica
UreaIng	Urea en sangre al ingreso en UCI	Numérica
Cl24h	Cloro en sangre a las 24 horas del ingreso	Numérica
Balance	Balance hídrico en las primeras 24 horas del ingreso (en centímetros cúbicos)	Numérica
TipoFluido	Tipo de fluidos recibidos	1: Suero salino
11 P 011m1m0	11-po do 1141400 100101400	2: Suero salino + suero
		balanceado
		3: Suero salino + coloide
		4: Suero salino +
		balanceado + coloide
		5: Ninguno
AccMet	Variable indicadora de	1: Sí
	acidosis metabólica por	0: No
	hipercloremia a las 24	
	horas del ingreso en UCI	
Submuestra1	Variable que incluye un	1: Sí
	70% de los datos	0: No
Submuestra2	Variable que incluye un	1: Sí
	30% de los datos	0: No

4.4 Descripción del estudio

El daño renal agudo es una complicación frecuente en los pacientes que han necesitado reanimación en UCI.

Objetivo: Evaluar si el balance hídrico, el tipo de suero utilizado y la hipercloremia en las primeras 24 horas son factores de necesitar diálisis.

Ámbito: Estudio multicéntrico en una serie de hospitales.

Criterios de inclusión:

- Casos: Los casos son pacientes ingresados en UCI y que después han requerido diálisis
- **Controles**: Los controles se seleccionan entre los pacientes ingresados en UCI y que no han requerido diálisis.

Tanto de casos como de controles se excluyeron los pacientes con antecedentes de enfermedad renal.

Recogida de información: Los pacientes fueron reclutados entre el 1 de enero de 2016 y el 31 de diciembre de 2018. La información se obtuvo revisando la historia clínica hospitalaria. Apache II es una escala de gravedad de la enfermedad; puede estar entre 0 y 71. A mayor puntuación, más gravedad. Apache II y la presencia de comorbilidades (diabetes, EPOC, hipertensión, cardiopatía) se refieren al momento de ingreso en UCI. Sepsis se refiere a si el motivo del ingreso en UCI fue la sepsis.

PROBLEMAS

Para resolver las preguntas 4.1 a 4.3 de forma manual utilice la siguiente tabla:

		Edad	
	Muestra	Controles	Casos
n	636	318	318
$\sum_{i=1}^{n} x_i$	41808	20423	21385
$\sum_{i=1}^{n} (x_i - m)^2$	133007.6	63989.15	67563.37

Pregunta 4.1. Calcule la media y el intervalo de confianza al 95% de la edad de la muestra.

Pregunta 4.2. Calcule la media y el intervalo de confianza al 95 % de la edad de los controles.

Pregunta 4.3. Calcule la media y el intervalo de confianza al 95 % de la edad de los casos.

PROBLEMA 4.2

Para resolver las preguntas 4.4 a 4.6 de forma manual utilice la siguiente tabla:

	Apache II				
	Muestra Controles Cas				
n	634	318	316		
$\sum_{i=1}^{n} x_i$	15970	7901	8069		
$\sum_{i=1}^{n} (x_i - m)^2$	28781.29	12221.45	16484.62		

Pregunta 4.4. Calcule la media y el intervalo de confianza al $90\,\%$ de la puntuación Apache II de la muestra.

Pregunta 4.5. Calcule la media y el intervalo de confianza al 90 % de la puntuación Apache II de los controles.

Pregunta 4.6. Calcule la media y el intervalo de confianza al 90 % de la puntuación Apache II de los casos.

Para resolver las preguntas 4.7 a 4.9 de forma manual utilice la siguiente tabla:

	Creatinina en sangre					
	Muestra Controles Case					
n	627	313	314			
$\sum_{i=1}^{n} x_i$	1522.71	571.32	951.39			
$\sum_{i=1}^{n} (x_i - m)^2$	2621.293	597.065	951.774			

Pregunta 4.7. Calcule la media y el intervalo de confianza al 80% de la creatinina en sangre de la muestra.

Pregunta 4.8. Calcule la media y el intervalo de confianza al $80\,\%$ de la creatinina en sangre de los controles.

Pregunta 4.9. Calcule la media y el intervalo de confianza al $80\,\%$ de la creatinina en sangre de los casos.

PROBLEMA 4.4

Para resolver las preguntas 4.10 a 4.12 de forma manual utilice la siguiente tabla:

		Urea	
	Muestra	Controles	Casos
n	625	311	314
$\sum_{i=1}^{n} x_i$	54258.59	21868.83	32489.76
$\sum_{i=1}^{n} (x_i - m)^2$	3082005	901446.9	2008827

Pregunta 4.10. Calcule la media y el intervalo de confianza al 99 % de la urea en sangre de la muestra.

Pregunta 4.11. Calcule la media y el intervalo de confianza al 99% de la urea en sangre de los controles.

Pregunta 4.12. Calcule la media y el intervalo de confianza al 99% de la urea en sangre de los casos.

Para resolver las preguntas 4.13 a 4.15 de forma manual utilice la siguiente tabla:

	Cloro en sangre				
	Muestra	Controles	Casos		
n	458	225	233		
$\sum_{i=1}^{n} x_i$	48425.4	23952	24473.4		
$\sum_{i=1}^{n} (x_i - m)^2$	15626.22	6977.76	8418.537		

Pregunta 4.13. Calcule la media y el intervalo de confianza al 95 % del cloro en sangre de la muestra.

Pregunta 4.14. Calcule la media y el intervalo de confianza al 95 % del cloro en sangre de los controles.

Pregunta 4.15. Calcule la media y el intervalo de confianza al 95 % del cloro en sangre de los casos.

PROBLEMA 4.6

Con la información obtenida en los problemas anteriores cumplimente la siguiente tabla. A continuación, interprete los intervalos de confianza indicados en las preguntas.

	Mu	estra	Con	troles	Cá	asos
	media	IC 95%	media	IC 95%	media	IC 95%
Edad						
	media	IC 90%	media	IC 90%	media	IC 90%
Puntuación Apa-						
che II						
	media	IC 80%	media	IC 80%	media	IC 80%
Creatinina en						
sangre						
	media	IC 99%	media	IC 99%	media	IC 99%
Urea en sangre						
	media	IC 95%	media	IC 95%	media	IC 95%
Cloro en sangre						

Pregunta 4.16. De la edad de los controles.

Pregunta 4.17. La edad de los casos.

Pregunta 4.18. La puntuación Apache II de los controles.

Pregunta 4.19. La puntación Apache II de los casos.

Pregunta 4.20. La urea en sangre de los controles.

Pregunta 4.21. La urea en sangre de los casos.

Pregunta 4.22. El cloro en sangre de los controles.

Pregunta 4.23. El cloro en sangre de los casos.

PROBLEMA 4.7

Para ver la importancia del tamaño muestral en la estimación de una media se han generado dos submuestras al azar en la base de datos. La variable submuestra 1 incluye el 70% de los datos (N=447) y en la submuestra 2 incluye el 30% de los datos (N=184).

Para resolver las preguntas 4.24 a 4.26 de forma manual utilice la siguiente tabla:

		Edad	
	Muestra	Submuestra 1	Submuestra 2
n	636	447	184
$\sum_{i=1}^{n} x_i$	41808	29127	12143
$\sum_{i=1}^{n} (x_i - m)^2$	133007.6	94274.4	40176.99

Pregunta 4.24. Calcular la media, la desviación típica y el error estándar de la media de la edad para toda la muestra.

Pregunta 4.25. Calcular la media, la desviación típica y el error estándar de la media de la edad para la submuestra 1.

Pregunta 4.26. Calcular la media, la desviación típica y el error estándar de la media de la edad para la submuestra 2.

Para resolver las preguntas 4.27 a 4.29 de forma manual utilice la siguiente tabla:

	Urea en sangre		
	Muestra	Submuestra 1	Submuestra 2
n	625	437	181
$\sum_{i=1}^{n} x_i$	54358.59	37015.16	16062.29
$\sum_{i=1}^{n} (x_i - m)^2$	3082005	2168226	1115155

Pregunta 4.27. Calcular la media, la desviación típica y el error estándar de la media de la urea en sangre para toda la muestra.

Pregunta 4.28. Calcular la media, la desviación típica y el error estándar de la media de la urea en sangre para la submuestra 1.

Pregunta 4.29. Calcular la media, la desviación típica y el error estándar de la media de la urea en sangre para la submuestra 2.

4.5. Problemas 67

Pregunta 4.30. Con la información obtenida en las preguntas 4.24 a 4.29 completa la siguiente tabla y reflexiona sobre los cambios que se producen la media, la desviación típica y el error estándar de la media al disminuir el tamaño muestral.

Edad	Todos	Submuestra1=1	Submuestra2=1
N	636	447	184
Media			
Desviación típica			
Error estándar de la media			
Urea en sangre	Todos	Submuestra1=1	Submuestra2=1
Urea en sangre N	Todos 625	Submuestra1=1 437	Submuestra2=1 181
N			

Pregunta 4.31. En nuestra muestra de 418 hombres que ingresaron en la UCI, la creatinina en sangre tenía m = 2.6 y s = 2.18. ¿Se puede asumir que la muestra procedía de una población de hombres procedentes de cuidados intensivos con m = 2.4?

Pregunta 4.32. En nuestra muestra de 209 mujeres que ingresaron en la UCI, la creatinina en sangre tenía m = 2.1 y s = 1.70. ¿Se puede asumir que la muestra procedía de una población de mujeres procedentes de cuidados intensivos con m = 1.7?

Pregunta 4.33. En nuestra muestra la urea en sangre al ingreso en UCI de los 311 pacientes que no requirieron diálisis tenía m = 70.3 y s = 53.9 ¿Se puede asumir que la muestra procedía de una población de pacientes procedentes de la UCI con m = 69 y s = 50.2?

Pregunta 4.34. En nuestra muestra de pacientes, el cloro en sangre a las 24 horas del ingreso en UCI de los 225 pacientes que no equirieron diálisis tenía una m = 106.5 y s = 5.58 ¿Se puede asumir que la muestra procede de una población con una media mayor de 106?

Comparación de dos medias

5.1 Introducción

En este capítulo se practicará el uso de la t de Student para:

- Comparar la media de dos muestras con datos independientes y varianzas homogéneas.
- Comparar la media de dos muestras con datos independientes y varianzas heterogéneas.
- Comparar la media de dos muestras con datos dependientes.

Los problemas se realizarán sobre un estudio que relaciona la enfermedad cardiovascular y diabetes con varios factores.

5.2 Procedimiento

Concepto	Fórmula t c	le Student	
Media	$m = \frac{\sum_{i=1}^{n} x_i}{n}$		
Varianza	$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}$		
Desviación están- dar	$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}}$		
	Cálculo de la t de Student si varianzas homogéneas*	Cálculo de la t de Student si varianzas no homogéneas*	
Cálculo de varian- za conjunta	$s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)}$		

Concepto	Fórmula t de Student		
Grados de libertad	$g.l = n_A + n_B - 2$	$gl* = \frac{\left(\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}\right)^2}{\left(\frac{s_A^2}{n_A}\right)^2 + \left(\frac{s_B^2}{n_B}\right)^2}$ g.l. corregidos (Test de Welch)	
Error estándar de la diferencia de medias	$EEDM = s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}$	$EEDM = \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}$	
Cálculo de t	$t = \frac{\mathrm{dm}}{\mathrm{EEDM}} = \frac{m_A - m_B}{s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}}$	$t = \frac{m_A - m_B}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}}$	
Intervalo de con- fianza	$IC 95\%: dm \pm t_{0.02}$	$_{25;n_A+n_B-2} \times EEDM$	

* Se asume que las varianzas son homogéneas si $\frac{s_A^2}{s_B^2} < 4$ y $\frac{s_B^2}{s_A^2} < 4$

En estos problemas vamos a considerar la regla de Box, es decir, si una varianza no es cuatro veces mayor que la otra, se puede usar directamente la t. Solo si es al menos cuatro veces mayor, usaremos el test de Welch. Observe que esto es equivalente a que la desviación típica mayor sea el doble que la desviación típica menor.

5.3 Descripción de la base de datos

La siguiente tabla presenta la descripción de todas las variables incluidas en la hoja estudioEfCardiovascularDiabetes del fichero datosProblemasBest.xlsx:

Nombre	Descripción	Codificación
ID	Número de identificación	Numérica
SEXO	Sexo	0: mujer, 1: varón
EDAD	Edad	Numérica (años cumplidos)
MUERTE	Muerte durante el estudio	0: No, 1: Si
ANGINA	Angina de pecho	0: No, 1: Si
ACV	Accidente cerebrovascular	0: No, 1: Si
FUMADOR	Fumador	0: No, 1: Si
IMC	Índice de masa corporal	Numérica
COLESTEROL	Nivel de colesterol (mg/dl)	Numérica

Nombre	Descripción	Codificación
COLESTEROL2	Nivel de colesterol (mg/dl) un mes después del diagnóstico	Numérica
GLUCEMIA	Glucemia	Numérica
GLUCEMIA2	Glucemia un mes después del diagnóstico	Numérica
TAS	tensión arterial sistólica	Numérica (mm de Hg)
TAS2	tensión arterial sistólica un mes después del diagnóstico	Numérica (mm de Hg)

5.4 Descripción del estudio

Objetivo: Valorar los factores de riesgo de enfermedad cardiovascular y diabetes se realiza un estudio transversal con personas mayores de 30 años que acuden a un centro de salud.

Recogida de información: Los pacientes fueron reclutados entre el 1 de enero de 2012 y el 31 de diciembre de 2017. La información demográfica y clínica se obtuvo revisando la historia clínica.

Las respuestas se darán en dos formatos Excel y Stata.

Los resultados se darán con una precisión de 3 decimales.

5.5

PROBLEMAS - SIN EMPAREJAMIENTO

PROBLEMA 5.1

Se cree que el nivel de colesterol está relacionado con el riesgo de muerte. Para comprobarlo realice un test de hipótesis sobre si la media de colesterol era la misma en los pacientes que murieron y en los que sobrevivieron.

	Colesterol		
	Fallecidos Vivos		
n	329	671	
$\sum_{i=1}^{n} x_i$	87562	150312	
$\sum_{i=1}^{n} (x_i - m)^2$	629084.997	978355.905	

Pregunta 5.1. ¿Cuál es el colesterol medio en los fallecidos?

Pregunta 5.2. ¿Cuál es el valor de la t de Student?

Pregunta 5.3. ¿Cuál es el valor de la p de esta t de Student?

Pregunta 5.4. ¿Calcule el Intervalo de confianza al 95 %?

Pregunta 5.5. ¿Qué conclusión saca del resultado obtenido?

Se cree que la tensión arterial sistólica aumenta el riesgo de muerte. Compruebe esta hipótesis. Para comprobarlo realice un test de hipótesis sobre si la media de la tensión arterial sistólica era mayor en los pacientes que murieron que en los que sobrevivieron.

Pregunta 5.6. ¿Cuál es la tensión arterial sistólica en los dos grupos a comparar? (vivos y muertos)

	Tensión Arterial Sistólica (TAS)		
	Fallecidos	Vivos	
n	329	671	
$\sum_{i=1}^{n} x_i$	44054	86593	
$\sum_{i=1}^{n} (x_i - m)^2$	173745.388	256876.777	

Pregunta 5.7. ¿Cuál es el valor de la t de Student?

Pregunta 5.8. ¿Cuál es el valor de la p de esta t de Student?

Pregunta 5.9. ¿Calcula el Intervalo de confianza al 95%?

Pregunta 5.10. ¿Qué conclusión sacas del resultado obtenido?

Se cree que la media de la tensión arterial sistólica es mayor en los fumadores que en los no fumadores. Para comprobarlo realice un test de hipótesis.

	Tensión Arterial Sistólica (TAS)		
	Fumadores No fumadores		
n	486	514	
$\sum_{i=1}^{n} x_i$	62506.5	68140.5	
$\sum_{i=1}^{n} (x_i - m)^2$	219421.912	212490.298	

Pregunta 5.11. ¿Podemos afirmar que en los fumadores la tensión arterial sistólica es mayor que en los no fumadores?

Pregunta 5.12. Calcula el intervalo de confianza al 95 % de la diferencia de medias.

Pregunta 5.13. ¿Qué conclusión sacas del resultado obtenido?

Se cree que el índice de masa corporal (IMC) es mayor en los no fumadores. Para comprobarlo realice un test de hipótesis sobre si la media del IMC era la misma en los pacientes que fumaban y en los que no fumaban.

	Índice de masa corporal (IMC)		
	Fumadores No fumadores		
n	486	514	
$\sum_{i=1}^{n} x_i$	11014.28	14786.44	
$\sum_{i=1}^{n} x_i$ $\sum_{i=1}^{n} (x_i - m)^2$	1827.764	5716.799	

Pregunta 5.14. ¿Cuál es IMC medio de los dos grupos a comparar?

Pregunta 5.15. ¿Cuál es el valor de la t de Student?

Pregunta 5.16. ¿Qué conclusión sacas del resultado obtenido?

PROBLEMA 5.5

Se cree que la edad se relaciona al desarrollo de angina de pecho. Compruebe esta hipótesis. Para comprobarlo realice un test de hipótesis sobre si la media de la edad era la misma en los con angina de pecho que en los que no tenían angina de pecho.

	Edad		
	Angina de pecho	No angina de pecho	
n	161	839	
$\sum_{i=1}^{n} x_i$	8364	41974	
$\sum_{i=1}^{n} (x_i - m)^2$	12841.602	62227.313	

Pregunta 5.17. ¿En qué grupo la edad media es mayor?

Pregunta 5.18. ¿Cuál es el valor del test estadístico empleado?

Pregunta 5.19. ¿Cuál es el valor de la p?

Pregunta 5.20. ¿Qué conclusión sacas del resultado obtenido?

Se cree que el nivel de colesterol aumenta el riesgo de ACV Para comprobarlo se comparan los niveles de colesterol en personas con y sin ACV. Compruebe esta hipótesis.

	Colesterol		
	ACV No ACV		
n	68	932	
$\sum_{i=1}^{n} x_i$	18250	219624	
2	700000.059	1861438.567	

Pregunta 5.21. ¿Cuál es el valor del test estadístico empleado?

Pregunta 5.22. ¿Cuál es el valor de la p?

Pregunta 5.23. ¿Calcula el intervalo de confianza al 95%?

Pregunta 5.24. ¿Qué conclusión sacas del resultado obtenido?

5.6

PROBLEMAS - CON EMPAREJAMIENTO

En este estudio se pretende comprobar si en solo un mes de estatinas el nivel de colesterol disminuye, para eso se mide el colesterol antes de empezar el tratamiento (CO-LESTEROL) y después de un mes de tratamiento con estatinas (COLESTEROL2).

	Tto. 1 mes de Estatinas		
	Colesterol antes	Colesterol después	Diferencia
n	1000	1000	1000
Media (m)	237.874	237.330	-0.544
Desviación estándar (s)	45.544	44.736	53.856

Pregunta 5.25. ¿Podemos afirmar que después de un mes de tratamiento disminuye el nivel de colesterol de los sujetos de nuestro estudio?

Pregunta 5.26. Calcula el intervalo de confianza al 95 % de la diferencia de medias.

Pregunta 5.27. ¿Qué conclusión sacas del resultado obtenido?

PROBLEMA 5.8

A todos los participantes en el estudio se les recomendó realizar una actividad física diaria que superase los 10000 pasos. Al mes de esta recomendación se les volvió a mirar la glucemia en sangre (GLUCEMIA2).

	Actividad física > 10000 pasos (1 mes)						
	Glucemia antes Glucemia después Difer						
n	1000	1000	1000				
Media (m)	81.252	136.352	-55.100				
Desviación estándar (s)	27.567	23.424	33.972				

Pregunta 5.28. ¿Podemos afirmar que después de un mes de actividad física el nivel de glucemia en sangre a disminuido?

Pregunta 5.29. Calcula el intervalo de confianza al 95 % de la diferencia de medias.

Pregunta 5.30. ¿Qué conclusión sacas del resultado obtenido?

Una vez que se han visto los resultados de la actividad física se pretende añadir en estos participantes una segunda recomendación, disminuir el nivel de sal en la dieta para ver cómo influye en la tensión arterial.

	Disminución sal en dieta (1 mes)							
	TAS antes TAS después Diferen							
n	1000	1000	1000					
Media (m)	130.980	130.647	0.334					
Desviación estándar (s)	21.026	20.887	26.351					

Pregunta 5.31. ¿Podemos afirmar que después de un mes con un menor consumo de sal la tensión arterial sistólica al mes (TAS2) es menor que la tensión arterial sistólica antes de la recomendación (TAS)?

Pregunta 5.32. ¿Qué conclusión sacas de estos resultados?

Comparación de tres o más medias

6.1 Introducción

En este capítulo vamos a utilizar el ANOVA de una vía para comprobar hasta qué punto hay relación entre una variable independiente o de agrupación con más de dos categorías y una variable continua. Por tanto, es un procedimiento adecuado para comparar 3 o más medias.

Con estos ejercicios se pretende que practiques:

- El procedimiento de cálculo
- Las comparaciones múltiples

Los problemas se realizarán sobre el mismo estudio que relaciona la enfermedad cardiovascular y diabetes con varios factores del capítulo 5.

6.2 Procedimiento

Pasos para el cálculo del análisis de la varianza (ANOVA)

1. Datos necesarios.

Variable categórica	Número de pacientes	Media	Varianza
A	n_{A}	m_A	s _A ²
В	n_{B}	m_B	s_B^2
C	$n_{\mathbb{C}}$	m_{C}	s_C^2
Total	n	m	s^2

2. Crear tabla del ANOVA.

Fuente de variación	Suma de cuadrados	Grados de li- bertad	Varianza	F	P
Entre grupos	$SC_{\text{eg}} = \sum_{i=1}^{k} n_i (m_i - m)^2$	k-1	$V_e = \frac{SC_{eg}}{(k-1)}$	$F = \frac{V_e}{Vr}$	p > 0.05
Residual Total	$SCR = SCT - SC_{eg}$ $SCT = (n-1)s^{2}$	n-k $n-1$	$V_r = \frac{SCR}{(n-k)}$		p < 0.03

Donde:

- SC_{eg}: suma de cuadrados entre grupos
- SCR: suma de cuadrados residual
- SCT: suma de cuadrados total
- V_e : arianza entre grupos
- V_r: arianza residual
- g.l.: grados de libertad
- k: número de categorías
- F: valor del estadístico F
- p: significación estadística. Buscar el valor p en la tabla F con k-1, n-k grados de libertad
- m_i es la media con el tratamiento i y m es la media total
- s_i^2 es la varianza con el tratamiento i y s^2 es la varianza total.
- n_i es el tamaño de muestra con tratamiento i y n es la muestra total

Vamos a considerar que las varianzas son homogéneas en la t de Student si la desviación típica mayor no supera el doble de la menor.

6.3 Descripción de la base de datos

La siguiente tabla presenta la descripción de todas las variables incluidas en la hoja estudioEfCardiovascularDiabetes del fichero datosProblemasBest.xlsx:

Nombre	Descripción	Codificación
ID	Número de identificación	Numérica
SEXO	Sexo	0: mujer, 1: varón
EDAD	Edad	Numérica
		(años cumplidos)

Nombre	Descripción	Codificación
GRUP_EDAD	Grupo de edad	Categórica
	_	1: =<50
		2: 50-65
		3: >=65
IMC	Índice de masa corporal	Numérica
IMC_CAT	IMC categorizado	Categórica
		1: Normopeso
		2: Sobrepeso
		3: Obesidad
COLESTEROL	Nivel de colesterol (mg/dl)	Numérica
COLESTEROL_CAT	Colesterol categorizado	Categórica
		0: <200
		1: 200-239
		2: >= 240 mg/dl
GLUCEMIA	Glucemia	Numérica
TAS	tensión arterial sistólica	Numérica (mm de Hg)

6.4 Descripción del estudio

Objetivo: Valorar los factores de riesgo de enfermedad cardiovascular y diabetes se realiza un estudio transversal con personas mayores de 30 años que acuden a un centro de salud.

Recogida de información: Los pacientes fueron reclutados entre el 1 de enero de 2018 y el 31 de diciembre de 2019. La información demográfica y clínica se obtuvo revisando la historia clínica.

Utilizando esta base de datos en Excel, responde a los siguientes problemas.

Las respuestas se darán en dos formatos Excel y Stata.

Los resultados se darán con una precisión de 3 decimales

PROBLEMAS

6.5. Problemas 87

PROBLEMA 6.1

Se cree que el colesterol se relaciona con el Índice de masa corporal (IMC_cat). Para comprobarlo realice un test de hipótesis sobre si la media de colesterol era la misma en los pacientes con normopeso, sobrepeso y los que tenían obesidad.

IMC	Número de pacientes	Media	Desviación estandar
Normopeso	456	234.509	46.834
Sobrepeso	417	241.000	42.245
Obesidad	127	236.780	44.267
Total	1000	237.874	

Fuente de variación	Suma de cuadrados	Grados libertad	de	Varianza	F	P
Entre grupos						
Residual	1987315.494					
Total	1999348.124					

Pregunta 6.1. ¿Cuál es el colesterol medio en los que tienen sobrepeso?

Pregunta 6.2. ¿Cuál es el valor de F?

Pregunta 6.3. ¿Cuál es el valor de la p?

Pregunta 6.4. ¿Qué conclusión sacas del resultado obtenido?

Se cree que la glucemia varía según el grupo de edad (GRUP_EDAD) del paciente. Para comprobarlo realice un test de hipótesis sobre si la media de glucemia era la misma en los 3 grupos de edad: pacientes hasta 50 años (Edad1), entre 50-64 años (Edad2) o iguales o mayores a 65 años (Edad3).

Compruebe esta hipótesis. Para ello, en primer lugar, complete esta tabla.

GLUCEMIA	Número de pacientes	Media	Desviación estandar
Edad-1	492	128.784	18.616
Edad-2	454	147.629	25.162
Edad-3	54	152.537	24.181
Total	1000	136.352	

Fuente de variación	Suma de cuadrados	Grados libertad	de	Varianza	F	P
Entre grupos						
Residual	487942.835					
Total	548158.096					

Pregunta 6.5. ¿Cuál es la glucemia basal media en los tres grupos a comparar?

Pregunta 6.6. ¿Cuál es el valor de F?

Pregunta 6.7. ¿Cuál es el valor de la p?

Pregunta 6.8. ¿Qué conclusión sacas del resultado obtenido?

6.5. Problemas 89

PROBLEMA 6.3

Se cree que la tensión arterial sistólica se relaciona con el Índice de masa corporal (IMC_CAT: normopeso/sobrepeso/obesidad)). Para comprobarlo realice un test de hipótesis sobre si la media de la tensión arterial sistólica era la misma en los pacientes con normopeso, sobrepeso y los que tenían obesidad.

En primer lugar, complete la siguiente tabla:

TAS	Número de pacientes	Media	Desviación estandar
Normopeso	456	128.498	21.630
Sobrepeso	417	132.332	19.806
Obesidad	127	132.831	21.056
Total	1000	130.647	

Fuente de variación	Suma de cuadrados	Grados libertad	de	Varianza	F	P
Entre grupos						
Residual	431923.357					
Total	435819.391					

Pregunta 6.9. ¿Cuál es la tensión arterial sistólica en las personas con obesidad?

Pregunta 6.10. ¿Cuál es el valor de F?

Pregunta 6.11. ¿Cuál es el valor de la p?

Pregunta 6.12. ¿Qué conclusión sacas del resultado obtenido?

Se cree que la edad es diferente en función del IMC del paciente (IMC_CAT). Para comprobarlo realice un test de hipótesis sobre si la media de la edad en los pacientes con normopeso, sobrepeso y los que tenían obesidad.

Para ello, complete la siguiente tabla:

EDAD	Número de pacientes	Media	Desviación estandar
Normopeso	456	49.614	8.888
Sobrepeso	417	51.153	8.407
Obesidad	127	50.260	8.776
Total	1000	50.338	

Fuente de variación	Suma de cuadrados	Grados libertad	de	Varianza	F	P
Entre grupos						
Residual	75050.673					
Total	75567.756					

Pregunta 6.13. ¿En qué grupo la edad media es mayor?

Pregunta 6.14. ¿Cuál es el valor de F?

Pregunta 6.15. ¿Cuál es el valor de la p?

Pregunta 6.16. ¿Qué conclusión sacas del resultado obtenido?

6.5. Problemas 91

PROBLEMA 6.5

Se cree que la glucemia varía según el IMC (IMC_CAT) del paciente. Compruebe esta hipótesis.

GLUCEMIA	Número de pacientes	Media	Desviación estandar
Normopeso	456	132.508	24.371
Sobrepeso	417	137.747	21.663
Obesidad	127	145.575	22.596
Total	1000	136.352	

Fuente de variación	Suma de cuadrados	Grados libertad	de	Varianza	F	P
Entre grupos						
Residual	529804.821					
Total	548158.096					

Pregunta 6.17. ¿Cuál es el valor del test empleado?

Pregunta 6.18. ¿Qué conclusión sacas del resultado obtenido?

Estimación de una proporción

7.1 Introducción

En este capítulo se abordará la estimación de una proporción utilizando la aproximación normal. Los problemas se realizarán sobre un estudio que relaciona el cáncer de mama con distintas exposiciones potencialmente de riesgo.

7.2 Fórmulas

■ Estadístico z

$$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0 \times (1 - \pi_0)}{n}}}$$

Intervalo de confianza de una proporción

$$p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

7.3 Descripción de la base de datos

La siguiente tabla presenta la descripción de todas las variables incluidas en la hoja estudioCaMama del fichero datosProblemasBest.xlsx:

Nombre	Descripción	Codificación		
id	Número de identificación	Numérica		
caso	Caso de cáncer de mama	0: No cáncer de mama 1: Cáncer de mama		
EdadMenar	Edad de la menarquia	Numérica		
THS	Toma de terapia hormonal sustitutiva	0: No		
		1: Si		

Nombre	Descripción	Codificación
AFamCancer	Antecedentes familiares de cáncer de mama	0: No
		 Familiar 1er grado Familiar 2o grado Otro familiar
Menopausia	Menopausia	0: No 1: Si

7.4 Descripción del estudio

Objetivo: Evaluar si distintas exposiciones como el consumo de anticonceptivos orales (AO), la terapia hormonal sustitutiva (THS) o los antecedentes familiares de cáncer de mama (AF), se asocian al desarrollo de cáncer de mama.

Diseño: Se recogió información sobre dos grupos de mujeres: 1) mujeres con cáncer de mama diagnosticado (por anatomía patológica) en cualquier centro sanitario de las 5 provincias participantes en el estudio entre el 1 de enero de 2013 y el 31 de diciembre de 2015 y 2) mujeres sin cáncer de mama seleccionadas al azar de la lista de mujeres adscritas a los centros de salud en las 5 provincias participantes, residentes en la provincia durante al menos 2 años.

Todos los problemas pueden resolverse utilizando Excel o Stata.

PROBLEMAS

Calcule la proporción muestral de mujeres participantes en el estudio cuya menarquia hubiera sucedido antes de los 13 años, y responda a las siguientes preguntas.

Pregunta 7.1. Construya el intervalo de confianza al 95% para π , la probabilidad de que la menarquia haya sucedido antes de los 13 años, usando la aproximación normal.

Pregunta 7.2. De acuerdo con el intervalo de confianza construido, ¿puede asegurarse, con una confianza del 95 %, que es más probable que la menarquia sucediera antes, y no después, de los 13 años?

Pregunta 7.3. ¿Puede asumirse que la muestra procede de una población con π =0.65? Plantee las hipótesis del estudio.

7.5. Problemas 97

PROBLEMA 7.2

Calcule la proporción muestral de mujeres participantes en el estudio cuyo primer parto hubiera sucedido después de los 30 años, y responda a las siguientes preguntas.

Pregunta 7.4. Construya el intervalo de confianza al 90% para π , la probabilidad de que el primer parto haya sucedido después de los 30 años, usando la aproximación normal

Pregunta 7.5. De acuerdo con el intervalo de confianza construido, ¿puede asegurarse, con una confianza del 90%, que es más probable que el primer parto sucediera antes, y no después, de los 30 años?

Pregunta 7.6. ¿Puede asumirse que la muestra procede de una población con $\pi = 0.15$?

En este estudio se recogió información sobre el consumo de terapia hormonal sustitutiva (THS) en 1139 mujeres, de ellas se observó que 364 había consumido THS. Calcule la proporción muestral de mujeres participantes en el estudio consumidoras de THS, y responda a las siguientes preguntas.

Pregunta 7.7. Construya el intervalo de confianza al 99% para π , la probabilidad de haber consumido THS, usando la aproximación normal.

Pregunta 7.8. De acuerdo con el intervalo de confianza construido, ¿puede asegurarse, con una confianza del 99 %, que es más probable haber consumido THS?

Pregunta 7.9. ¿Puede asumirse que la muestra procede de una población con $\pi = 0.35$?

7.5. Problemas

PROBLEMA 7.4

En el mismo estudio, se define ahora un subgrupo de 41 mujeres con las siguientes características: (1) todas habían recibido terapia hormonal sustitutiva; y (2) tenían antecedentes familiares de cáncer de mama de primer grado. En este grupo, 6 mujeres habían recibido terapia hormonal sustitutiva durante más de dos años. Sea π la proporción de mujeres que, con las características (1) y (2), reciben terapia hormonal sustitutiva durante más de dos años.

Pregunta 7.10. Construya el intervalo de confianza al 95 % para π .

Pregunta 7.11. Construya el intervalo de confianza al 95% exacto (usando la distribución binomial) para π .

Pregunta 7.12. ¿Qué conclusión con respecto a π puede extraerse de ellos?

Comparación de dos proporciones

8.1 Introducción

En este capítulo se abordará la comparación de dos proporciones utilizando la aproximación normal.

Los problemas se realizarán sobre el estudio que relaciona el cáncer de mama con distintas exposiciones potencialmente de riesgo presentado en el capítulo anterior.

8.2 Notación

N: Número total de mujeres del estudio.

 n_1 : Total mujeres con cáncer de mama.

 n_0 : Total de mujeres sin cáncer de mama.

 $p_1 = P(\bullet \mid C = 1)$: Proporción de exposición en mujeres con cáncer de mama.

 $p_0 = P(\bullet \mid C = 0)$: Proporción de exposición en mujeres sin cáncer de mama.

 $P(\cdot)$: Proporción de exposición en toda la población de estudio.

8.3 Fórmulas

Estadístico z

$$z = \frac{p_0 - p_1}{\text{EE}(p_0 - p_1)}$$

$$\text{EE}(p_0 - p_1) = \sqrt{P(1 - P)\left(\frac{1}{n_1} + \frac{1}{n_0}\right)}$$

• Intervalo de confianza de la diferencia entre dos proporciones:

$$p_1 - p_0 \pm z_{\alpha/2} \sqrt{\frac{P \times (1 - P)}{n_1} + \frac{P \times (1 - P)}{n_0}}$$

8.4 Descripción de la base de datos

La siguiente tabla presenta la descripción de todas las variables incluidas en la hoja estudioCaMama del fichero datosProblemasBest.xlsx:

Descripción	Codificación
Número de identificación	Numérica
Caso de cáncer de mama	0: No cáncer de mama
	1: Cáncer de mama
Toma de anovulatorios orales	0: No
(AO)	
	1: Si
Toma de terapia hormonal	0: No
substitutiva	
	1: Si
Antecedentes familiares de	0: No
cáncer de mama	
	1: Familiar 1er grado
	2: Familiar 2o grado
	3: Otro familiar
Menopausia	0: No
-	1: Si
Menarquia antes de los 11	0: No
años	
	1: Si
	Número de identificación Caso de cáncer de mama Toma de anovulatorios orales (AO) Toma de terapia hormonal substitutiva Antecedentes familiares de cáncer de mama Menopausia Menarquia antes de los 11

Todos los problemas pueden resolverse utilizando Excel o Stata.

PROBLEMAS

PROBLEMA 8.1

Al describir los datos obtenidos en el estudio se observó que, de las 1517 mujeres incluidas, 1158 habían tomado anovulatorios orales durante más de 1 año a lo largo de su vida fértil. Al evaluar esta exposición en mujeres con y sin cáncer de mama, 548 de las 711 mujeres con cáncer de mama y 610 de las 806 mujeres sin cáncer habían tomado AO durante más de 1 año.

Pregunta 8.1. Con los datos proporcionados sobre el estudio construya la tabla de contingencia correspondiente.

Pregunta 8.2. Calcule la proporción de exposición a AO en toda la población de estudio.

Pregunta 8.3. Calcule la proporción de exposición a AO en mujeres con y sin cáncer de mama.

Pregunta 8.4. ¿Hay diferencias en el consumo de AO en mujeres con y sin cáncer de mama?

Pregunta 8.5. Calcule el IC al 95 % de la diferencia de proporciones entre ambos grupos.

8.5. Problemas

PROBLEMA 8.2

Los investigadores se plantean si los resultados del problema 8.1 pueden deberse a que la proporción de menopáusicas es inferior en el grupo de mujeres sin cáncer de mama, ya que es posible que las mujeres premenopáusicas recuerden mejor la exposición a AO por ser más reciente. Utilizando el fichero de Excel del capítulo 8 responda a las siguientes preguntas.

Pregunta 8.6. Construya la tabla de contingencia a partir de la base de datos.

Pregunta 8.7. Plantee las hipótesis de este estudio.

Pregunta 8.8. Realice el contraste de hipótesis aplicando la prueba z.

Pregunta 8.9. A la vista de los resultados, ¿se asocia el estado menopáusico a la condición de ser mujer con cáncer de mama?

Pregunta 8.10. Calcule el IC al 95 % de la diferencia de proporciones de menopáusicas en ambos grupos.

PROBLEMA 8.3

Se sabe que la paridad es un factor protector frente al desarrollo de cáncer de mama, ya que las mujeres que han tenido embarazos han estado expuestas a niveles menores de estrógenos circulantes. Se quiere comprobar si, en este estudio, las mujeres con y sin cáncer se diferencian entre sí en cuanto a haber tenido hijos.

Pregunta 8.11. Construya con Excel la tabla de contingencia a partir de la base de datos.

Pregunta 8.12. Plantee las hipótesis de este estudio.

Pregunta 8.13. Realice el contraste de hipótesis aplicando la prueba z.

Pregunta 8.14. A la vista de los resultados, ¿se asocia haber tenido hijos a la condición de ser mujer con cáncer de mama?

Pregunta 8.15. Calcule el IC al 95 % de la diferencia de proporciones de mujeres que han tenido hijos en ambos grupos.

8.5. Problemas

PROBLEMA 8.4

Se quiere comprobar ahora si las mujeres con y sin cáncer se diferencian entre sí en cuanto al consumo de THS.

Pregunta 8.16. Construya con Excel la tabla de contingencia a partir de la base de datos.

Pregunta 8.17. Plantee las hipótesis de este estudio.

Pregunta 8.18. Realice el contraste de hipótesis aplicando la prueba z.

Pregunta 8.19. A la vista de los resultados, ¿se asocia el consumo de THS a la condición de ser mujer con cáncer de mama?

Pregunta 8.20. Calcule el IC al 95 % de la diferencia de proporciones de consumo de THS en ambos grupos.

PROBLEMA 8.5

Se sabe que la menarquia precoz (antes de los 11 años) puede aumentar el riesgo de cáncer de mama como consecuencia a una exposición más prolongada a estrógenos a lo largo de la vida fértil. Se quiere comprobar si las mujeres con cáncer presentan menarquia precoz en mayor proporción que las mujeres sin cáncer. La tabla siguiente resume los resultados encontrados en este estudio:

	Mujer con cáncer	Mujer sin cáncer	Total
Menarquia precoz	191	170	361
No Menarquia precoz	518	640	1158
Total	709	810	1519

Pregunta 8.21. Plantee las hipótesis de este estudio.

Pregunta 8.22. Realice el contraste de hipótesis aplicando la prueba z.

Pregunta 8.23. A la vista de los resultados, ¿se asocia la menarquia precoz al cáncer de mama?

Pregunta 8.24. Calcule el IC al 95% de la diferencia de proporciones de menarquia precoz en los dos grupos de comparación.

Tabla de contingencia

9.1 Introducción

En este capítulo se abordará el uso de tablas de contingencia para el cálculo de la prueba χ^2 aplicada a la comparación de dos o más proporciones.

Los problemas se realizarán sobre la misma base de datos del estudio que presentamos en el capítulo anterior que relaciona el cáncer de mama con diferentes factores de riesgo (consumo de anticonceptivos orales, terapia hormonal sustitutiva, etc.). En este capítulo, se responderán a algunas de las preguntas planteadas en el capítulo anterior utilizando ahora la prueba χ^2

9.2 Notación

Las tablas de contingencia son tablas que reflejan las frecuencias (observadas o esperadas) de las posibles combinaciones de dos variables cualitativas.

En la tabla de contingencia la notación utilizada es la siguiente:

- El valor O_{ij} es el valor *observado* en la fila i y columna j.
- El valor E_{ij} es el valor *esperado* en la fila i y columna j.
- $n_{i.}$ es el total en la fila i.
- $n_{.j}$ es el total en la columna j.
- *n* es total de efectivos.

Con esta misma terminología se pueden construir tablas de **m**x**n** (es decir, tablas con "m" filas y "n" columnas).

Variable 2						
		Categoría 1	Categoría 2	Total		
	Categoría 1	O ₁₁	O ₁₂	$\overline{n_{1.}}$		
Variable 1	Categoría 2	O ₂₁	O ₂₂	n _{2.}		
	Total	n _{.1}	n _{.2}	n		

Tabla 9.1: Tabla de valores observados

Variable 2						
		Categoría 1	Categoría 2	Total		
	Categoría 1	E ₁₁	E ₁₂	$\overline{n_{1.}}$		
Variable 1	Categoría 2	E ₂₁	E ₂₂	n _{2.}		
	Total	n _{.1}	n _{.2}	n		

Tabla 9.2: Tabla de valores esperados

f: número de filasc: número de columnas

9.3 Fórmulas

- Tabla esperada $E_{i,j} = \frac{n_{i.} \times n_{.j}}{n}$
- chi^2 (ji cuadrado) $\chi^2 = \sum \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$

9.4 Descripción de la base de datos

La siguiente tabla presenta la descripción de todas las variables incluidas en la hoja estudioCaMama del fichero datosProblemasBest.xlsx:

Nombre	Descripción	Codificación
id	Número de identificación	Numérica
caso	Caso de cáncer de mama	0: No cáncer de mama 1: Cáncer de mama
AnovOrales	Toma de anovulatorios orales (AO)	0: No
_		1: Si

Nombre	Descripción	Codificación
THS	Toma de terapia hormonal substitutiva	0: No
		1: Si
AFamCancer	Antecedentes familiares de cáncer de mama	0: No
		1: Familiar 1er grado
		2: Familiar 20 grado
		3: Otro familiar
Menopausia	Menopausia	0: No
	_	1: Si
Menar11	Menarquia antes de los 11 años	0: No
		1: Si
Hijos_cat	Número de hijos en 3 catego- rías	0: Sin hijos
		1: 1 hijo
		2: 2 o más hijos

Todos los problemas que planteamos a continuación pueden resolverse utilizando **Excel** o **Stata**.

9.5

PROBLEMAS

9.5. Problemas

PROBLEMA 9.1

Se quiere valorar si el consumo de anticonceptivos orales (AnovOrales) se asocia al desarrollo de cáncer de mama.

Pregunta 9.1. Utilizando la base de datos en Excel, complete la tabla de valores observados (tabla reftab:tabla91) que muestra las proporciones observadas en el estudio de consumo de AO en casos (mujeres con cáncer de mama) y controles (mujeres sin cáncer de mama).

	Mujer con cáncer	Mujer sin cáncer	Total
Consumo AO > 1 año			
Consumo AO < 1 año			
Total			
m 11 0 4 D 1 1/	1 1	0 1 1	1 1

Tabla 9.4: Relación entre consumo de AO y desarrollo de cáncer de mama

Una vez que tenga la tabla observada, complete la tabla 9.5 (de valores esperados) que muestra las proporciones esperadas de consumo de AO en los casos (mujeres con cáncer de mama) y en los controles (mujeres sin cáncer de mama) si el consumo de AO y el cáncer de mama fueran variables independientes.

	Mujer con cáncer	Mujer sin cáncer	Total
Consumo AO > 1 año			
Consumo AO < 1 año			
Total			

Tabla 9.5: Relación entre consumo de AO y desarrollo de cáncer de mama en caso de que ambas variables fueran independientes (tabla esperada)

A partir de las dos tablas anteriores responda las siguientes preguntas.

Pregunta 9.2. ¿Cuál es el valor del estadístico de contraste χ^2 ? Compare el resultado obtenido con el del problema 8.1.

Pregunta 9.3. ¿Cuál es la significación obtenida en el contrate de hipótesis?

Pregunta 9.4. ¿Cuál es el valor del estadístico a partir del cual se obtendría una asociación estadísticamente significativa entre el consumo de anovulatorios orales y el desarrollo de cáncer de mama?

Pregunta 9.5. Una vez realizado el contraste de hipótesis, ¿cuál es la conclusión del estudio?

9.5. Problemas

PROBLEMA 9.2

Imagine ahora que lo que nos interesa es evaluar si el consumo de terapia hormonal sustitutiva (THS) se asocia al desarrollo de cáncer de mama. Para ello responda a las siguientes preguntas con los datos de la base de datos.

Pregunta 9.6. Calcule la proporción de consumidoras de THS que hay entre las mujeres con y sin cáncer de mama.

Pregunta 9.7. Compruebe si dicha proporción (consumidoras de THS) es distinta en las mujeres con cáncer de mama que en las controles.

Pregunta 9.8. A la vista de los resultados, ¿se asocia el consumo de THS al desarrollo de cáncer de mama?

PROBLEMA 9.3

Se quiere valorar si los antecedentes familiares de cáncer de mama se asocian al desarrollo de cáncer de mama. Para ello se ha recogido una variable en la base de datos que identifica a las mujeres sin antecedentes (0) y diferencia a las que tienen antecedentes en 3 grupos según el grado de parentesco (1: familiar de 1^{er} grado, 2: de 2º grado y 3: otro familiar).

Pregunta 9.9. Construya a partir de la base de datos las tablas esperada y observada de la relación antecedentes familiares y cáncer de mama.

Pregunta 9.10. A la vista de las tablas, ¿se cumplen los criterios para evaluar si ambas variables se asocian mediante una prueba χ^2 ? Razone su respuesta.

Pregunta 9.11. ¿Cuántos grados de libertad tiene la prueba χ^2 ?

Pregunta 9.12. ¿Cuál es el valor del estadístico de contraste?

Pregunta 9.13. ¿Cuál es el valor de p?

Pregunta 9.14. ¿Cuál es la conclusión que se saca de este estudio?

9.5. Problemas

PROBLEMA 9.4

En el capítulo anterior, con esta misma base de datos, se comprobó si las mujeres con cáncer y las del grupo control se diferencian en cuanto a haber tenido hijos. Para avanzar un poco más en este análisis se pretende ahora comprobar si hay diferencias en cuanto al número de hijos, categorizando esta variable en 3 grupos: 0: mujeres sin hijos, 1: mujeres con 1 hijo y 2: mujeres con 2 o más hijos.

Pregunta 9.15. ¿Cuál es el valor del estadístico χ^2 en este contraste de hipótesis?

Pregunta 9.16. ¿Cuál es el valor p?

Pregunta 9.17. ¿Cuál es el valor del estadístico a partir del cual se obtendría una asociación estadísticamente significativa entre el número de hijos y el desarrollo de cáncer de mama?

Pregunta 9.18. ¿Cuál es la conclusión del análisis?

Cálculo del tamaño de muestra

10.1 Introducción

Muchas veces el estudiante se puede plantear por qué en una investigación se han usado 150 personas en lugar de 200 o qué cosas influyen en que el tamaño de una muestra sea mayor o menor. A través de los ejercicios de este capítulo el estudiante practicará el cálculo del tamaño muestral de:

- Estimación de una proporción
- Estimación de una media
- Comparación de dos proporciones
- Comparación de dos medias
- Cálculo de la potencia del estudio

Para calcular el número necesario de sujetos que deben incluirse en un estudio se debe asumir básicamente 4 supuestos:

- 1. Probabilidad de cometer un error tipo 1 (riesgo alfa)
- 2. Probabilidad de cometer un error tipo 2 (riesgo beta)
- 3. Desviación estándar que se espera que tenga la variable que se comparará o raíz de p(1-p) en el caso de proporciones
- 4. Diferencia mínima que se desea detectar en la comparación "magnitud del efecto". Este valor es igual a la mitad de la amplitud del intervalo de confianza.

Procedimiento

FÓRMULAS cálculo del tamaño muestral

Concepto	Proporciones	Medias
Estimación de una proporción o media	$n = \frac{\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^2 p(1-p)}{d^2}$	$n = \frac{\left(z_{\alpha/2} + z_{\beta}\right)^2 s^2}{d^2}$
Comparación de dos proporciones o dos medias	$n = \frac{2\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} p(1-p)}{d^{2}}$	$n = \frac{2\left(z_{\alpha/2} + z_{\beta}\right)^2 s^2}{d^2}$
Cálculo de la potencia de un estudio	$z_{\beta} = \sqrt{\frac{nd^2}{2p(1-p)}} - z_{\alpha/2}$	$z_{\beta} = \sqrt{\frac{nd^2}{2s^2}} - z_{\alpha/2}$

^{*} d es la precisión con la que quiero estimar

Valores utilizados frecuentemente en la distribución normal para $\mathbf{z}_{\frac{\infty}{2}}$ (2colas) o para \mathbf{z}_{β} (1 cola)

α	$\mathbf{Z}\frac{\alpha}{2}$	β	\mathbf{z}_{eta}
0.1	1.64	0.2	0.85
0.05	1.96	0.1	1.28
0.01	2.58	0.05	1.65

PROBLEMAS

PROBLEMA 10.1

Se va a realizar un estudio para conocer el porcentaje de escolares obesos en Cantabria. Por estudios previos, se espera que el resultado sea próximo al 15%. Se desea que la nueva estimación tenga un intervalo de confianza al 90% y una precisión de $\pm 2\%$.

Pregunta 10.1. ¿Cuántos escolares deberán incluirse en la muestra?

10.2. Problemas

PROBLEMA 10.2

Se quiere conocer con una precisión de 5 años e intervalo de confianza del 95%, la edad media a la que se produce un infarto de miocardio. Un estudio previo indica que la varianza puede ser de 200.

Pregunta 10.2. ¿Cuántos pacientes con infarto se deberían incluir en el estudio?

PROBLEMA 10.3

Aparece un nuevo medicamento contra el SIDA, la tishavirina. Se decide comparar su eficacia con un medicamento ya aceptado: la ribavirina. Se selecciona un grupo de pacientes; a la mitad se les dará tishavirina y a la otra mitad ribavirina. Se sabe que en el 70% de los pacientes tratados con ribavirina la evolución de la enfermedad se detiene. Se considerará que la tishavirina es mejor que la ribavirina si consigue al menos un 3% más de detenciones.

Pregunta 10.3. ¿Cuántos pacientes habrá que incluir en el estudio para realizarlo con un intervalo de confianza del 95 % y con una potencia del 90 %?

10.2. Problemas 125

PROBLEMA 10.4

El tratamiento del enanismo hipofisario con hormona del crecimiento humana (hGH) permite ganar 15 centímetros de altura con una desviación estándar de 10. Aparece una nueva hormona modificada (mGH) y se realiza un estudio comparando las dos. Se asume que mGH será mejor si consigue al menos 5 centímetros más que hGH.

Pregunta 10.4. ¿Cuántos pacientes habrá que incluir para realizar el estudio con un intervalo de confianza al 90 % y una potencia del 90 %?

PROBLEMA 10.5

En el problema 10.4, los investigadores sólo pudieron reclutar 120 pacientes en total. **Pregunta 10.5.** ¿Qué potencia estadística tuvo el estudio?

10.2. Problemas 127

PROBLEMA 10.6

Con el siguiente problema se pretende que reflexione sobre cómo cambia el tamaño muestral al modificar los diferentes parámetros que integran la fórmula. Para ello previamente debe calcular el número de partos a incluir en nuestro estudio para conocer la frecuencia de síndrome de bajo peso al nacer.

Pregunta 10.6. ¿Cuál es el tamaño si la frecuencia que obtendremos es 0.2, el error α es del 5% y la precisión o diferencia detectable será de un 4%

Pregunta 10.7. ¿En cuánto aumentaría este tamaño si la frecuencia esperada fuese de 0.8?

Pregunta 10.8. ¿En cuánto aumentaría este tamaño si la frecuencia esperada fuese de 0.5?

Pregunta 10.9. ¿En cuánto aumentaría este tamaño si el error $\alpha=1$ %? (Error a $Z_{\frac{\alpha}{2}}=2.6$)

Pregunta 10.10. ¿En cuánto aumentaría este tamaño si la precisión fuese de un 2%?

Pregunta 10.11. Con los resultados obtenidos en este problema cumplimente el número de partos necesario en las distintas situaciones planteadas. A continuación, saca una conclusión sobre cómo cambian las estimaciones del tamaño muestral en función de la frecuencia esperada, el error α y la precisión.

Tamaño muestral (partos)					
Frecuencia esperada Error α			0.5 5%		
Precisión	4%	4%	4%	4%	2 %

Regresión y correlación

11.1 Introducción

En este capítulo se abordarán las técnicas de correlación y de regresión lineal simple como método para evaluar la existencia de relación lineal entre dos variables continuas. Se utilizarán los datos de un estudio ecológico llevado a cabo con el objetivo de valorar la influencia de distintas variables sobre la puntuación obtenida en el informe PISA. El estudio está inspirado en el artículo del *New England Journal of Medicine* (Messerli FH. Chocolate consumption, cognitive function, and Nobel laureates. N Engl J Med. 2012; 367: 1562–1564), que recomendamos fuertemente leer y que está disponible en: biostat.jhsph.edu

11.2 Descripción del estudio

Para alcanzar los objetivos planteados se diseñó un estudio en el que se recogió información sobre el producto interior bruto de 30 países y distintas variables potencialmente asociadas al PIB. La información se obtuvo visitando varias páginas web el 19 de abril de 2013. El producto interior bruto a valores de paridad de poder adquisitivo per cápita se ha obtenido de las estimaciones del Fondo Monetario Internacional en: es.wikipedia.org-PIB, los resultados del informe PISA de 2009 se obtuvieron en es.wikipedia.org-PISA, y el consumo per cápita de azúcar refinado se consiguió en caobisco.eu, theobroma-cacao.de, y chocosuisse.ch.

Una vez obtenida la información se calculó la variable PISA con el valor medio de los tres informes PISA (en ciencias, matemáticas y lectura).

11.3 Notación

- *r*: coeficiente de correlación lineal
- *R*²: coeficiente de determinación
- Cov (x, y): covarianza entre las variables x, y

- β_0 : intersección en el origen
- $\widehat{\beta_0}$: estimador de la intersección en el origen
- β_1 : pendiente de la recta
- $\widehat{\beta_1}$: estimador de la pendiente de la recta
- m_x : media muestral de x
- m_v : media muestral de y
- s_x : desviación típica muestral de x
- s_v : desviación típica muestral de y

11.4 Fórmulas

■ Covarianza (x, y):

Cov
$$(x,y) = \frac{\sum_{i=1}^{n} (x_i - m_x)(y_i - m_y)}{n-1}$$

• Coeficiente de correlación lineal:

$$r = \frac{Cov(x, y)}{s_x \times s_v}$$

- Coeficiente de determinación: $R^2 = r^2$
- Pendiente de la recta:

$$\widehat{\beta}_1 = r \times \frac{s_y}{s_x}$$

• Intersección en el origen:

$$\widehat{\beta}_0 = m_{\rm y} - \widehat{\beta}_1 \times m_x$$

• Recta de regresión:

$$y=\widehat{\beta_0}+\widehat{\beta_1}x$$

11.5 Descripción de la base de datos

La siguiente tabla presenta la descripción de todas las variables incluidas en la hoja estudioPIB del fichero datosProblemasBest.xlsx:

Nombre	ombre Descripción	
pais	País	Cadena
poblacion	acion Número de habitantes en 2012	

Nombre	Descripción	Codificación		
pib	Producto interior bruto per cápita	Numérica		
	(en miles de dólares)			
consumochocolate	Consumo anual de chocolate per	Numérica		
	cápita (en Kg)			
consumoazucar	Consumo anual de azúcar per cápi-	Numérica		
	ta (en Kg)			
pisamate	Puntuación en el informe PISA	Numérica		
	2009 en matemáticas			
pisaciencia	Puntuación en el informe PISA	Numérica		
	2009 en ciencias			
pisalectura	Puntuación en el informe PISA	Numérica		
	2009 en habilidades de lectura			
nobel	Número de premios nobel a lo largo	Numérica		
	de la historia			

Todos los problemas que se plantean a continuación pueden resolverse utilizando Excel o Stata.

PROBLEMAS

11.6. Problemas

PROBLEMA 11.1

Se quiere valorar la influencia del PIB sobre los resultados de un país en el PISA. La media del PIB de los países participantes fue de 20.72 mil dólares (s=12.09), mientras que la puntuación PISA obtuvo una media de 493.12 puntos (s=33.69). Se sabe que la covarianza entre ambas variables es $cov_{(x,y)}=144.42$ puntos · mil dólares.

Pregunta 11.1. ¿Cuánto vale el coeficiente de correlación lineal de la relación entre ambas variables? ¿Cómo se interpreta?

Pregunta 11.2. ¿Qué porcentaje de la nota obtenida en el PISA se puede explicar por PIB del país?

Pregunta 11.3. ¿Cuánto cambia la nota media del PISA por cada 1000 dólares más de PIB?

Pregunta 11.4. Es imposible que un país tenga PIB = 0 dólares. Pero si fuera posible, ¿cuál sería su valor esperado del PISA?

Pregunta 11.5. La siguiente tabla muestra las puntuaciones medias y las desviaciones estándar de cada una de las tres áreas de conocimiento evaluadas en el PISA (matemáticas, ciencias y lectura):

	Media	Desviación estándar
PISA ciencias	498.1	34.4
PISA matemáticas	492.4	38.6
PISA lectura	488.9	29.8

Al calcular las covarianzas (x,y) de cada una de estas áreas con el PIB obtenemos que:

$$Cov(PIB, pisaciencias) = 139$$

$$Cov(PIB, pisamates) = 150.63$$

$$Cov(pisalectura, PIB) = 143.62$$

Calcule de nuevo los parámetros solicitados en las preguntas 11.2 a 11.4 para los resultados de estas tres áreas de conocimiento evaluadas en el pisa.

PROBLEMA 11.2

Se quiere conocer en qué medida los resultados en las tres áreas de conocimiento evaluadas presentan correlación entre sí. Sabiendo que las covarianzas entre estas áreas son:

Cov(pisamate, pisaciencias) = 1278.82

Cov(pisamate, pisalectura) = 1075.23

Cov(pisalectura, pisaciencia) = 975.32

y utilizando los datos de la pregunta 11.5 responda a las siguientes cuestiones.

Pregunta 11.6. ¿Cuál es el valor del coeficiente de correlación lineal entre la puntuación PISA en matemáticas y en ciencia? Interprete el resultado.

Pregunta 11.7. ¿Cuál es el valor del coeficiente de correlación lineal entre la puntuación PISA en matemáticas y en lectura? Interprete el resultado.

Pregunta 11.8. ¿Cuál es el valor del coeficiente de correlación lineal entre la puntuación PISA en ciencias y en lectura? Interprete el resultado.

11.6. Problemas

PROBLEMA 11.3

En el mismo estudio planteado al inicio del capítulo, se quiso evaluar la influencia del PIB del país sobre el consumo de azúcares refinados. La siguiente tabla resume la media y desviación de ambas variables y la covarianza entre ellas:

	Media	Desviación estándar
PIB	29.71	12.09
Consumo azúcar	5.82	7.86
Cov(PIB, consumo azúcar)	-2.23	

Pregunta 11.9. ¿Hay una relación lineal entre el PIB del país y el consumo de azúcares refinados?

Pregunta 11.10. Dibuje la recta de regresión entre ambas variables.

Pregunta 11.11. ¿Qué porcentaje del consumo de azúcar se puede explicar por el PIB del país?

Pregunta 11.12. ¿Cuánto cambia el consumo medio de azúcar por cada 1000 dólares de PIB?

PROBLEMA 11.4

Se sospecha que, para suplir malas puntuaciones PISA en lectura, ciertos países incentivan el consumo de chocolate entre sus ciudadanos con la esperanza de producir más premios Nobel. Investigue la relación entre consumo de chocolate y número de premios Nobel en los 15 países con menor puntuación PISA en lectura.

Pregunta 11.13. Sabiendo que, en los 15 países con menor puntuación, la covarianza entre el consumo de chocolate y el número de premios nobel es 50.74 ¿qué porcentaje de la variabilidad del número de premios Nobel es atribuible al consumo de chocolate en países con baja puntuación PISA en lectura?

La siguiente tabla resume la media y desviación del consumo de chocolate y del número de premios nobeles en estos 15 países:

	Media	Desviación estándar
Número de premios Nobel	12.60	30.18
Consumo chocolate	3.65	2.30

Pregunta 11.14. ¿Cuál sería el número de premios Nobel esperado si el consumo de chocolate se correspondiera con el consumo medio de los 15 países con mayor puntuación PISA en lectura?

Pregunta 11.15. A la luz de los resultados, uno de los países decide regalar una tableta de chocolate de 125 g a cada habitante a principios de año y así tratar de mejorar la puntuación PISA en lectura. ¿Cuántos premios Nobel adicionales se espera encontrar con respecto al escenario en que no hubiera invertido en chocolate?

11.6. Problemas 137

PROBLEMA 11.5

La siguiente tabla resume la media y desviación de consumo de chocolate y número de premios nobel en los 30 países del estudio:

	Media	Desviación estándar
Número de premios Nobel	28.23	64.99
Consumo chocolate	4.64	2.82
Cov(consumo azúcar, nobel)	39.32	

Investigue ahora la relación entre consumo de chocolate y el número de premios Nobel considerando los datos de todos los países disponibles.

Pregunta 11.16. Con el consumo de chocolate español, ¿cuántos premios Nobel debería haber conseguido España?

Pregunta 11.17. ¿Cuál es el error que comete el modelo de regresión lineal con los datos españoles?

Pregunta 11.18. Entre dos países hay una diferencia de 3 Kg de consumo anual de chocolate per cápita. ¿Qué deberían tener en el número de premios Nobel?

Regresión lineal múltiple

12.1 Introducción

En este capítulo no se utilizará ninguna base de datos. Se harán problemas sobre:

- Interpretación de los coeficientes de un modelo de regresión lineal múltiple
 - Para variables continuas
 - Para variables categóricas
- Cálculo de intervalos de confianza de los coeficientes.
- Cálculo de valores de p.
- Interpretación de los términos de interacción.

12.2 Notación

Modelo general:

$$y = \sum_{i=0}^{k} \beta_i x_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

,donde y es el efecto; $x_1, x_2, \ldots x_k$ son las variables de exposición. β_0 es la constante, $\beta_1, \beta_2, \ldots, \beta_k$ son los parámetros de cada exposición. Los parámetros β no son conocidos y no es posible llegar a conocerlos. El modelo de regresión hace una estimación de estos parámetros.

Los parámetros estimados se representarán como $\widehat{\beta}$. De esta forma, el modelo estimado será:

$$y = \sum_{i=0}^{k} \widehat{\beta}_0 x_0 + \varepsilon_j = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 x_2 + \dots + \widehat{\beta}_k x_k + \varepsilon_j$$

, donde ε_i es el error que el modelo comete para el paciente (o la observación) j.

- Error estndar de $\widehat{\beta_i}$: $EE(\widehat{\beta_i})$
- Intervalo de confianza al 95%: IC 95%

Fórmulas fundamentales:

• Test de Wald para el parámetro β_i :

$$t = \frac{\widehat{\beta_i}}{EE(\widehat{\beta_i})}$$

• Intervalo de confianza al 95 % de β_i :

$$\widehat{\beta_i} \mp 1.96 \times EE(\widehat{\beta_i})$$

PROBLEMAS

PROBLEMA 12.1

Se siguió a 1242 pacientes para conocer la influencia de diferentes nutrientes sobre el nivel de colesterol LDL (medido en mg/dL). Se obtienen los siguientes resultados:

Nutriente	Unidades	\widehat{eta}	$EE(\widehat{\beta})$
Hidratos de carbono	g/día	1.10	0.31
Ácidos grasos saturados	g/día	1.54	0.23
Ácidos grasos poliinsaturados	g/día	-0.83	0.43
Ácidos grasos monoinsaturados	g/día	-2.20	0.45
Constante	-	12.50	1.57

Pregunta 12.1. Complete la siguiente tabla.

Nutriente	\widehat{eta}	IC 95%	p
Hidratos de carbono	1.10		
Ácidos grasos saturados	1.54		
Ácidos grasos poliinsaturados	-0.83		
Ácidos grasos monoinsaturados	-2.20		
Constante	12.50		

Pregunta 12.2. ¿Qué unidades tiene el coeficiente $\widehat{\beta}$ de grasas saturadas?

Pregunta 12.3. Un paciente tiene los siguientes consumos diarios: 180 gramos de hidratos de carbono, 40 gramos de ácidos grasos saturados, 20 gramos de ácidos grasos poliinsaturados y 18 gramos de ácidos grados monoinsaturados. ¿Qué nivel de colesterol LDL espera que tenga?

Pregunta 12.4. Dos pacientes A y B comen todos los días las mismas cantidades, salvo que A añade 20 g de aceite de oliva (ácidos grasos monoinsaturados) y quita 20 g de grasa de origen animal (ácidos grasos saturados). ¿Qué diferencia espera que tengan en sus concentraciones de colesterol LDL?

12.3. Problemas 143

PROBLEMA 12.2

Se quiere conocer cómo influyen la edad (en años) y el nivel de estudios en el índice de masa corporal (IMC, en kg/m^2). El nivel de estudios se ha clasificado en cuatro categorías (sin estudios / primarios / secundarios / universitarios).

Pregunta 12.5. ¿Cuántas variables será necesario incluir en el modelo?

Pregunta 12.6. En la siguiente tabla se presenta en filas el nivel de estudios y en columnas las variables ficticias creadas para incluirlo en el modelo. Rellene las casillas restantes con los códigos 1 y 0, usando el nivel de estudios primarios como referencia.

	Var	iables fictic	ias
Nivel de estudios	estudio_1	estudio_2	estudio_3
Sin estudios			
Primarios			
Secundarios			
Universitarios			

Pregunta 12.7. Tras obtener el modelo de regresión lineal en el que se han introducido la edad y el nivel de estudios como variables x, decide hacer una representación gráfica de los resultados, poniendo edad en el eje X e índice de masa corporal en el eje Y. ¿Qué aspecto tendrá la figura?

Pregunta 12.8. ¿Qué unidades tendrá el coeficiente $\widehat{\beta}$ de la edad?

Pregunta 12.9. ¿Qué unidades tendrá el coeficiente $\widehat{\beta}$ de estudio_2?

PROBLEMA 12.3

Con la codificación que se indica en la solución de la pregunta 12.5, el modelo obtenido es:

Variable	\widehat{eta}	EE(b)
Edad	0.21	0.08
estudios_1	1.37	0.41
estudios_2	-0.22	0.38
estudios_3	-0.93	0.40
Constante	15.21	0.30

Pregunta 12.10. Complete la siguiente tabla.

Variable	\widehat{eta}	IC 95%	p
Edad	0.21		
estudios_1	1.37		
estudios_2	-0.22		
estudios_3	-0.93		
Constante	15.21		

Pregunta 12.11. Interprete el coeficiente $\widehat{\beta}$ de la edad y su intervalo de confianza.

Pregunta 12.12. Interprete los coeficientes $\widehat{\beta}$ de las variables estudios_1, estudios_2 y estudios_3 y sus intervalos de confianza.

Pregunta 12.13. ¿Qué índice de masa corporal espera que tengan las siguientes personas?

- (A) Persona con 33 años y estudios universitarios
- (B) Persona con 45 años y estudios primarios
- (C) Persona con 28 años sin estudios
- (D) Persona con 70 años y estudios secundarios

12.3. Problemas 145

PROBLEMA 12.4

Se obtiene un modelo de regresión lineal entre la tensión arterial sistólica (TAS) en mmHg (variable Y) y la edad en años y el consumo diario de sal en gramos (variables X); se utilizan solo pacientes con al menos 30 años. El resultado se presenta en la siguiente tabla.

$\widehat{\beta}$ (IC 95%)	р
2.5 (2.2, 2.8)	< 0.001
8.0 (7.8, 8.2)	< 0.001
-0.10 (-0.14, -0.06)	< 0.001
5.0 (4.7, 5.3)	< 0.001
	2.5 (2.2, 2.8) 8.0 (7.8, 8.2) -0.10 (-0.14, -0.06)

Pregunta 12.14. ¿Qué unidades tienen los coeficientes b de cada variable?

Variable	Unidades de $\widehat{\beta}$
Edad	
Consumo de sal	
Edad x consumo de sal	
Constante	

Pregunta 12.15. Considere un paciente de 40 años cuyo consumo de sal diario es 7 gramos. Si consigue que el consumo de sal baje a 5 gramos, ¿en cuánto bajará su tensión arterial sistólica?

Pregunta 12.16. Considere ahora un paciente de 70 años cuyo consumo de sal diario es 7 gramos. Si consigue que el consumo de sal baje a 5 gramos, ¿en cuánto bajará su tensión arterial sistólica?

Pregunta 12.17. Tiene que organizar un programa para reducir la tensión arterial y quiere centrarse en los grupos en los que las medidas que tome sean más efectivas. ¿En qué edades será más importante recomendar la disminución del consumo de sal?

PROBLEMA 12.5

Se elabora un modelo de regresión lineal entre el nivel de hemoglobina en sangre (variable Y, medida en g/dL) y la edad (en años) y el sexo (codificado como mujer = 1, varón = 0). Se obtiene el siguiente resultado, al que llamaremos modelo 1.

Variable	$\widehat{\beta}$ (IC 95%)
Edad	-0.010 (-0.015, -0.005)
Sexo	-0.90 (-1.05, - 0.75)
Constante	14.1 (12.0, 12.2)

Posteriormente, los investigadores pensaron que podía haber una interacción entre edad y sexo, por lo que introdujeron un término más. El resultado -que llamaremos modelo 2- aparece en la tabla siguiente.

Variable	$\widehat{\beta}$ (IC 95%)
Edad	-0.009 (-0.13, -0.005)
Sexo	-1.02 (-1.20, -0.84)
Edad x sexo	0.006 (0.004, 0.008)
Constante	13.9 (13.7, 14.1)

Pregunta 12.18. Si tuviera que representar el modelo 1 en un gráfico con Edad en el eje X y hemoglobina en el eje Y, ¿qué forma tendría el gráfico? (No se pide hacer el gráfico, sino saber qué forma tendrá).

Pregunta 12.19. Si tuviera que representar el modelo 2 en un gráfico con Edad en el eje X y hemoglobina en el eje Y, ¿qué forma tendría el gráfico? (No se pide hacer el gráfico, sino saber qué forma tendrá).

Pregunta 12.20. Con el modelo 1, indique la diferencia de hemoglobina que habría entre los pacientes A y B de la tabla:

Paciente A	Paciente B	$Hemoglobina_A$ - $Hemoglobina_B$
Varón de 38 años	Mujer de 38 años	
Varón de 62 años	Mujer de 62 años	
Varón de 38 años	Varón de 62 años	
Mujer de 38 años	Mujer de 62 años	

Pregunta 12.21. Con el modelo 2, indique la diferencia de hemoglobina que habría

12.3. Problemas 147

entre los pacientes A y B de la tabla:

Paciente A	Paciente B	$Hemoglobina_A$ - $Hemoglobina_B$
Varón de 38 años	Mujer de 38 años	
Varón de 62 años	Mujer de 62 años	
Varón de 38 años	Varón de 62 años	
Mujer de 38 años	Mujer de 62 años	

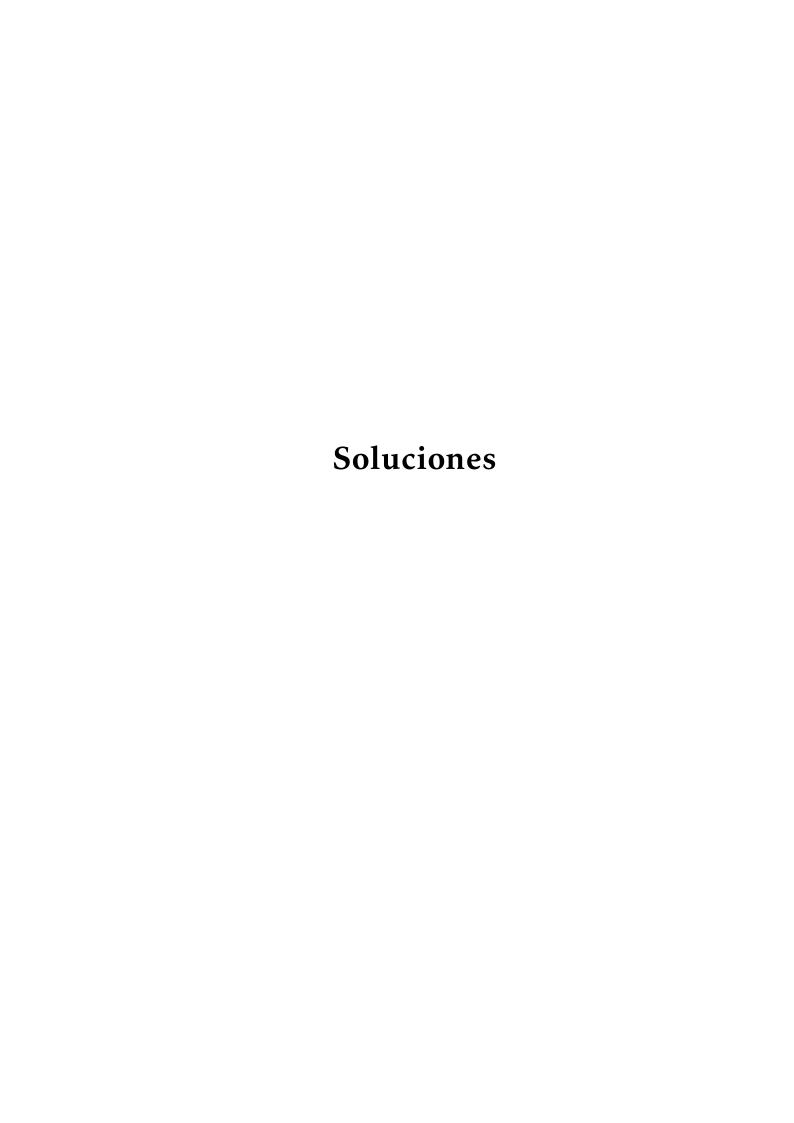
PROBLEMA 12.6

El nivel de hemoglobina en sangre (g/dL) suele ser más bajo en pacientes con enfermedades crónicas, pero en mujeres suele ser más alto tras la menopausia. Se elabora un modelo para estudiar el efecto conjunto de estas variables sobre la hemoglobina. Los resultados aparecen en esta tabla.

Variable	$\widehat{\beta}$ (IC 95%)
Posmenopausia (1=sí, 0=no)	0.8 (0.5, 1.1)
Enfermedad crónica (1=sí, 0=no)	-0.5 (-0.8, -0.2)
Posmenopausia x enfermedad crónica	0.2(0.0, 0.4)
Constante	11.5 (11.3, 11.7)

Pregunta 12.22. En las mujeres premenopáusicas, ¿en cuánto disminuye la hemoglobina si tienen enfermedad crónica?

Pregunta 12.23. Y en las mujeres posmenopáusicas, ¿en cuánto disminuye la hemoglobina si tienen enfermedad crónica?



Estadística descriptiva

SOLUCIÓN 1.1

Solución con calculadora

Media:

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m = \frac{246 + 259 + 236 + 278 + 270}{5} = 257.8$$

Desviación estándar:

$$S = \sqrt{\frac{\sum (x_i - m)^2}{n - 1}}$$

$$S = \sqrt{\frac{(246 - 257.8)^2 + (259 - 257.8)^2 + (236 - 257.8)^2 + (278 - 257.8)^2 + (270 - 257.8)^2}{5 - 1}}$$
$$= \sqrt{\frac{1172.8}{4}} = 17.12$$

Mediana:

• Ordenar de menor a mayor los valores de la variable DuraGest:

236 246 259 270 278

La mediana es el valor que se encuentra en el medio de un conjunto de datos:
 259

Solución con Excel

Media: PROMEDIO(F2:F544)
 Resultado: 264.88 días

■ **Desviación estándar**: DESVEST.M(F2:F544)

Resultado: 19.39

■ Mediana: MEDIANA(F2:F544)

Resultado: 270

Nota: F hace referencia a la columna con los datos de interés.

Solución con Stata

. tabstat DuraGest, stat(mean sd p50)

Variable	Mean	Sd	p50
DuraGest	264.8785	19.39243	270

SOLUCIÓN 1.2

Solución con calculadora

Media:

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

■ **Media del edificio A** (Building = 1):

$$m_1 = \frac{28 + 44 + 28 + 29 + 42}{5} = 34.2$$

■ **Media del edificio B** (Building = 2):

$$m_2 = \frac{28 + 31 + 40 + 28 + 40}{5} = 33.4$$

Desviación estándar (S):

$$S = \sqrt{\frac{\sum (x_i - m)^2}{n - 1}}$$

■ Desviación estándar del edificio A:

$$S_1 = \sqrt{\frac{(28 - 34.2)^2 + (44 - 34.2)^2 + (28 - 34.2)^2 + (29 - 34.2)^2 + (42 - 34.2)^2}{5 - 1}}$$

$$= \sqrt{\frac{206.8}{4}} = 8.07$$

■ Desviación estándar del edificio B:

$$S_2 = \sqrt{\frac{(28 - 33.4)^2 + (31 - 33.4)^2 + (40 - 33.4)^2 + (28 - 33.4)^2 + (40 - 33.4)^2}{5 - 1}}$$
$$= \sqrt{\frac{151.2}{4}} = 6.15$$

Mediana:

- Ordena de menor a mayor los valores de la variable AgeMother en cada uno de los grupos:
 - Edificio A

28 28 29 42 44

• Edificio B

28 28 31 40 40

- Resultado:
 - Mediana edificio A = 29
 - Mediana edificio B = 31

Solución con Excel

Definir etiquetas *AgeMother*. El material suplementario incluye un vídeo mostrando el proceso completo para "Etiquetar variables en Excel".

- Media:
 - PROMEDIO (AgeMother_A) Resultado Edificio A: 34.8 años
 - PROMEDIO(AgeMother_B) Resultado Edificio B: 31.86 años
- Desviación estándar:
 - DESVEST.M(AgeMother_A) Resultado edificio A: 5.85
 - DESVEST.M(AgeMother_B) Resultado edificio B: 5.56
- Mediana:
 - MEDIANA(AgeMother_A) Resultado edificio A: 36 días
 - MEDIANA(AgeMother_B) Resultado edificio B: 33 días

Solución con Stata

Edificio A:

. tabstat AgeMother if Building == 1, stat(mean sd p50)

Variable	Mean	Sd	p50
AgeMother	34.7972	5.854444	36

■ Edificio B:

. tabstat AgeMother if Building == 2, stat(mean sd p50)

Variable	Mean	Sd	p50
AgeMother	31.85992	5.556161	33

SOLUCIÓN 1.3

Solución con calculadora

Calcular la duración de la gestación en semanas:

DuraGest (semanas)

246/7 = 35.14

259/7 = 37

236/7 = 33.71

278/7 = 39.71

270/7 = 38.57

Prematuros (%) =
$$\frac{N \ prematuros}{N} \times 100 = \frac{2}{5} \times 100 = 40\%$$

Solución con Excel

- 1. Generar variable DuraGest_semana: F2/7 Siendo F la columna donde se encuentra la variable de interés.
- 2. Autorrellenar. El material suplementario incluye un vídeo mostrando el proceso completo para "Autorrellenar celdas"
- 3. Porcentaje de niños prematuros:

La columna L contiene los datos de la variable *DuraGest_semanas*. Resultado: 29.83

Solución con Stata

- . gen prematuro=DuraGest/7 <37 if DuraGest!=.
- . label define sino 0 "no" 1 "si"
- . label values prematuro sino
- . tab prematuro

prematuro	Freg.	Percent	Cum.
no	· · · · · ·	70.17	
si	162	29.83	100.00

SOLUCIÓN 1.4

Solución con calculadora

Media:

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

• Media general:

$$m = \frac{35.14 + 37 + 33.71 + 39.71 + 38.57 + 32.14 + 39.29 + 35.14 + 33.86 + 35.86}{10}$$
= 36.04

■ **Media del edificio A** (Building = 1):

$$m_1 = \frac{35.14 + 32.14 + 35.14 + 33.86 + 35.86}{5} = 34.43$$

■ **Media del edificio B** (Building = 2):

$$m_2 = \frac{37 + 33.71 + 39.71 + 38.57 + 39.29}{5} = 37.66$$

Desviación estándar:

$$S = \sqrt{\frac{\sum (x_i - m)^2}{n - 1}}$$

Desviación estándar general:

$$S = \sqrt{\frac{(35.1 - 36)^2 + (37 - 36)^2 + (33.7 - 36)^2 + (39.7 - 36)^2 + (38.6 - 36)^2 + (32.1 - 36)^2 + (39.3 - 36)^2 + (35.1 - 36)^2 + (33.9 - 36)^2 + (35.9 - 36)^2}{10 - 1}}$$

$$= \sqrt{\frac{58.88}{9}} = 2.55$$

Desviación estándar del edificio A:

$$S_1 = \sqrt{\frac{(35.14 - 34.43)^2 + (32.14 - 34.43)^2 + (35.14 - 34.43)^2 + (33.86 - 34.43)^2 + (35.86 - 34.43)^2}{5 - 1}}$$

$$= \sqrt{\frac{8.62}{4}} = 1.47$$

Desviación estándar del edificio B:

$$S_2 = \sqrt{\frac{(37 - 37.66)^2 + (33.71 - 37.66)^2 + (39.71 - 37.66)^2 + (38.57 - 37.66)^2 + (39.29 - 37.66)^2}{5 - 1}}$$

$$= \sqrt{\frac{23.726}{4}} = 2.44$$

Mediana:

- Ordenar de menor a mayor los valores de la variable DuraGest_semana:
 - General:
 32.14 33.71 33.86 35.14 35.14 35.86 37 38.57 39.29 39.71
 - Edificio A: 32.17 33.86 35.14 35.14 35.86
 - Edificio B: 33.71 37 38.57 39.29 39.71
- Resultado:
 - Mediana general = $\frac{35.14+35.86}{2}$ = 35.5
 - Mediana Edificio A = 35.14
 - Mediana Edificio B = 38.57

Solución con Excel

Generar tres etiquetas sobre la variable DuraGest_semana. El material suplementario incluye un vídeo mostrando el proceso completo para "Etiquetar variables en Excel".

- Cohorte general (DuraGest)
- Mujeres del edificio A (DuraGest_A)
- Mujeres del edificio B (DuraGest_B)

Medias:

- PROMEDIO(DuraGest)Resultado media general: 37.84 semanas
- PROMEDIO(DuraGest_A)Resultado edificio A: 36.43 semanas
- PROMEDIO(DuraGest_B)Resultado edificio B: 39.41 semanas

Desviaciones estándar:

DESVEST.M(DuraGest)
 Resultado desviación estándar general: 2.77

- DESVEST.M(DuraGest_A) Resultado edificio A: 2.78
- DESVEST.M(DuraGest_B)
 Resultado edificio B: 1.71

Medianas:

- MEDIANA(DuraGest) Resultado general: 38.57 semanas
- MEDIANA(DuraGest_A)

 Resultado edificio A: 36.71 semanas
- MEDIANA(DuraGest_B)
 Resultado edificio B: 39.86 semanas

Solución con Stata

■ Cohorte completa:

. tabstat DuraGest_semana, stat(mean sd p50)

variable	mean	sd	p50
DuraGest_semana	37.83978	2.770347	38.57143

■ Edificio A:

. tabstat DuraGest_semana if Building == 1, stat(mean sd p50)

variable	mean	sd	p50
DuraGest_semana	36.42707	2.783602	36.71429

■ Edificio B:

. tabstat DuraGest_semana if Building == 2, stat(mean sd p50)

variable	mean	sd	p50
DuraGest_semana	39.4119	1.706467	39.85714

SOLUCIÓN 1.5

Solución con calculadora

- **n**: 10
- Suma:

$$\sum_{i=1}^{n} x_i = 11.3 + 10.8 + 12.9 + 12 + 10.4 + 11.6 + 13.2 + 11.3 + 12.3 + 10.8$$
$$= 116.6$$

Media:

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$= \frac{11.3 + 10.8 + 12.9 + 12 + 10.4 + 11.6 + 13.2 + 11.3 + 12.3 + 10.8}{10}$$

$$= 11.66$$

• Mediana:

$$Mediana = \frac{11.3 + 11.6}{2} = 11.45$$

- Moda: 10.8 y 11.3
- Desviación estándar (S):

$$S = \sqrt{\frac{\sum (x_i - m)^2}{n - 1}}$$

$$s = \sqrt{\frac{(11.3 - 11.6)^2 + (10.8 - 11.6)^2 + (12.9 - 11.6)^2 + (12.9 - 11.6)^2 + (10.4 - 11.6)^2 + (11.6 - 11.6)^2 + (13.2 - 11.6)^2 + (11.3 - 11.6)^2 + (12.3 - 11.6)^2 + (10.8 - 11.6)^2}{10 - 1}}$$

$$= \sqrt{\frac{7.7604}{9}} = 0.92$$

- Varianza (S^2): $S^2 = 0.92^2 = 0.86$
- Valor mínimo: 10.4
- Valor máximo: 13.2

Rango: 13.2 - 10.4 = 2.8

Solución con Excel

■ N: CONTAR(K2:K544) Resultado:543

■ **Suma**: SUMA(K2:K544) *Resultado*: 6623.3

■ Media: PROMEDIO(K2:K544)

Resultado: 12.20

■ Mediana: MEDIANA(K2:K544)

Resultado: 12.3

■ Moda: MODA.UNO(K2:K544)

Resultado: 13.2

■ Desviación estándar: DESVEST.M(K2:K544)

Resultado: 1.06

■ Varianza: VAR.S(K2:K544)

Resultado: 1.13

■ Valor mínimo: MIN(K2:K544)

Resultado: 9.8

■ Valor máximo: MAX(K2:K544)

Resultado: 13.8

■ Rango: MAX(K2:K544) - MIN(K2:K544)

Resultado: 4

Nota: La columna K contiene los datos de interés.

Solución con Stata

. tabstat Hb, statistics (n sum mean p50 sd variance min max range)

variable	N	sum	mean	p50	sd	variance	min	max	range
Hb	543	6623.3	12.19761	12.3	1.063	1.130123	9.8	13.8	4

SOLUCIÓN 1.6

Solución con calculadora

$$Peso_Bajo~(\%) = \frac{N~neonatos~con~bajo~peso}{N} \times 100 = ~\frac{1}{10} \times 100 = 10~\%$$

$$Peso_Normal~(\%) = \frac{N~neonatos~con~peso~normal}{N} \times 100 = ~\frac{8}{10} \times 100 = 80~\%$$

$$Peso_Alto~(\%) = \frac{N~neonatos~con~peso~alto}{N} \times 100 = ~\frac{1}{10} \times 100 = 10~\%$$

Solución con Excel

■ Peso menor de 2500g:

(CONTAR.SI(J2:J544; «=2500")/CONTAR(J2:J544)) * 100

Resultado: 15.10%

■ Peso normal (>2500g y <4000g):

((CONTAR.SI(J2:J544;»2500")-CONTAR.SI(J2:J544;»4000")) /CONTAR(J2:J544))*100

Resultado: 79.74%

■ Peso mayor de 4000g:

(CONTAR.SI(J2: J544; »=4000")/CONTAR(J2: J544)) * 100

Resultado: 5.16%

Nota: La columna J tiene los datos de interés.

Solución con Stata

- . recode WeighNB 4000/max=3 min/2500=1 2500/4000=2,generate(peso_cat)
- . label define peso_cat 1 "bajo" 2 "normal" 3 "alto"
- . label values peso_cat peso_cat

. tab peso_cat

peso_cat	Freq.	Percent	Cum.
bajo	82	15.10	15.10
normal	433	79.74	94.84
alto	28	5.16	100.00
Total	543	100.00	

SOLUCIÓN 1.7

Solución con calculadora

■ Porcentaje (%) Mujeres ≤ 34 años

% Cohorte =
$$\frac{N \ Mujeres \le 34 \ aos \ en \ cohorte}{Total} \times 100$$

= $\frac{6}{10} \times 100 = 60 \%$

% Edificio A =
$$\frac{N \ Mujeres \le 34 \ aos \ en \ edificio \ A}{Total} \times 100$$

= $\frac{3}{5} \times 100 = 60 \%$

% Edificio B =
$$\frac{N\ Mujeres \le 34\ aos\ en\ edificio\ B}{\text{Total}} \times 100$$

= $\frac{3}{5} \times 100 = 60\%$

■ Porcentaje (%) Mujeres > 39 años

% Cohorte =
$$\frac{N \ Mujeres \ge 40 \ aos \ en \ la \ cohorte}{Total} \times 100$$

= $\frac{4}{10} \times 100 = 40 \%$

% Edificio A =
$$\frac{N\ Mujeres \ge 40\ aos\ en\ edificio\ A}{Total} \times 100$$

= $\frac{2}{5} \times 100 = 40\%$

% Edificio
$$B = \frac{N \; Mujeres \ge 40 \; aos \; en \; edificio \; B}{\text{Total}} \times 100$$

= $\frac{2}{5} \times 100 = 40 \%$

Solución con Excel

■ Mujeres ≤ 34 años:

```
• Cohorte:
```

```
(CONTAR.SI(C2:C544; «=34")/CONTAR(C2:C544)) * 100
```

Resultado: 54.7%

• Edificio A:

```
(CONTAR.SI.CONJUNTO(C2:C544; «=34";B2:B544;1)
/CONTAR.SI(B2:B544;1))*100
```

Resultado: 46.85%

• Edificio B:

```
CONTAR.SI.CONJUNTO(C2:C544; «=34"; B2:B544;2)
/CONTAR.SI(B2:B544;2))*100
```

Resultado: 63.42%

■ Mujeres ≥ 40 años

• Cohorte:

```
(CONTAR.SI(C2:C544; »=40")/CONTAR(C2:C544)) * 100
```

Resultado: 17.5%

• Edificio A:

```
(CONTAR.SI.CONJUNTO(C2:C544; »=40";B2:B544;1)
/CONTAR.SI(B2:B544;1))*100
```

Resultado: 25.17%

• Edificio B:

```
(CONTAR.SI.CONJUNTO(C2:C544; »=40";B2:B544;2)
/CONTAR.SI(B2:B544;2))*100
```

Resultado: 8.95%

Nota: C y B hacen referencia a las columnas con los datos de interés.

Solución con Stata

- . recode AgeMother 40/max=3 min/34=1 34/40=2, generate(AgeMother_cat)
- . label define edad cat 1 "<=34" 2 "35-39" 3 ">40"

- . label values AgeMother_Cat edad_cat
- . tab Building AgeMother_Cat, row

	AgeMoter_Cat					
Building	<=34	35-39	>=40	Total		
В	163	71	23	257		
	63.42	27.63	8.95	100.00		
Α	134	80	72	286		
	46.85	27.97	25.17	100.00		
Total	297	151	95	543		
	54.70	27.81	17.50	100.00		

SOLUCIÓN 1.8

Solución con calculadora

Porcentajes

• Anemia en el Edificio A:

$$Anemia_{EdificioA}(\%) = \frac{N \ mujeres \ con \ anemia \ edificioA}{n \ edificio \ A} \times 100$$
$$= \frac{3}{5} \times 100 = 60 \%$$

■ Anemia en el Edificio B:

$$Anemia_{EdificioB}~(\%) = \frac{N~mujeres~con~anemia~edificio~B}{n~edificio~B}~\times 100$$

$$= \frac{2}{5}~\times 100 = 40\,\%$$

Medias

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

- Edificio A:
 - Con anemina

$$m_{A_anemia} = \frac{10.4 + 10.3 + 10.4}{3} = 10.4 \frac{mg}{dI}$$

• Sin anemina

$$m_{A_no_anemia} = \frac{11.7 + 11.7}{2} = 11.7 \frac{mg}{dL}$$

- Edificio B:
 - Con anemina

$$m_{B_anemia} = \frac{10.6 + 10.7}{2} = 10.65 \frac{mg}{dL}$$

• Sin anemina

$$m_{B_no_anemia} = \frac{13.3 + 12.6 + 13.6}{3} = 13.17 \frac{mg}{dL}$$

Desviaciones estándar

$$S = \sqrt{\frac{\sum (x_i - m)^2}{n - 1}}$$

- Edificio A:
 - Con anemina

$$S_{A_anemia} = \sqrt{\frac{(10.4 - 10.4)^2 + (10.3 - 10.4)^2 + (10.4 - 10.4)^2}{3 - 1}}$$

$$= 0.06$$

• Sin anemina

$$S_{A_no_anemia} = \sqrt{\frac{(11.7 - 11.7)^2 + (11.7 - 11.7)^2}{2 - 1}} = 0$$

- Edificio B:
 - · Con anemina

$$S_{B_anemia} = \sqrt{\frac{(10.6 - 10.65)^2 + (10.7 - 10.65)^2}{2 - 1}} = 0.07$$

• Sin anemina

$$S_{B_no_anemia} = \sqrt{\frac{(13.3 - 13.17)^2 + (12.6 - 13.17)^2 + (13.6 - 13.17)^2}{3 - 1}}$$

= 0.51

Solución con Excel

- 1. Generar variable: SI(K2>=11;0;1)
 La columna K contiene los datos de la variable Hb.
- 2. Autorrellenar el resto de las filas.
- 3. Generar cuatro etiquetas sobre la variable Hb. El material suplementario incluye un vídeo mostrando el proceso completo para "Etiquetar variables en Excel".

Porcentajes Insertar una tabla dinámica.

	1			2		
Etiquetas de fila	Cuenta Anemia	de	Cuenta de Anemia2	Cuenta Anemia	de	Cuenta de Anemia2
0	237		82.87%	215		83.66%
1	49		17.13%	42		16.34%
Total	286		100.00%	257		100.00%

Tabla 1.2: Tabla dinámica. Distribución de las mujeres en función del edificio en el que se encuentran y de sus niveles de hemoglobina. En columnas está el edificio (1=A;2=B) y en filas la Anemia (0=no;1=si)

Medias

- Mujeres del edificio A sin anemia (*Hb_A0*): PROMEDIO(Hb_A0) *Resultado*: 12.45 mg/dL mujeres del edificio A sin anemia
- Mujeres del edificio A con anemia (*Hb_A1*): PROMEDIO(Hb_A1) *Resultado: 10.42 mg/dL mujeres del edificio A con anemia*
- Mujeres del edificio B sin anemia (Hb_B0): PROMEDIO(Hb_B0)
 Resultado: 12.62 mg/dL mujeres del edificio B sin anemia
- Mujeres del edificio B con anemia (*Hb_B1*): PROMEDIO(Hb_B1) *Resultado*: 10.70 mg/dL mujeres del edificio B con anemia

Desviaciones estándar

- Mujeres del edificio A sin anemia (*Hb_A0*): DESVEST.M(Hb_A0) *Resultado*: 0.84 mujeres del edificio A sin anemia
- Mujeres del edificio A con anemia (*Hb_A1*): DESVEST.M(Hb_A1) *Resultado: 0.26 mujeres del edificio A con anemia*
- Mujeres del edificio B sin anemia (*Hb_B0*): DESVEST.M(Hb_B0) *Resultado*: 0.81 mujeres del edificio B sin anemia
- Mujeres del edificio B con anemia (*Hb_B1*): DESVEST.M(Hb_B1) *Resultado: 0.20 mujeres del edificio B con anemia*

Solución con Stata

Crear categorías y asignar nombres

. recode Hb 11/max=0 min/11=1, generate(anemia2)

- . label define sino 0 "no" 1 "si"
- . label values anemina sino

Porcentajes

. tab anemia Building, col

	Building						
anemia	Α	В	Total				
no	237	215	452				
	82.87	83.66	83.24				
si	49	42	91				
	17.13	16.34	16.76				
Total	286	257	543				
	100.00	100.00	100.00				

Media y desviación típica

■ Mujeres edificio A sin anemia: . sum Hb if anemia==0&Building==1

Variable	0bs	Mean	Std. Dev.	Min	Max
Hb	237	12.44515	.8371838	11	13.8

■ Mujeres edificio A con anemia: . sum Hb if anemia==1&Building==1

■ Mujeres edificio B sin anemia: . sum Hb if anemia==0&Building==2

■ Mujeres edificio B con anemia: . sum Hb if anemia==1&Building==2

Probabilidad condicionada e independencia de sucesos

SOLUCIÓN 2.1

♣ Pregunta 2.1

Solución con calculadora

$$P\left(asbesto\right) = \frac{Personas\ expuestas\ al\ asbesto}{Total\ personas\ en\ el\ estudio} = \frac{415}{844} = 0.4917$$

♣ Pregunta 2.2

Solución con calculadora

$$P\left(mesotelioma\right) = \frac{Personas\ con\ mesotelioma}{Total\ personas\ en\ el\ estudio} = \frac{417}{844} = 0.4941$$

♣ Pregunta 2.3

Solución con calculadora

 $P(asbesto \cap mesotelioma)$

$$=\frac{Personas\ expuestas\ al\ asbesto\ y\ que\ tienen\ mesotelioma}{Total\ personas\ en\ el\ estudio}$$
$$=\frac{226}{844}=0.2678$$

♣ Pregunta 2.4

Solución con calculadora

 $P(no\ asbesto\ \cap\ no\ mesotelioma)$

$$=\frac{Personas\ no\ expuestas\ al\ asbesto\ y\ que\ no\ tienen\ mesotelioma}{Total\ personas\ en\ el\ estudio}$$

$$=\frac{238}{844}=0.2820$$

♣ Pregunta 2.5

Solución con calculadora

P (asbesto | mesotelioma)

 $= \frac{P(asbesto \cap mesotelioma)}{P(mesotelioma)}$

= Personas expuestas al asbesto y que tienen mesotelioma

Personas con mesotelioma

$$=\frac{226}{417}=0.5420$$

Nota: El desarrollo completo sería:

P (asbesto | mesotelioma)

 $= \frac{P(asbesto \cap mesotelioma)}{P(mesotelioma)}$

Personas expuestas al asbesto y que tienen mesotelioma

Total personas en el estudio

Personas con mesotelioma Total personas en el estudio

= Personas expuestas al asbesto y que tienen mesotelioma

Personas con mesotelioma

En todos los ejemplos siguientes, se suprime la segunda igualdad y se llega directamente a la fórmula simplificada.

♣ Pregunta 2.6

Solución con calculadora

P (no asbesto | mesotelioma)

$$= \frac{P(\text{no asbesto } \cap \text{mesotelioma})}{P(\text{mesotelioma})}$$

= Personas no expuestas al asbesto y que tienen mesotelioma

Personas con mesotelioma

$$=\frac{191}{417}=0.4580$$

♣ Pregunta 2.7

Solución con calculadora

$$\begin{split} P\left(\textit{mesotelioma} \mid \textit{asbesto}\right) \\ &= \frac{P(\textit{asbesto} \, \cap \, \textit{mesotelioma})}{P(\textit{asbesto})} \\ &= \frac{Personas \, expuestas \, al \, asbesto \, y \, que \, tienen \, mesotelioma}{Personas \, expuestas \, al \, asbesto} \\ &= \frac{226}{415} = 0.5446 \end{split}$$

♣ Pregunta 2.8

Solución con calculadora

P (no mesotelioma | asbesto)

$$= \frac{P(no\ mesotelioma\ \cap asbesto)}{P(asbesto)}$$

 $= \frac{Personas\ expuestas\ al\ asbesto\ y\ que\ no\ tienen\ mesotelioma}{Personas\ expuestas\ al\ asbesto}$

$$=\frac{189}{415}=0.4554$$

SOLUCIÓN 2.2

♣ Pregunta 2.9

Solución con calculadora

$$P(TT) = \frac{Pacientes\ con\ TT}{Total\ de\ pacientes} = \frac{299}{844} = 0.3543$$

$$P(TC) = \frac{Pacientes\ con\ TC}{Total\ de\ pacientes} = \frac{412}{844} = 0.4882$$

$$P(CC) = \frac{Pacientes\ con\ CC}{Total\ de\ pacientes} = \frac{133}{844} = 0.1576$$

♣ Pregunta 2.10

Solución con calculadora

$$P(TT \mid mesotelioma)$$

$$= \frac{P(TT \cap mesotelioma)}{P(mesotelioma)}$$

$$= \frac{Pacientes \ con \ TT \ y \ mesotelioma}{Pacientes \ con \ mesotelioma} = \frac{180}{417} = 0.4317$$

$$P(TC \mid mesotelioma)$$

$$= \frac{P(TC \cap mesotelioma)}{P(mesotelioma)}$$

$$= \frac{Pacientes\ con\ TC\ y\ mesotelioma}{Pacientes\ con\ mesotelioma} = \frac{189}{417} = 0.4532$$

$$P(CC \mid mesotelioma)$$

$$= \frac{P(CC \cap mesotelioma)}{P(mesotelioma)}$$

$$= \frac{Pacientes\ con\ CC\ y\ mesotelioma}{Pacientes\ con\ mesotelioma} = \frac{48}{417} = 0.1151$$

♣ Pregunta 2.11

Solución con calculadora

$$P(TT \cap no \ mesotelioma$$

$$= \frac{P(TT \cap no \ mesotelioma)}{P(no \ mesotelioma)}$$

$$= \frac{Pacientes \ con \ TT \ y \ sin \ mesotelioma}{Pacientes \ sin \ mesotelioma} = \frac{119}{427} = 0.2787$$

P(TC | no mesotelioma)

$$= \frac{P(TC \cap no\ mesotelioma)}{P(no\ mesotelioma)}$$

$$= \frac{Pacientes\ con\ TC\ y\ sin\ mesotelioma}{Pacientes\ sin\ mesotelioma} = \frac{223}{427} = 0.5222$$

P(CC | no mesotelioma)

$$= \frac{P(CC \cap no\ mesotelioma)}{P(no\ mesotelioma)}$$

$$=\frac{Pacientes\ con\ CC\ y\ sin\ mesotelioma}{Pacientes\ sin\ mesotelioma}=\frac{85}{427}=0.1991$$

SOLUCIÓN 2.3

♣ Pregunta 2.12

Solución con calculadora

$$P(CC) = \frac{Pacientes\ con\ CC}{Total\ de\ pacientes} = \frac{102}{844} = 0.1209$$

$$P(CG) = \frac{Pacientes\ con\ CG}{Total\ de\ pacientes} = \frac{420}{844} = 0.4976$$

$$P(GG) = \frac{Pacientes\ con\ GG}{Total\ de\ pacientes} = \frac{322}{844} = 0.3815$$

♣ Pregunta 2.13

Solución con calculadora

$$P(CC \mid mesotelioma)$$

$$= \frac{P(CC \cap mesotelioma)}{P(mesotelioma)}$$

$$= \frac{Pacientes \ con \ CC \ y \ mesotelioma}{Pacientes \ con \ mesotelioma} = \frac{56}{417} = 0.1343$$

$$= \frac{P(CG \cap mesotelioma)}{P(mesotelioma)}$$

$$= \frac{Pacientes \ con \ CG \ y \ mesotelioma}{Pacientes \ con \ mesotelioma} = \frac{223}{417} = 0.5348$$

$$= \frac{P(GG \cap mesotelioma)}{P(mesotelioma)}$$

$$= \frac{Pacientes \ con \ GG \ y \ mesotelioma}{Pacientes \ con \ mesotelioma} = \frac{138}{417} = 0.3309$$

♣ Pregunta 2.14

Solución con calculadora

$$P(CC \cap no \ mesotelioma)$$

$$= \frac{P(CC \cap no \ mesotelioma)}{P(no \ mesotelioma)}$$

$$= \frac{Pacientes \ con \ CC \ y \ sin \ mesotelioma}{Pacientes \ sin \ mesotelioma} = \frac{46}{427} = 0.1077$$

P(CG | no mesotelioma)

$$= \frac{P(CG \cap no \ mesotelioma)}{P(no \ mesotelioma)}$$

$$= \frac{Pacientes\ con\ CG\ y\ sin\ mesotelioma}{Pacientes\ sin\ mesotelioma} = \frac{197}{427} = 0.4614$$

P(GG | no mesotelioma)

$$= \frac{P(GG \cap no \ mesotelioma)}{P(no \ mesotelioma)}$$

$$= \frac{Pacientes\ con\ GG\ y\ sin\ mesotelioma}{Pacientes\ sin\ mesotelioma} = \frac{184}{427} = 0.4309$$

SOLUCIÓN 2.4

♣ Pregunta 2.15

Solución con calculadora

Si A y B son independientes, entonces $P(A \cap B) = P(A) \times P(B)$, por lo tanto:

$$P(TT \cap mesotelioma) = P(TT) \times P(mesotelioma)$$

$$= \frac{Pacientes\ con\ TT}{Total\ de\ pacientes} \times \frac{Pacientes\ con\ mesotelioma}{Total\ de\ pacientes}$$
$$= \frac{299}{844} \times \frac{417}{844} = 0.1750$$

 $P(TC \cap mesotelioma) = P(TC) \times P(mesotelioma)$

$$= \frac{Pacientes\ con\ TC}{Total\ de\ pacientes} \times \frac{Pacientes\ con\ mesotelioma}{Total\ de\ pacientes}$$
$$= \frac{412}{844} \times \frac{417}{844} = 0.2412$$

 $P(CC \cap mesotelioma) = P(CC) \times P(mesotelioma)$

$$= \frac{Pacientes\ con\ CC}{Total\ de\ pacientes} \times \frac{Pacientes\ con\ mesotelioma}{Total\ de\ pacientes}$$
$$= \frac{133}{844} \times \frac{417}{844} = 0.0779$$

 $P(TT \cap no \ mesotelioma) = P(TT) \times P(no \ mesotelioma)$

$$= \frac{Pacientes\ con\ TT}{Total\ de\ pacientes} \times \frac{Pacientes\ sin\ mesotelioma}{Total\ de\ pacientes}$$

$$= \frac{299}{844} \times \frac{427}{844} = 0.1792$$

 $P(TC \cap no \ mesotelioma) = P(TC) \times P(no \ mesotelioma)$

$$= \frac{Pacientes\ con\ TC}{Total\ de\ pacientes} \times \frac{Pacientes\ sin\ mesotelioma}{Total\ de\ pacientes}$$

$$= \frac{412}{844} \times \frac{427}{844} = 0.2470$$

 $P(CC \cap no \ mesotelioma) = P(CC) \times P(no \ mesotelioma)$

$$= \frac{Pacientes\ con\ CC}{Total\ de\ pacientes} \times \frac{Pacientes\ sin\ mesotelioma}{Total\ de\ pacientes}$$

$$= \frac{133}{844} \times \frac{427}{844} = 0.0797$$

♣ Pregunta 2.16

Solución con calculadora

Cada casilla se completa multiplicando el número de participantes (844) por la probabilidad obtenida en la pregunta anterior. Por ejemplo, el número esperado de pacientes con TT y mesotelioma es: $844 \times 0.1750 = 147.7$. Observe que este mismo resultado podría haberse obtenido multiplicando el total de pacientes con mesotelioma (417) por el total de pacientes con TT (299) dividido por el total de pacientes en el estudio (844): $417 \times 299/844 = 147.7$. Generalizando, la regla general más sencilla para calcular el número de pacientes esperado en cada casilla es: $totaldelacolumna \times totaldela fila/totaldelatabla$.

Completando la tabla con este procedimiento, quedaría así:

Genotipo del snp1	Mesotelioma	No mesotelioma	Total
TT	147.7	151.3	299
TC	203.6	208.4	412
CC	65.7	67.3	133
Total	417	427	844

Tabla 2.1: Relación entre genotipos del snp1 y mesotelioma

Si las diferencias entre la 2.2 (tabla observada en el estudio) con la 2.1 (tabla esperada si el genotipo y el mesotelioma fueran independientes) fueran grandes, se deduciría que en el estudio el mesotelioma y el genotipo no son independientes; biológicamente eso podría significar que el genotipo influye en que aparezca mesotelioma. Si las diferencias entre las dos tablas no fueran grandes, se deduciría que sí son independientes y, por tanto, el genotipo no influye en que aparezca el mesotelioma. En el capítulo 9 (tablas de contingencia) se aprenderá cómo hacer un test estadístico para esta comparación entre tabla observada y tabla esperada.

SOLUCIÓN 2.5

♣ Pregunta 2.17

Solución con calculadora

El teorema de Bayes permite calcular $P(A \mid B)$ conociendo P(A) y $P(B \mid A)$. Su fórmula general es:

$$P(A_i | B) = \frac{P(B | A_i) \times P(A_i)}{\sum_{k=1}^{n} P(B | A_k) \times P(A_k)}$$

A continuación, se desarrolla con detalle su aplicación a las dos primeras probabilidades. en el resto se presentarán solo las fórmulas y los resultados.

Para calcular $P(mesotelioma \mid TT)$ hay que aplicar la fórmula del teorema de Bayes dándose cuenta de que:

- A es tener o no mesotelioma.
- A1 es mesotelioma.
- A2 es no mesotelioma.
- B es el genotipo TT.

Por lo tanto, la fórmula del teorema de Bayes aplicado a esta probabilidad es:

P(mesotelioma | TT)

$$= \frac{P(TT \mid mesotelioma) \times P(mesotelioma)}{P(TT \mid mesotelioma) \times P(mesotelioma) + P(TT \mid no \; mesotelioma) \times P(no \; mesotelioma)}$$

Por el enunciado de este problema, sabemos que P(mesotelioma) = 0.001; por lo tanto, $P(no\ mesotelioma) = 0.999$. Por los resultados de la pregunta 10, sabemos que $P(TT \mid mesotelioma) = 0.4317$ y por los resultados de la pregunta 2.11 sabemos que $P(TT \mid no\ mesotelioma) = 0.2787$. Por lo tanto:

P (mesotelioma | TT)

$$= \frac{P(TT \mid mesotelioma) \times P(mesotelioma)}{P(TT \mid mesotelioma) \times P(mesotelioma) + P(TT \mid no \; mesotelioma) \times P(no \; mesotelioma)} \\ = \frac{0.4317 \times 0.001}{0.4317 \times 0.001 + 0.2787 \times 0.999} = 0.0015$$

Es decir, solo 15 de cada 10000 personas que tengan el genotipo TT tendrán mesotelioma.

De la misma forma, Para calcular $P(mesotelioma \mid TC)$ hay que aplicar la fórmula del teorema de Bayes dándose cuenta de que:

- A es tener o no mesotelioma.
- A1 es mesotelioma.
- A2 es no mesotelioma.
- B es el genotipo TC.

Por lo tanto, la fórmula del teorema de Bayes aplicado a esta probabilidad es:

P (mesotelioma | TC)

$$= \frac{P(TC \mid mesotelioma) \times P(mesotelioma)}{P(TC \mid mesotelioma) \times P(mesotelioma) + P(TC \mid no \; mesotelioma) \times P(no \; mesotelioma)}$$

Por el enunciado de este problema, sabemos que P(mesotelioma) = 0.001; por lo tanto, $P(no\ mesotelioma) = 0.999$. Por los resultados de la pregunta 10, sabemos que $P(TC \mid mesotelioma) = 0.4532$ y por los resultados de la pregunta 2.11 sabemos que $P(TC \mid no\ mesotelioma) = 0.5222$. Por lo tanto:

P (mesotelioma | TC)

$$= \frac{P(TC \mid mesotelioma) \times P(mesotelioma)}{P(TC \mid mesotelioma) \times P(mesotelioma) + P(TC \mid no \ mesotelioma) \times P(no \ mesotelioma)}$$

$$= \frac{0.4532 \times 0.001}{0.4532 \times 0.001 + 0.5222 \times 0.999} = 0.0009$$

Es decir, solo 9 de cada 10000 personas que tengan el genotipo TC tendrán mesotelioma.

El resto de las probabilidades que se piden en el problema se dan sin más explicaciones:

P (mesotelioma | CC)

```
= \frac{P(CC \mid mesotelioma) \times P(mesotelioma)}{P(CC \mid mesotelioma) \times P(mesotelioma) + P(CC \mid no \ mesotelioma) \times P(no \ mesotelioma)}
= \frac{0.1151 \times 0.001}{0.1151 \times 0.001 + 0.1991 \times 0.999} = 0.0006
P(no \ mesotelioma \mid TT)
= \frac{P(TT \mid no \ mesotelioma) \times P(no \ mesoteliomaf)}{P(TT \mid no \ mesotelioma) \times P(no \ mesotelioma) + P(TT \mid mesotelioma) \times P(mesotelioma)}
= \frac{0.2787 \times 0.999}{0.2787 \times 0.999 + 0.4317 \times 0.001} = 0.9985
```

```
P(no \ mesotelioma \mid TC)
= \frac{P(TC \mid no \ mesotelioma) \times P(no \ mesotelioma)}{P(TC \mid no \ mesotelioma) \times P(no \ mesotelioma) + P(TC \mid mesotelioma) \times P(mesotelioma)}
= \frac{0.5222 \times 0.999}{0.5222 \times 0.999 + 0.4532 \times 0.001} = 0.9991
P(no \ mesotelioma \mid CC)
= \frac{P(CC \mid no \ mesotelioma) \times P(no \ mesotelioma)}{P(CC \mid no \ mesotelioma) \times P(no \ mesotelioma) + P(CC \mid mesotelioma) \times P(mesotelioma)}
= \frac{0.1991 \times 0.999}{0.1991 \times 0.999 + 0.1151 \times 0.001} = 0.9994
```

SOLUCIÓN 2.6

♣ Pregunta 2.18

Solución con calculadora

Lo que se pregunta es P(COVID-19 \mid +). Para ello hay que utilizar el teorema de Bayes sabiendo que:

- A1 es COVID-19
- A2 es no COVID-19
- B es positivo
- P(COVID-19) = 0.05; por lo tanto: $P(no\ COVID-19) = 0.95$
- P(+ | COVID-19) = 0.70 (la sensibilidad)
- $P(- \mid no\ COVID$ -19) = 0.99 (la especificidad), y por tanto $P(+ \mid no\ COVID$ -19) = 0.01 (1 especificidad).

Aplicando Bayes:

P(COVID-19 | +)

$$= \frac{P(+ \mid COVID-19) \times P(COVID-19)}{P(+ \mid COVID-19) \times P(COVID-19) + P(+ \mid no\ COVID-19) \times P(no\ COVID-19)}$$

$$= \frac{0.70 \times 0.05}{0.70 \times 0.05 + 0.01 \times 0.95} = 0.787$$

Es decir, de cada 1000 personas que den positivo, solo 787 han tenido COVID-19.

♣ Pregunta 2.19

Solución con calculadora

Se pregunta lo mismo que en la 2.18, solo que ahora P(COVID-19) = 0.20 y $P(no\ COVID$ -19) = 0.80.

Aplicando Bayes:

$$\begin{split} &P(COVID\text{-}19 \mid +) \\ &= \frac{P(+ \mid COVID\text{-}19) \times P(COVID\text{-}19)}{P(+ \mid COVID\text{-}19) \times P(COVID\text{-}19) + P(+ \mid no \ COVID\text{-}19) \times P(no \ COVID\text{-}19)} \\ &= \frac{0.70 \times 0.20}{0.70 \times 0.20 + 0.01 \times 0.80} = 0.946 \end{split}$$

Es decir, un resultado positivo en Nueva York es mucho más fiable (946 enfermos de cada 1000 positivos) que en España (787 enfermos de cada 1000 positivos).

♣ Pregunta 2.20

Solución con calculadora

Ahora, lo que se pregunta es $P(no\ COVID-19 \mid -)$.

Hay que aplicar Bayes sabiendo que:

- A1 es no COVID-19
- A2 es COVID-19
- B es resultado negativo
- P(COVID-19) = 0.05; por lo tanto: $P(no\ COVID-19) = 0.95$
- P(+ | COVID-19) = 0.70 (la sensibilidad); por tanto: P(- | COVID-19) = 0.30
- $P(- \mid no\ COVID-19) = 0.99$ (la especificidad).

$$P(no\ COVID-19\ |\ -)$$

$$= \frac{P(-\ |\ no\ COVID-19) \times P(no\ COVID-19)}{P(-\ |\ no\ COVID-19) \times P(no\ COVID-19) + P(-\ |\ COVID-19) \times P(COVID-19)}$$

$$= \frac{0.99 \times 0.95}{0.99 \times 0.95 + 0.30 \times 0.05} = 0.984$$

♣ Pregunta 2.21

Solución con calculadora

Se pide lo mismo que en la 2.20, pero con P(COVID-19) = 0.20.

Aplicando el teorema de Bayes:

$$P(no\ COVID-19\ |\ -)$$

$$= \frac{P(-\ |\ no\ COVID-19) \times P(no\ COVID-19)}{P(-\ |\ no\ COVID-19) \times P(no\ COVID-19) + P(-\ |\ COVID-19) \times P(COVID-19)}$$

$$= \frac{0.99 \times 0.80}{0.99 \times 0.80 + 0.30 \times 0.20} = 0.930$$

Es decir, con la misma prueba diagnóstica, un resultado negativo falla en 70 pacientes de cada 1000 en Nueva York, pero solo falla en 16 pacientes de cada 1000 en España.

Distribuciones de probabilidad

SOLUCIÓN 3.1

Las condiciones del problema son: distribución normal con media $\mu=38$, varianza $\sigma^2=25$, desviación típica $\sigma=5$.

♣ Pregunta 3.1

Solución con calculadora

Se pregunta la probabilidad de x > 38. Pero 38 es la media. En la distribución normal, la media deja por encima al 50% de la población.

♣ Pregunta 3.2

Solución con calculadora

Se pregunta la probabilidad de x > 43 con media 38 y desviación típica 5. Es decir: $P(x > 43 | \mu = 38, \sigma = 5)$.

■ Calcular z:

$$z = \frac{x - \mu}{\sigma} = \frac{43 - 38}{5} = 1.00$$

¿Por qué es importante calcular z? Porque solo tenemos la tabla N(0,1) y porque con esta transformación sabemos que

$$P(x > 43 | \mu = 38, \sigma = 5) = P(x > 1 | \mu = 0, \sigma = 1)$$

, que es valor que sí podemos obtener de la tabla N(0,1).

■ A continuación, se busca en la tabla de la normal estandarizada [N(0,1)] el valor z = 1.00 y se encuentra $P(x < 1 | \mu = 0, \sigma = 1) = 0.8413$. Por lo tanto,

$$P(x > 43 | \mu = 38, \sigma = 5) = P(x > 1 | \mu = 0, \sigma = 1)$$

= 1 - 0.8413 = 0.1587 = 15.87 %

Solución con Excel

1-DISTR.NORM.N(43;38;5;VERDADERO)

Resultado: 0.15865525

Solución con Stata

di 1-normal((43-38)/5)

Resultado: 0.15865525

♣ Pregunta 3.3

Para saber qué porcentaje de la población tiene entre 33 y 43 mg/dL hay que calcular P(x > 33) - P(x > 43). El segundo ya lo conocemos por la pregunta anterior: P(x > 43) = 0.1587.

Solución con calculadora

Para conocer $P(x > 33 | \mu = 38, \sigma = 5)$ se sigue el mismo orden que en la pregunta anterior.

• Cálculo de z:

$$z = \frac{x - \mu}{\sigma} = \frac{33 - 38}{5} = -1.00$$

■ Consultar la tabla de la normal (0,1): En la tabla solo vienen los valores de z > 0, pero nuestro resultado es negativo: z = -1. Como la tabla es simétrica respecto al cero, eso quiere decir que

$$P(x > -1 | \mu = 0, \sigma = 1) = P(x < 1 | \mu = 0, \sigma = 1)$$

Pero la $P(x < 1 | \mu = 0, \sigma = 1)$ la encontramos en la pregunta anterior: 0.8413.

Por lo tanto,

$$P(x > 33 | \mu = 38, \sigma = 5) = P(x > -1 | \mu = 0, \sigma = 1) = 0.8413 = 84.13\%$$

La pregunta pide el porcentaje entre 33 y 43 mg/dL:

$$P(33 < x < 43 | \mu = 38, \sigma = 5)$$

$$= P(x > 33 | \mu = 38, \sigma = 5) - P(x > 43 | \mu = 38, \sigma = 5)$$

$$= 84.13 - 15.87 = 68.26\%$$

Nota: nos podíamos haber ahorrado todos los cálculos si hubiéramos sabido que en cualquier distribución normal entre la μ – 1 σ y la μ + 1 σ está siempre el 68% de la población.

Solución con Excel

(1-DISTR.NORM.N(33;38;5; VERDADERO))-(1-DISTR.NORM.N(43;38;5; VERDADERO))

Resultado: 0.68268949

Solución con Stata

di normal((43-38)/5) - normal((33-38)/5)

Resultado: 0.68268949

♣ Pregunta 3.4

Solución con calculadora

Se pide $P(x > 30 | \mu = 38, \sigma = 5)$.

■ Calcular z:

$$z = \frac{x - \mu}{\sigma} = \frac{30 - 38}{5} = -1.60$$

■ Consultar la tabla normal para z = -1.60. Por la simetría de la normal, sabemos que $P(x > -1.60 | \mu = 0, \sigma = 1) = P(x < 1.60 | \mu = 0, \sigma = 1)$.

Por lo tanto, consultamos la tabla para z = 1.60 y obtenemos que por debajo de este valor está el 94.52 % de la población. Por lo tanto:

$$P(x > 30 | \mu = 38, \sigma = 5) = P(x > -1.60 | \mu = 0, \sigma = 1)$$

= $P(x < 1.60 | \mu = 0, \sigma = 1)$
= 94.52%

Solución con Excel

1-DISTR.NORM.N(30;38;5; VERDADERO)

Resultado: 0.94520071

Solución con Stata

di 1-normal((30-38)/5)

Resultado: 0.94520071

♣ Pregunta 3.5

Solución con calculadora

Se pide $P(30 < x < 35 | \mu = 38, \sigma = 5)$ y esto es igual a:

$$P(x > 30 | \mu = 38, \sigma = 5) - P(x > 35 | \mu = 38, \sigma = 5)$$

Por la pregunta anterior, sabemos que el primer término es 94.52 %. Falta calcular el segundo:

■ Calcular z:

$$z = \frac{x - \mu}{\sigma} = \frac{35 - 38}{5} = -0.60$$

■ Consultar la tabla normal para z = -0.60. Por la simetría de la normal, sabemos que $P(x > -0.60 | \mu = 0, \sigma = 1) = P(x < 0.60 | \mu = 0, \sigma = 1)$.

Por lo tanto, consultamos la tabla para z=0.60 y obtenemos que por debajo de este valor está el 72.57 % de la población. Por lo tanto:

$$P(x > 35 | \mu = 38, \sigma = 5) = P(x > -0.60 | \mu = 0, \sigma = 1)$$
$$= P(x < 0.60 | \mu = 0, \sigma = 1)$$
$$= 72.57 \%$$

• Lo que se pide en la pregunta es $P(30 < x < 35 | \mu = 38, \sigma = 5)$:

$$P(30 < x < 35 | \mu = 38, \sigma = 5)$$

$$= P(x > 30 | \mu = 38, \sigma = 5) - P(x > 35 | \mu = 38, \sigma = 5)$$

$$= 94.52 - 72.57 = 21.95\%$$

Solución con Excel

(1-DISTR.NORM.N(30;38;5; VERDADERO))-(1-DISTR.NORM.N(35;38;5; VERDADERO))

Resultado: 0.21945383

Solución con Stata

di normal((35-38)/5) - normal((30-38)/5)

Resultado: 0.21945383

SOLUCIÓN 3.2

♣ Pregunta 3.6

Solución con calculadora

- Hay que buscar en el cuerpo de la tabla el valor más próximo al percentil 70 (es decir, a 0.7000). El valor más próximo es p = 0.6985 que corresponde a z = 0.52.
- Transformar la z en el valor x de la distribución de HDL. Se hace despejando x en la fórmula que hemos usado repetidamente en el ejercicio anterior:

$$z = \frac{x - \mu}{\sigma} \to x = z\sigma + \mu$$

Aplicado a este ejercicio:

$$x = z\sigma + \mu = 0.52 \times 5 + 38 = 40.6 \ mg/dL$$

Solución con Excel

INV.NORM(0.7;38;5)

Resultado: 40.6220 mg/dL

Solución con Stata

di invnormal(.7)*5+38

Resultado: 40.62 mg/dL

♣ Pregunta 3.7

Solución con calculadora

Se siguen los mismos pasos que en la pregunta anterior.

■ Hay que buscar en el cuerpo de la tabla el valor más próximo al percentil 40 (es decir, a 0.4000). En la tabla vienen solo los valores $p \ge 0.50$. Para resolver

el problema, tendremos que usar de nuevo la simetría de la tabla N(0,1): el valor z que deje por debajo 0.40 será el negativo del valor z que deje por encima 0.40 (que es lo mismo que el valor z que deje por debajo 0.60). El valor más próximo a 0.60 es p = 0.5987 que corresponde a z = 0.25. Por lo tanto, el valor z que deja por debajo 0.40 será z = -0.25.

■ Transformar la z = -0.25 en el valor x de la distribución de HDL.

Aplicado a este ejercicio:

$$x = z\sigma + \mu = -0.25 \times 5 + 38 = 36.75 \ mg/dL$$

Solución con Excel

INV.NORM(0.4;38;5)

Resultado: 36.7332 mg/dL

Solución con Stata

di invnormal(.4)*5+38

Resultado: 36.73 mg/dL

♣ Pregunta 3.8

Solución con calculadora

Es muy parecida a la anterior.

- Hay que buscar en el cuerpo de la tabla el valor más próximo al percentil 10 (es decir, a 0.1000). En la tabla vienen solo los valores $p \ge 0.50$. Para resolver el problema, tendremos que usar de nuevo la simetría de la tabla N(0,1): el valor z que deje por debajo 0.10 será el negativo del valor z que deje por encima 0.10 (que es lo mismo que el valor z que deje por debajo 0.90). El valor más próximo a 0.90 es p = 0.8997 que corresponde a z = 1.28. Por lo tanto, el valor z que deja por debajo 0.10 será z = -1.28.
- Transformar la z = -1.28 en el valor x de la distribución de HDL.

Aplicado a este ejercicio:

$$x = z\sigma + \mu = -1.28 \times 5 + 38 = 31.60 \ mg/dL$$

Solución con Excel

INV.NORM(0.1;38;5)

Resultado: 31.5922 mg/dL

Solución con Stata

di invnormal(.1)*5+38

Resultado: 31.59 mg/dL

SOLUCIÓN 3.3

Todo este problema se hace igual que el 3.1. Es decir, tenemos valores en una distribución $N(0.17,\ 0.0009)$, tenemos que pasarlos a valores z de una distribución N(0,1) y buscar la probabilidad correspondiente en la tabla de la normal. Observe que en $N(0.17,\ 0.0009)$, la desviación típica es 0.03 (raíz cuadrada de 0.0009).

♣ Pregunta 3.9

Solución con calculadora

Se pide $P(x > 0.23 | \mu = 0.17, \sigma = 0.03)$.

Calcular z:

$$z = \frac{x - \mu}{\sigma} = \frac{0.23 - 0.17}{0.03} = 2.00$$

• Consultar la tabla normal para z = 2.00. Obtenemos que por debajo de este valor está el 97.72 % de la población. Por lo tanto:

$$P(x > 0.23 | \mu = 0.17, \sigma = 0.03) = 2.28 \%.$$

Solución con Excel

1-DISTR.NORM.N(0.23;0.17;0.03; VERDADERO)

Resultado: 0.022750132

Solución con Stata

di 1-normal((0.23-0.17)/0.03)

Resultado: 0.02275013

♣ Pregunta 3.10

Solución con calculadora

Se pide $P(0.17 < x < 0.23 | \mu = 0.17, \sigma = 0.03)$.

Esto es igual a:

$$P(x > 0.17 | \mu = 0.17, \sigma = 0.03) - P(x > 0.23 | \mu = 0.17, \sigma = 0.03)$$

El segundo término se ha calculado en la pregunta anterior. El primero vale 0.50 porque 0.17 es la media. Por lo tanto:

$$P(0.17 < x < 0.23 | \mu = 0.17, \sigma = 0.03) = 0.50 - 0.0228 = 0.4772 = 47.72\%$$

Solución con Excel

(1-DISTR.NORM.N(0.17;0.17;0.03; VERDADERO)))-(1-DISTR.NORM.N(0.23; 0.17; 0.03; VERDADERO))

Resultado: 0.47724987

Solución con Stata

di normal((0.23-0.17)/0.03)-normal((.17-.17)/.03)

Resultado: 0.47724987

♣ Pregunta 3.11

Solución con calculadora

Se pide $P(0.12 < x < 0.20 | \mu = 0.17, \sigma = 0.03)$.

Esto es igual a: $P(x > 0.12 | \mu = 0.17, \sigma = 0.03) - P(x > 0.20 | \mu = 0.17, \sigma = 0.03)$. Calculemos cada término:

$$P(x > 0.12 | m = 0.17, s = 0.03)$$

- Calcular z: $z = \frac{x \mu}{\sigma} = \frac{0.12 0.17}{0.03} = -1.67$
- Consultar la tabla normal para z = +1.67. Obtenemos que por debajo de este valor está el 95.25% de la población; por lo tanto, por encima de z = -1.67 también estará el 95.25%. Por lo tanto:

$$P(x > 0.12 | \mu = 0.17, \sigma = 0.03) = 95.25 \%$$

$$P(x > 0.20 | m = 0.17, s = 0.03)$$

• Calcular z:

$$z = \frac{x - \mu}{\sigma} = \frac{0.20 - 0.17}{0.03} = 1.00$$

• Consultar la tabla normal para z = +1.00. Obtenemos que por debajo de este valor está el 84.13% de la población; por lo tanto, por encima estará el 15.87%. Por lo tanto:

$$P(x > 0.20 | \mu = 0.17, \sigma = 0.03) = 15.87 \%$$

Finalmente,

$$P(0.12 < x < 0.20 | \mu = 0.17, \sigma = 0.03) = 95.25 - 15.87 = 79.38\%$$

Solución con Excel

(1-DISTR.NORM.N(0.12;0.17;0.03; VERDADERO))-(1-DISTR.NORM.N(0.2;0.17;0.03; VERDADERO))

Resultado: 0.79355439

Solución con Stata

di normal((0.20-0.17)/0.03)-normal((.12-.17)/.03)

Resultado: 0.79355439

♣ Pregunta 3.12

Solución con calculadora

Se pide P(x < 0.14 | m = 0.17, s = 0.03).

■ Calcular z:

$$z = \frac{x - \mu}{\sigma} = \frac{0.14 - 0.17}{0.03} = -1.00$$

■ Consultar la tabla normal para z = +1.00. Obtenemos que por debajo de este valor está el 84.13% de la población; por lo tanto, por encima de z = +1.00 está el 15.87%. Por simetría, este es el porcentaje que estará por debajo de z = -1.00. Por lo tanto:

$$P(x < 0.14 | \mu = 0.17, \sigma = 0.03) = 15.87 \%$$

Solución con Excel

DISTR.NORM.N(0.14;0.17;0.03; VERDADERO)

Resultado: 0.15865525

Solución con Stata

di normal((.14-.17)/.03)

Resultado: 0.15865525

♣ Pregunta 3.13

Solución con calculadora

Se pide $P(0.14 < x < 0.16 | \mu = 0.17, \sigma = 0.03)$. Esto es igual a:

$$P(x < 0.16 | \mu = 0.17, \sigma = 0.03) - P(x < 0.14 | \mu = 0.17, \sigma = 0.03)$$

El segundo término se ha calculado en la pregunta anterior y vale 15.87 %. Calculemos el primer término: P(x < 0.16 | m = 0.17, s = 0.03)

Calcular z:

$$z = \frac{x - \mu}{\sigma} = \frac{0.16 - 0.17}{0.03} = -0.33$$

■ Consultar la tabla normal para z = +0.33. Obtenemos que por debajo de este valor está el 62.93% de la población; por lo tanto, por encima de z = +0.33 también estará el 37.07%. Por simetría, este es también el porcentaje que estará por debajo de z = -0.33. Por lo tanto:

$$P(x < 0.16 | \mu = 0.17, \sigma = 0.03) = 37.07 \%.$$

Finalmente,

$$P(0.14 < x < 0.16 | \mu = 0.17, \sigma = 0.03) = 37.07 - 15.87 = 21.20 \%$$

Solución con Excel

DISTR.NORM.N(0.16;0.17;0.03; VERDADERO) - DISTR.NORM.N(0.14;0.17; 0.03; VERDADERO)

Resultado: 0.21078609

Solución con Stata

di normal((0.16-0.17)/0.03)-normal((.14-.17)/.03)

Resultado: 0.21078609

SOLUCIÓN 3.4

Este problema se resuelve de forma análoga al problema 3.2. Primero se busca el valor p en el cuerpo de la tabla. Después se obtiene el valor z. Por último, se transforma z en x.

♣ Pregunta 3.14

Solución con calculadora

■ Se busca en el cuerpo de la tabla el valor más próximo a p = 0.4500. Como en la tabla solo vienen los valores $p \ge 0.50$, habrá que buscar el complementario de 0.4500; esto es 1 - 0.4500 = 0.5500.

El valor más próximo es p=0.5517, que corresponde a z=0.13. Por lo tanto, la z para p=0.4500 es z=-0.13.

• Obtener x a partir de z:

$$x = z\sigma + \mu = -0.13 \times 0.03 + 0.17 = 0.1661 \ ng/mL$$

Solución con Excel

INV.NORM(0.45;0.17;0.03)

Resultado: 0.16623016

Solución con Stata

di invnormal(.45)*.03+.17

Resultado: 0.16623016

♣ Pregunta 3.15

Solución con calculadora

Se pide el valor que deja por encima el $30\,\%$; por lo tanto, es el valor que deja por debajo el $70\,\%$.

■ Se busca en el cuerpo de la tabla el valor más próximo a p = 0.7000. El valor más próximo es p = 0.6985, que corresponde a z = 0.52. • Obtener x a partir de z:

$$x = z\sigma + \mu = +0.52 \times 0.03 + 0.17 = 0.1856 \ ng/mL$$

Solución con Excel

INV.NORM(0.7;0.17;0.03)

Resultado: 0.185732015

Solución con Stata

di invnormal(.70)*.03+.17

Resultado: 0.18573202

♣ Pregunta 3.16

Solución con calculadora

Se pide el valor que deja por encima el 5%; por lo tanto, es el valor que deja por debajo el 95%.

- Se busca en el cuerpo de la tabla el valor más próximo a p = 0.9500. Hay dos valores a la misma distancia: p = 0.9495, que corresponde a z = 1.64, y p = 0.9505, que corresponde a z = 1.65. Cualquiera de los dos es correcto. En esta solución lo haremos con 1.64.
- Obtener x a partir de z:

$$x = z\sigma + \mu = +1.64 \times 0.03 + 0.17 = 0.2192 \ ng/mL$$

Solución con Excel

INV.NORM(0.95;0.17;0.03)

Resultado: 0.21934561

Solución con Stata

di invnormal(.95)*.03+.17

Resultado: 0.21934561

♣ Pregunta 3.17

Solución con calculadora

Se piden dos valores. Uno que deja por debajo el 10 % y otro que deja por encima el 10 %. Por lo tanto, los dos tendrán el mismo valor z con el signo cambiado.

Calculemos el valor que deja por encima el 10% (y, por tanto, deja por debajo el 90%):

- Se busca en el cuerpo de la tabla el valor más próximo a p = 0.9000. El valor más próximo es: p = 0.8997, que corresponde a z = 1.28.
- Obtener x a partir de z:

$$x = z\sigma + \mu = +1.28 \times 0.03 + 0.17 = 0.2084 \ ng/mL$$

■ A continuación, repetimos la operación para el valor que deja por debajo el 10%. Sabemos que es el mismo z con el signo cambiado: z = -1.28. Solo falta obtener x:

$$x = z\sigma + \mu = -1.28 \times 0.03 + 0.17 = 0.1316 \ ng/mL$$

Por lo tanto, los valores que dejan en medio el $80\,\%$ de la distribución son 0.1316 y 0.2084.

Solución con Excel

■ Valor que deja por debajo el 90%

INV.NORM(0.9;0.17;0.03)

Resultado: 0.20844655

• Valor que deja por debajo el 10%

INV.NORM(0.1;0.17;0.03)

Resultado: 0.13155345

Solución con Stata

• Valor que deja por debajo el 90%

di invnormal(.90)*.03+.17

Resultado: 0.20844655

• Valor que deja por debajo el 10%

di invnormal(.10)*.03+.17

Resultado: 0.13155345

SOLUCIÓN 3.5

♣ Pregunta 3.18

Solución con calculadora

Hay dos formas de resolver este problema. Una es utilizando la distribución binomial y la otra usando la definición de independencia que se aplicó en el capítulo 2

• Usando la definición de independencia:

Los dos alelos se transmiten de forma independiente (cada uno procede de una planta distinta; vamos a llamarlas planta 1 y planta 2).

Por la definición de independencia sabemos que

$$P(A \cap B) = P(A)P(B)$$

, aplicado a este problema da:

$$P(AA) = P(A)P(A) = 0.6^2 = 0.36$$

P(Av) es más complicado porque hay dos opciones: que A venga de la planta 1 y v de la planta 2 o al revés. Por eso, hay que multiplicar la fórmula por 2:

$$P(Av) = 2P(A)P(v) = 2 \times 0.6 \times 0.4 = 0.48$$

Por último,

$$P(vv) = P(v)P(v) = 0.4^2 = 0.16$$

Observe que la suma de estas tres posibilidades da 1. Si no se hubiera multiplicado por 2 el segundo cálculo, tendríamos un 24% de plantas sin genotipo.

Usando la distribución binomial:

El número de copias de A que haya en dos alelos sigue una distribución binomial con n = 2, p = 0.6 [B(2,0.6)]. La fórmula general es:

$$P(A = k | n = 2, p = 0.6) = \binom{n}{k} p^k (1-p)^{n-k}$$

Por lo tanto:

$$P(AA) = P(A = 2|n = 2, p = 0.6)$$

= $\binom{2}{2} 0.6^2 (1 - 0.6)^{2-2} = 0.6^2 = 0.36$

$$P(Av) = P(A = 1 | n = 2, p = 0.6)$$
$$= {2 \choose 1} 0.6^{1} (1 - 0.6)^{2-1} = 2 \times 0.6 \times 0.4 = 0.48$$

$$P(vv) = P(A = 0|n = 2, p = 0.6)$$
$$= {2 \choose 0} 0.6^{0} (1 - 0.6)^{2-0} = (1 - 0.6)^{2} = 0.16$$

Solución con Excel

Usando distribución binomial:

■ P(AA): =DISTR.BINOM.N(2;2;0.6;FALSO) Resultado: 0.36

■ P(Av): =DISTR.BINOM.N(1;2;0.6;FALS0) Resultado: 0.48

■ P(vv): =DISTR.BINOM.N(0;2;0.6;FALS0)
Resultado: 0.16

Solución con Stata

Usando distribución binomial:

■ P(AA): di binomialp(2,2,.6) Resultado: 0.36

■ P(Av): di binomialp(2,1,.6) Resultado: 0.48

P(vv): di binomialp(2,0,.6) Resultado: 0.16

♣ Pregunta 3.19

Solución con calculadora

Se resuelve de la misma forma que el anterior.

$$P(LL) = P(L)P(L) = 0.8^2 = 0.64$$

$$P(Lr) = 2P(L)P(r) = 2 \times 0.8 \times 0.2 = 0.32$$

$$P(rr) = P(r)P(r) = 0.2^2 = 0.04$$

Solución con Excel

- P(LL): =DISTR.BINOM.N(2;2;0.8;FALS0) Resultado: 0.64
- P(Lr): =DISTR.BINOM.N(1;2;0.8;FALS0) Resultado: 0.32
- P(rr): =DISTR.BINOM.N(0;2;0.8;FALS0)
 Resultado: 0.04

Solución con Stata

Usando distribución binomial:

- P(LL): di binomialp(2,2,.8) Resultado: 0.64
- P(Lr): di binomialp(2,1,.8) Resultado: 0.32
- P(rr): di binomialp(2,0,.2) Resultado: 0.04

♣ Pregunta 3.20

Solución con calculadora

Como A y L son dominantes, serán plantas amarillas todas las que tengan genotipo AA o Av y serán plantas lisas todas las que tengan genotipo LL o Lr.

Las probabilidades son:

$$P(\text{amarilla}) = P(\text{AA}) + P(\text{Av}) = 0.84$$

 $P(\text{verde}) = P(\text{vv}) = 0.16$
 $P(\text{lisa}) = P(\text{LL}) + P(\text{Lr}) = 0.96$
 $P(\text{rugosa}) = P(\text{rr}) = 0.04$

Vamos ahora con lo que se pregunta. Usando la propiedad de independencia:

$$P(\text{amarilla y lisa}) = P(\text{amarilla}) P(\text{lisa}) = 0.84 \times 0.96 = 0.8064$$
 $P(\text{amarilla y rugosa}) = P(\text{amarilla}) P(\text{rugosa}) = 0.84 \times 0.04 = 0.0336$
 $P(\text{verde y lisa}) = P(\text{verde}) P(\text{lisa}) = 0.16 \times 0.96 = 0.1536$
 $P(\text{verde y rugosa}) = P(\text{verde}) P(\text{rugosa}) = 0.16 \times 0.04 = 0.0064$

SOLUCIÓN 3.6

♣ Pregunta 3.21

Solución con calculadora

Como la pregunta 3.18, esta puede resolverse usando independencia o usando la distribución binomial.

Usando la noción de independencia de sucesos:

Hay que utilizar la propiedad de independencia que vimos en el problema anterior. Para el genotipo AB hay que multiplicar por 2 porque puede ocurrir que A venga del primer progenitor y B del segundo o al revés. Con eso es suficiente para:

$$P(AA) = P(A)P(A) = p^{2}$$

 $P(AB) = 2P(A)P(B) = 2p(1-p)$
 $P(BB) = P(B)P(B) = (1-p)^{2}$

Usando la distribución binomial de parámetros n = 2 (porque hay dos loci)
 y p:

$$P(AA) = P(A = 2|n = 2, p) = {2 \choose 2} p^{2} (1-p)^{2-2} = p^{2}$$

$$P(AB) = P(A = 1|n = 2, p) = {2 \choose 1} p^{1} (1-p)^{2-1} = 2p(1-p)$$

$$P(BB) = P(A = 0|n = 2, p) = {2 \choose 0} p^{0} (1-p)^{2-0} = (1-p)^{2}$$

A esta distribución de los genotipos en una población se le conoce en genética como Ley de Hardy-Weinberg en honor al matemático Godfrey Hardy y el ginecólogo Wilhelm Weinberg.

♣ Pregunta 3.22

Solución con calculadora

La frecuencia de fibrosis quística será la probabilidad del genotipo aa:

$$P(aa) = P(a)P(a) = \left(\frac{1}{30}\right)^2 = \frac{1}{900} = 0.0011 = 0.11\%$$

♣ Pregunta 3.23

Solución con calculadora

La frecuencia de portadores en los recién nacidos será la probabilidad del genotipo Aa. De acuerdo con lo que hemos visto en los problemas anteriores:

$$P(Aa) = 2P(A)P(a) = 2 \times \frac{29}{30} \times \frac{1}{30} = \frac{58}{900} = 0.0644 = 6.44\%$$

Nos encontramos con una distribución binomial en la que n es el número de trasplantes (n = 10) y p es la probabilidad de EICH (p = 0.2).

♣ Pregunta 3.24

Solución con calculadora

$$P(k = 4|n = 10, p = 0.2) = \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= \binom{10}{4} 0.2^{4} (1-0.2)^{10-4}$$

$$= \frac{10!}{4! (10-4)!} \times 0.2^{4} \times 0.8^{6} = 0.0881 = 8.81\%$$

Solución con Excel

DISTR.BINOM.N(4;10;0.2;FALS0)

Resultado: 0.8808038

Solución con Stata

di binomialp(10,4,.2)

Resultado: 0.8808038

♣ Pregunta 3.25

Solución con calculadora

$$P(k \ge 4|n = 10, p = 0.2)$$

$$= 1 - P(k \le 3|n = 10, p = 0.2)$$

$$= 1 - (P(k = 0|n = 10, p = 0.2) + P(k = 1|n = 10, p = 0.2) + P(k = 2|n = 10, p = 0.2) + P(k = 3|n = 10, p = 0.2))$$

Y ahora se calcula cada uno de los términos aplicando la fórmula que hemos visto en 3.24:

$$P(k = 0|n = 10, p = 0.2) = {10 \choose 0} 0.2^{0} (1 - 0.2)^{10-0}$$

$$= \frac{10!}{0!(10 - 0)!} \times 0.2^{0} \times 0.8^{10} = 0.1074$$

$$P(k = 1|n = 10, p = 0.2) = {10 \choose 1} 0.2^{1} (1 - 0.2)^{10-1}$$

$$P(k = 1 | n = 10, p = 0.2) = {10 \choose 1} 0.2^{1} (1 - 0.2)^{10 - 1}$$
$$= \frac{10!}{1!(10 - 1)!} \times 0.2^{1} \times 0.8^{9} = 0.2684$$

$$P(k = 2|n = 10, p = 0.2) = {10 \choose 2} 0.2^{2} (1 - 0.2)^{10-2}$$
$$= \frac{10!}{2!(10-2)!} \times 0.2^{2} \times 0.8^{8} = 0.3020$$

$$P(k = 3|n = 10, p = 0.2) = {10 \choose 3} 0.2^{3} (1 - 0.2)^{10-3}$$
$$= \frac{10!}{3!(10-3)!} \times 0.2^{3} \times 0.8^{7} = 0.2013$$

Por lo tanto, la solución es:

$$P(k \ge 4|n = 10, p = 0.2) = 1 - P(k \le 3|n = 10, p = 0.2)$$
$$= 1 - (0.1074 + 0.2684 + 0.3020 + 0.2013)$$
$$= 1 - 0.8791 = 0.1209 = 12.09\%$$

Solución con Excel

(1-DISTR.BINOM.N(3;10;0.2; VERDADERO))

Resultado: 0.120873882

Solución con Stata

di binomialtail(10,4,.2)

Resultado: 0.12087388

El mismo resultado se obtiene con la orden di 1-binomial (10,3,.2)

Tenemos una distribución binomial con n = 15 y p = 0.07.

♣ Pregunta 3.26

Solución con calculadora

$$P(k = 3|n = 15, p = 0.07) = \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= \binom{15}{3} 0.07^{3} (1-0.07)^{15-3}$$

$$= \frac{15!}{3!(15-3)!} \times 0.07^{3} \times 0.93^{12} = 0.0653 = 6.53\%$$

Solución con Excel

DISTR.BINOM.N(3;15;0.07;FALSO)

Resultado: 0.06532823

Solución con Stata

di binomialp(15,3,.07)

Resultado: 0.06532823

♣ Pregunta 3.27

Solución con calculadora

$$P(k \ge 3 | n = 15, p = 0.07)$$

$$= 1 - P(k \le 2 | n = 15, p = 0.07)$$

$$= 1 - (P(k = 0 | n = 15, p = 0.07)$$

$$+ P(k = 1 | n = 15, p = 0.07) + P(k = 2 | n = 15, p = 0.07))$$

Ahora se calcula cada término por separado:

$$P(k = 0|n = 15, p = 0.07) = {15 \choose 0} 0.07^{0} (1 - 0.07)^{15-0}$$
$$= \frac{15!}{0!(15-0)!} \times 0.07^{0} \times 0.93^{15} = 0.3367$$

$$P(k = 1 | n = 15, p = 0.07) = {15 \choose 1} 0.07^{1} (1 - 0.07)^{15 - 1}$$
$$= \frac{15!}{1!(15 - 1)!} \times 0.07^{1} \times 0.93^{14} = 0.3801$$

$$P(k = 2|n = 15, p = 0.07) = {15 \choose 2} 0.07^{2} (1 - 0.07)^{15-2}$$
$$= \frac{15!}{2!(15-2)!} \times 0.07^{2} \times 0.93^{13} = 0.2003$$

Y, por lo tanto:

$$P(k \ge 3|n = 15, p = 0.07) = 1 - P(k \le 2|n = 15, p = 0.07)$$

= 1 - (0.3367 + 0.3801 + 0.2003) = 0.0829 = 8.29%

Solución con Excel

1-DISTR.BINOM.N(2;15;0.07; VERDADERO)

Resultado: 0.08286095

Solución con Stata

di binomialtail(15,3,.07)

Resultado: 0.08286095

El mismo resultado se obtiene con la orden di 1-binomial (15,2,.07)

Se trata de una distribución binomial con n = 7 pacientes, p = 0.04.

♣ Pregunta 3.28

Solución con calculadora

$$P(k = 0|n = 7, p = 0.04) = \binom{n}{k} p^{k} (1-p)^{n-k} = \binom{7}{0} 0.04^{0} (1-0.04)^{7-0}$$
$$= \frac{7!}{0!(7-0)!} \times 0.04^{0} \times 0.96^{7} = 0.7514 = 75.14\%$$

Solución con Excel

DISTR.BINOM.N(0;7;0.04;FALSO)

Resultado: 0.75144748

Solución con Stata

di binomialp(7,0,.04)

Resultado: 0.75144748

♣ Pregunta 3.29

Solución con calculadora

$$P(k = 1 | n = 7, p = 0.04) = \binom{n}{k} p^{k} (1 - p)^{n - k} = \binom{7}{1} 0.04^{1} (1 - 0.04)^{7 - 1}$$
$$= \frac{7!}{1!(7 - 1)!} \times 0.04^{1} \times 0.96^{6} = 0.2192 = 21.92\%$$

Solución con Excel

DISTR.BINOM.N(1;7;0.04;FALS0)

Resultado: 0.21917218

Solución con Stata

di binomialp(7,1,.04)

Resultado: 0.21917218

♣ Pregunta 3.30

Solución con calculadora

$$P(k \ge 2|n = 7, p = 0.04) = 1 - P(k \le 1|n = 7, p = 0.04)$$

= 1 - (P(k = 0|n = 7, p = 0.04)
+ P(k = 1|n = 7, p = 0.04))

Pero los dos términos del interior del corchete están ya calculados de las preguntas 3.28 y 3.29. Por lo tanto:

$$P(k \ge 2|n = 7, p = 0.04) = 1 - P(k \le 1|n = 7, p = 0.04)$$

= 1 - (0.7514 + 0.2192) = 0.0294 = 2.94%

Solución con Excel

1-DISTR.BINOM.N(1;7;0.04; VERDADERO)

Resultado: 0.0293034

Solución con Stata

di binomialtail(7,2,.04)

Resultado: 0.02938034

El mismo resultado se obtiene con la orden di 1-binomial (7,1,.04)

Sigue siendo una distribución binomial, pero ahora tiene n = 2000 y p = 0.04.

El problema es que manejar con la calculadora una binomial con n = 2000 es inviable, pero se puede utilizar la aproximación normal debido a que:

$$B(n,p) \approx N(\mu = np, \sigma^2 = np(1-p))$$

♣ Pregunta 3.31

Solución con calculadora

$$\mu = np = 2000 \times 0.04 = 80 \ fallecidos$$

$$\sigma^2 = np(1-p) \rightarrow \sigma = \sqrt{np(1-p)}$$
$$= \sqrt{2000 \times 0.04 \times (1-0.04)} = 8.76 \ fallecidos$$

♣ Pregunta 3.32

Solución con calculadora

Usando la aproximación normal, tenemos que calcular:

$$P(x < 60 | \mu = 80, \sigma = 8.76)$$

Para ello, primero tenemos que calcular el valor z:

$$z = \frac{x - \mu}{\sigma} = \frac{60 - 80}{8.76} = -2.28$$

A continuación, se busca en la tabla de la normal el valor p correspondiente. Si z=+2.28, p=0.9887. Como en nuestro problema z=-2.28, su valor p será 1-0.9887=0.0113: la probabilidad de que haya menos de 60 muertes en 2000 pacientes es del 1.13%.

Solución con Excel

Excel sí permite resolver el problema usando la distribución binomial, lo que permite ver hasta qué punto es buena la aproximación normal:

DISTR.BINOM.N(60;2000;0.04;VERDADERO)

Resultado: 0.01062072

Solución con Stata

Stata también permite resolver el problema usando la distribución binomial:

di binomial(2000,60,.04)

Resultado: 0.01062072

♣ Pregunta 3.33

Solución con calculadora

De nuevo, tendremos que utilizar la aproximación normal. Pero esta vez nos piden la probabilidad de que haya menos de 80 fallecimientos, cuando la media de la normal es 80. Como esta distribución es simétrica en torno a la media, la probabilidad de que haya menos de 80 fallecimientos es 50%.

Solución con Excel

DISTR.BINOM.N(80;2000;0.04;VERDADERO)

Resultado: 0.52969415

Solución con Stata

di binomial(2000,80,.04)

Resultado: 0.52969415

♣ Pregunta 3.34

Solución con calculadora

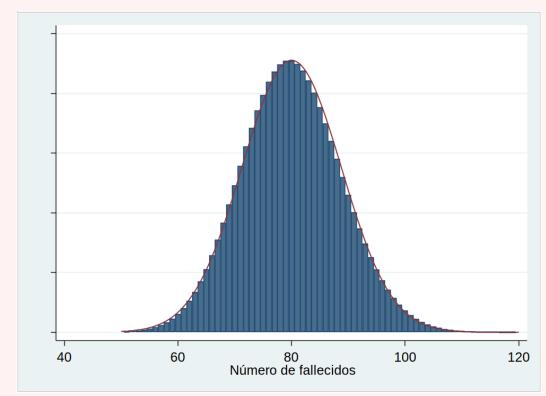
Seguimos necesitando la aproximación normal.

En primer lugar, calculemos z:

$$z = \frac{x - \mu}{\sigma} = \frac{90 - 80}{8.76} = 1.14$$

Consultando la tabla de la normal, encontramos que este valor z deja por debajo 0.8729. Por lo tanto, deja por encima 0.1271.

Resultado: la probabilidad de que se produzcan más de 90 fallecidos de 2000 pacientes es $12.71\,\%$.



Esta figura muestra las dos distribuciones que hemos usado en este problema. En azul, las probabilidades de la distribución binomial B(n=2000,p=0.04) y en rojo la función de densidad de la distribución normal con media $\mu=80$ y desviación típica $\sigma=8.76$. Puede verse que la aproximación es muy buena.

Solución con Excel

1-DISTR.BINOM.N(90;2000;0.04;VERDADER0)

Resultado: 0.116739396

Solución con Stata

di binomialtail(2000,91,.04)

Resultado: 0.1167394

El mismo resultado se obtiene con la orden di 1-binomial (2000,90,.04)

SOLUCIÓN 3.12

Solución con calculadora

En este problema seguimos teniendo una distribución binomial, pero con una n tan grande (125000) que no podemos usar la binomial y con una probabilidad tan pequeña (5/125000 = 0.00004) que la aproximación normal podría no funcionar. Para un fenómeno raro, la mejor aproximación es usar la distribución de Poisson cuya función de probabilidad es:

$$P(x = k | \mu) = \frac{\mu^k e^{-\mu}}{k!}$$

donde μ es la media.

♣ Pregunta 3.35

Solución con calculadora

Aplicado a este problema, tenemos k = 8 y $\mu = 5$:

$$P(x = 8 | \mu = 5) = \frac{\mu^k e^{-\mu}}{k!} = \frac{5^8 e^{-5}}{8!} = 0.0653 = 6.53\%$$

Si la media de muertes al año es 8, la probabilidad de que en un año tengamos 8 muertes es del 6.53% (aproximadamente, un año de cada 16).

Solución con Excel

Usando la distribución de Poisson:

POISSON.DIST(8;5;FALSO)

Resultado: 0.065278039

Usando la distribución binomial:

DISTR.BINOM.N(8;125000;0.00004;FALS0)

Resultado: 0.06527778

Solución con Stata

Usando la distribución de Poisson:
 di poissonp(5,8)

Resultado: .06527804

Usando la distribución binomial:
 di binomialp(125000,8,.00004)

Resultado: 0.06527778

♣ Pregunta 3.36

Solución con calculadora

Lo que se pide es la probabilidad de tener un año 8 muertes o más si la media anual es 5. Esto es igual a 1 menos la probabilidad de tener 7 muertes o menos:

$$P(x \ge 8 | \mu = 5) = 1 - P(x \le 7 | \mu = 5)$$

$$= 1 - (P(x = 0 | \mu = 5) + P(x = 1 | \mu = 5) + P(x = 2 | \mu = 5)$$

$$+ P(x = 3 | \mu = 5) + P(x = 4 | \mu = 5) + P(x = 5 | \mu = 5)$$

$$+ P(x = 6 | \mu = 5) + P(x = 7 | \mu = 5))$$

Calculemos cada uno de los términos del corchete:

$$P(x=0|\mu=5) = \frac{\mu^k e^{-\mu}}{k!} = \frac{5^0 e^{-5}}{0!} = 0.0067$$

$$P(x=1|\mu=5) = \frac{\mu^k e^{-\mu}}{k!} = \frac{5^1 e^{-5}}{1!} = 0.0337$$

$$P(x=2|\mu=5) = \frac{\mu^k e^{-\mu}}{k!} = \frac{5^2 e^{-5}}{2!} = 0.0842$$

$$P(x=3|\mu=5) = \frac{\mu^k e^{-\mu}}{k!} = \frac{5^3 e^{-5}}{3!} = 0.1404$$

$$P(x=4|\mu=5) = \frac{\mu^k e^{-\mu}}{k!} = \frac{5^4 e^{-5}}{4!} = 0.1755$$

$$P(x=5|\mu=5) = \frac{\mu^k e^{-\mu}}{k!} = \frac{5^5 e^{-5}}{5!} = 0.1755$$

$$P(x = 6 | \mu = 5) = \frac{\mu^k e^{-\mu}}{k!} = \frac{5^6 e^{-5}}{6!} = 0.1462$$

$$P(x=7|\mu=5) = \frac{\mu^k e^{-\mu}}{k!} = \frac{5^7 e^{-5}}{7!} = 0.1044$$

Finalmente:

$$P(x \ge 8 | \mu = 5) = 1 - P(x \le 7 | \mu = 5)$$

$$= 1 - (0.0067 + 0.0337 + 0.0842 + 0.1404 + 0.1755 + 0.1755 + 0.1462 + 0.1044) = 0.1344 = 13.44\%$$

La probabilidad de que un año hubiera 8 muertes o más es 13.44%, aproximadamente, un año de cada 7.

Solución con Excel

Usando la distribución de Poisson:

1-POISSON.DIST(7;5; VERDADERO)

Resultado: 0.133371674

Usando la distribución binomial:

1-DISTR.BINOM.N(7;125000;0.00004;VERDADERO)

Resultado: 0.133367496

• Usando la aproximación normal:

Para usarla, ya conocemos la media (5), pero necesitamos calcular la desviación típica:

$$\sigma = \sqrt{np(1-p)} = \sqrt{125000 \times 0.00004 \times (1-0.00004)} = 2.236$$

1-DISTR.NORM.N(8;5;2.236; VERDADERO)

Resultado: 0.089849632

Solución con Stata

• Usando la distribución de Poisson:

```
di poissontail(5,8)
```

Resultado: 0.13337167

• Usando la distribución binomial:

```
di binomialtail(125000,8,0.00004)
```

Resultado: 0.1333675

El mismo resultado se obtiene con la orden:

Usando la aproximación normal:

Para usarla, ya conocemos la media (5), pero necesitamos calcular la desviación típica:

$$\sigma = \sqrt{np(1-p)} = \sqrt{125000 \times 0.00004 \times (1-0.00004)} = 2.236$$

di
$$1-normal((8-5)/2.236)$$

Resultado: 0.08984963

Se comprueba que la distribución de Poisson aproxima muy bien a la binomial, pero la normal comete un error importante.

De nuevo tenemos una distribución binomial, pero esta vez ni siquiera nos dan la n, con lo que es imposible utilizar la binomial o la aproximación normal. La única opción es la distribución de Poisson.

Observe que, aunque no nos dan n, sí sabemos que la probabilidad es baja porque en cualquier provincia 9 / n será un número pequeño.

♣ Pregunta 3.37

Solución con calculadora

Aplicado a este problema, tenemos k = 6 y $\mu = 9$:

$$P(x = 6 | \mu = 9) = \frac{\mu^k e^{-\mu}}{k!} = \frac{9^6 e^{-9}}{6!} = 0.0911 = 9.11\%$$

Si la media de casos al año es 9, la probabilidad de que en un año tengamos 6 casos es del 9.11% (aproximadamente, un año de cada 9); no es una probabilidad baja.

Solución con Excel

POISSON.DIST(6;9;FALSO)

Resultado: 0.091090319

Solución con Stata

Usando la distribución de Poisson: di poissonp(9, 6)

Resultado: 0.09109032

♣ Pregunta 3.38

Solución con calculadora

Lo que se pide es la probabilidad de tener un año 6 casos o menos si la media anual es 9.

$$P(x < 6 | \mu = 9)$$

$$= P(x = 0 | \mu = 9) + P(x = 1 | \mu = 9) + P(x = 2 | \mu = 9)$$

$$+ P(x = 3 | \mu = 9) + P(x = 4 | \mu = 9)$$

$$+ P(x = 5 | \mu = 9) + P(x = 6 | \mu = 9)$$

Si calculamos cada uno de los términos:

$$P(x = 0 | \mu = 9) = \frac{\mu^k e^{-\mu}}{k!} = \frac{9^0 e^{-9}}{0!} = 0.0001$$

$$P(x = 1 | \mu = 9) = \frac{\mu^k e^{-\mu}}{k!} = \frac{9^1 e^{-9}}{1!} = 0.0011$$

$$P(x = 2 | \mu = 9) = \frac{\mu^k e^{-\mu}}{k!} = \frac{9^2 e^{-9}}{2!} = 0.0050$$

$$P(x = 3 | \mu = 9) = \frac{\mu^k e^{-\mu}}{k!} = \frac{9^3 e^{-9}}{3!} = 0.0150$$

$$P(x = 4 | \mu = 9) = \frac{\mu^k e^{-\mu}}{k!} = \frac{9^4 e^{-9}}{4!} = 0.0337$$

$$P(x = 5 | \mu = 9) = \frac{\mu^k e^{-\mu}}{k!} = \frac{9^5 e^{-9}}{5!} = 0.0607$$

$$P(x = 6 | \mu = 9) = \frac{\mu^k e^{-\mu}}{k!} = \frac{9^6 e^{-9}}{6!} = 0.0911$$

Sumando, obtenemos:

$$P(x < 6 | \mu = 9) = 0.001 + 0.0011 + 0.0050 + 0.0150 + 0.0337 + 0.0607 + 0.0911$$

= 0.2076 = 20.76%

Si la media de casos anual es 9, en el 20 % de los años (un año de cada 5) se producirán 6 casos o menos. Esto indica que tener solo 6 casos no es una prueba de que la vacuna esté funcionando.

Solución con Excel

POISSON.DIST(6;9;VERDADERO)

Resultado: 0.20678084

Solución con Stata

di poisson(9,6)

Resultado: 0.20678084

♣ Pregunta 3.39

Solución con calculadora

La diferencia con los problemas anteriores es que ahora la media es alta. Eso permite utilizar la aproximación normal sabiendo que:

$$P(\mu) \rightarrow N(\mu, \mu)$$

Es decir, una distribución de Poisson tiende a una normal en la que la media es igual a la varianza.

En este caso, como la media es 27, tendríamos:

$$\sigma^2 = 27$$

$$\sigma = \sqrt{27} = 5.20$$

Es decir, lo que tenemos que calcular para el problema es la probabilidad de obtener un valor 33 o mayor en una distribución normal de media 27 y desviación típica 5.20.

Primero, calculamos el valor z correspondiente a 33:

$$z = \frac{x - \mu}{\sigma} = \frac{33 - 27}{5.20} = 1.15$$

A continuación, consultamos esta z en la tabla normal. Encontramos que este valor deja por debajo el 87.49% de la distribución. Por lo tanto, lo que deja por encima es el 12.51%.

Resultado final: si la media es 27 casos al año, en 12.51 % de los años se producirán 33 casos o más. Este no es un resultado infrecuente: ocurre en un caso de cada 8.

Solución con Stata

Usando la aproximación normal: di 1-normal((33-27)/5.2)
 Resultado: .12428162

Usando la distribución de Poisson: di poissontail(27,33)

Resultado: . 14537697

♣ Pregunta 3.40

Solución con calculadora

De acuerdo con el teorema de la probabilidad total,

$$P(I) = P(I \cap D) + P(I \cap D^{C}) = P(D)P(I|D) + P(D^{C})P(I|D^{C})$$

, donde I y D son los eventos "infectarse" y "mantener una distancia interpersonal de más de un metro", respectivamente. Así,

$$P(I) = (1 - 0.2) \times 0.026 + 0.2 \times 0.128 = 0.0464$$

♣ Pregunta 3.41

Solución con calculadora

El número de infectados en las cenas de Nochebuena estaría representado por una variable aleatoria binomial; en concreto,

$$X \sim Binomial(n = 6, p = 0.128)$$

♣ Pregunta 3.42

Solución con calculadora

Sea

$$X \sim Binomial(n = 20, p = 0.128)$$

una variable aleatoria que representa el número de infectados. Así,

$$P(X \ge 2) = P(X \ge 1) = 1 - P(X \le 1) = 1 - P(X = 0) - P(X = 1)$$

donde

$$P(X = 0) = \left(\frac{20}{0}\right)0.128^{0}(1 - 0.128)^{20-0} = 0.872^{20} = 0.0646$$

$$P(X=1) = \left(\frac{20}{0}\right) 0.128^{1} (1 - 0.128)^{20-1} = 20 \times 0.128 \times 0.872^{19} = 0.1897$$

Por tanto,

$$P(X \ge 2) = 1 - 0.0646 - 0.1897 = 0.7457$$

♣ Pregunta 3.43

Solución con calculadora

Sea

$$X \sim Binomial(n = 1000, p = 0.026)$$

una variable aleatoria que representa el número de infectados. Nótese que

$$P(X = 10) \approx P(Y = 10)$$
,

donde

$$Y \sim Poisson(\lambda = np = 26)$$

. Así,

$$P(Y = 10) = e^{-26} \frac{26^{10}}{10!} = 0.0002$$

Estimación de una media

♣ Pregunta 4.1

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{41808}{636} = 65.736$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{133007.6}{636 - 1} = 209.461$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{209.461} = 14.473$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{14.473}{\sqrt{636}} = 0.574$$

Para IC 95%: $z_{\alpha/2} = 1.96$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 65.736 + (1.96 \times 0.574) = 66.861$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 65.736 - (1.96 \times 0.574) = 64.611$$

Interpretaciones correctas:

- Tenemos una confianza del 95 % de que la media de la población está entre 64.6 y 66.8.
- En mi muestra he obtenido una media de 65.7, pero si repitiésemos el estudio 100 veces en 95 ocasiones los valores estarían comprendidos entre 64.6 y 66.9

Solución con Excel

Se genera una etiqueta con todos los valores de la edad denominada *edad*. Representa a toda la muestra y facilita el uso de fórmulas en **Excel**.

Para resolver el problema utilizaremos las siguientes funciones:

■ Para obtener la n: CONTAR

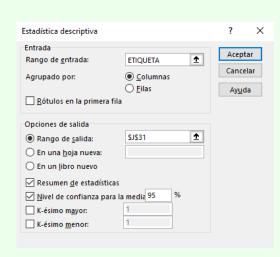
■ Para obtener la *m*: PROMEDIO

■ Para obtener la s²: VAR.S

■ Para obtener la *s*: RAIZ

Valor		Función
n	636	CONTAR(edad)
m	65.736 PROMEDIO(eda	
S^2	209.461	VAR.S(edad)
S	14.473	RAIZ(S ²)
EEM	0.574	s/RAIZ(n)
IC 95% superior	66.861	m+1.96*EEM
IC95% inferior	64.611	m-1.96∗EEM

Utilizando el analizador de datos: Estadística descriptiva.



Edad Muestra	
Media	65.73585
Error típico	0.573882
Mediana	68
Moda	79
Desviación estándar	14.47276
Varianza de la muestra	209.4608
Curtosis	0.090198
Coeficiente de asimetría	-0.76964
Rango	76
Mínimo	17
Máximo	93
Suma	41808
Cuenta	636
Nivel de confianza(95.0%)	1.126937

En la salida del Excel, el intervalo de confianza, en realidad es la precisión del intervalo, es decir, la mitad del intervalo. Por tanto, es necesario sumar y restar esta precisión para obtener el IC.

Media	65.736
Precisión	1.127
LIC	64.609
LSC	66.862

Nota: La resolución mediante el analizador de datos solo se muestra en el primer ejemplo.

Solución con Stata

Para obtener la media y el intervalo de confianza utilizamos el comando mean con la opción level:

. mean Edad, level(95)

Mean estimation

Number of obs =
$$636$$

	Mean	Std. Err.	[95% Conf.	Interval]
Edad	65.73585	.5738823	64.60891	66.86279

♣ Pregunta 4.2

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{20423}{318} = 64.223$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{63989.15}{318 - 1} = 201.859$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{201.859} = 14.208$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{14.208}{\sqrt{318}} = 0.797$$

Para IC 95%: $z_{\alpha/2} = 1.96$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 64.223 + (1.96 \times 0.797) = 65.785$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 64.223 - (1.96 \times 0.797) = 62.662$$

Interpretaciones correctas:

- Tenemos una confianza del 95% de que la media de los posibles controles de la población está entre 62.7 y 65.8.
- En mi muestra he obtenido una media de 64.2. pero si repitiésemos el estudio 100 veces en 95 ocasiones los valores estarían comprendidos entre 62.7 y 65.8.

Solución con Excel

Se genera una etiqueta con todos los valores de la edad para los controles (caso=0) denominada *edad_0*. Representa la muestra de controles y facilita el uso de fórmulas en **Excel**.

Valor		Función
n	318	CONTAR(edad_0)
m	64.223	PROMEDIO(edad_0)
S^2	201.859	VAR.S(edad_0)
S	14.208	$RAIZ(S^2)$
EEM	0.797	s/RAIZ(n)
IC 95% superior	65.785	m+1.96*EEM
IC95% inferior	62.662	m-1.96*EEM

Solución con Stata

. mean Edad if Caso==0, level(95)

Mean estimation

Number of obs = 318

	Mean	Std. Err.	[95% Conf.	Interval]
Edad	64.22327	.7967278	62.65573	65.79081

♣ Pregunta 4.3

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{21385}{318} = 67.248$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{67563.37}{318 - 1} = 213.134$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{213.134} = 14.599$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{14.599}{\sqrt{318}} = 0.819$$

Para IC 95%:
$$z_{\alpha/2} = 1.96$$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 67.248 + (1.96 \times 0.819) = 68.853$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 67.248 - (1.96 \times 0.819) = 65.644$$

Interpretaciones correctas:

- Tenemos una confianza del 95% de que la media de los casos de la población está entre 65.6 y 68.9.
- En mi muestra he obtenido una media de 67.2. pero si repitiésemos el estudio 100 veces en 95 ocasiones los valores estarían comprendidos entre 65.6 y 68.9.

Solución con Excel

Se genera una etiqueta con todos los valores de la edad para los casos (caso=1) denominada *edad_1*. Representa la muestra de casos y facilita el uso de fórmulas en **Excel**.

Valor		Función
n	318	CONTAR(edad_1)
m	67.248	PROMEDIO(edad_1)
S^2	213.134	VAR.S(edad_1)
S	14.599	$RAIZ(S^2)$
EEM	0.819	s/RAIZ(n)
IC 95% superior	68.853	m+1.96*EEM
IC95% inferior	65.644	m-1.96*EEM

Solución con Stata

. mean Edad if Caso==1, level(95)

Mean estimation

Number of obs = 318

	Mean	Std. Err.	[95% Conf.	Interval]
Edad	67.24843	.8186768	65.6377	68.85915

♣ Pregunta 4.4

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{15970}{634} = 25.189$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{28781.29}{634 - 1} = 45.468$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{45.468} = 6.743$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{6.743}{\sqrt{634}} = 0.268$$

Para IC 90%: $z_{\alpha/2} = 1.64$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 25.189 + (1.64 \times 0.268) = 25.628$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 25.189 - (1.64 \times 0.268) = 24.750$$

Interpretaciones correctas:

- Tenemos una confianza del 90 % de que la media de Apache II de la población está entre 24.8 y 25.6.
- En mi muestra he obtenido una media de Apache II de 25.19 pero si repitiésemos el estudio 100 veces en 90 ocasiones los valores estarían comprendidos entre 24.8 y 25.6.

Solución con Excel

Se genera una etiqueta con todos los valores de Apache II denominada *apache*. Representa a toda la muestra y facilita el uso de fórmulas en **Excel**.

Valor		Función
n	634	CONTAR(apache)
m	25.189	PROMEDIO(apache)
S^2	45.468	VAR.S(apache)
s	6.743	RAIZ(S ²)
EEM	0.268	s/RAIZ(n)
IC 90% superior	25.628	m+1.64*EEM
IC 90% inferior	24.750	m-1.64*EEM

Solución con Stata

. mean Apache, level(90)

Mean estimation

Number of obs = 634

	Mean	Std. Err.	[90% Conf.	Interval]
Apache	25.18927	. 2677988	24.74814	25.63041

♣ Pregunta 4.5

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{7901}{318} = 24.846$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{12221.45}{318 - 1} = 38.553$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{38.553} = 6.209$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{6.209}{\sqrt{318}} = 0.348$$

Para IC 90%: $z_{\alpha/2} = 1.64$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 24.846 + (1.64 \times 0.348) = 25.417$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 24.846 - (1.64 \times 0.348) = 24.275$$

Interpretaciones correctas:

- Tenemos una confianza del 90% de que la media de Apache II de la población de controles está entre 24.3 y 25.4.
- En mi muestra he obtenido una media de Apache II de 24.8 pero si repitiésemos el estudio 100 veces en 90 ocasiones los valores estarían comprendidos entre 24.3 y 25.4.

Solución con Excel

Se genera una etiqueta con todos los valores de Apache II para los controles (caso=0) denominada *apache*_0. Representa la muestra de controles y facilita el uso de fórmulas en **Excel**.

Valor		Función
n	318	CONTAR(apache_0)
m	24.846	PROMEDIO(apache_0)
S^2	38.553	VAR.S(apache_0)
S	6.209	$RAIZ(S^2)$
EEM	0.348	s/RAIZ(n)
IC 90% superior	25.417	m+1.64*EEM
IC 90% inferior	24.275	m-1.64*EEM

Solución con Stata

. mean Apache if Caso==0, level(90)

Mean estimation

Number of obs = 318

	Mean	Std. Err.	[90% Conf.	Interval]
Apache	24.84591	. 3481915	24.27151	25.42031

♣ Pregunta 4.6

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{8069}{316} = 25.535$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{16483.62}{316 - 1} = 52.332$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{52.332} = 7.234$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{7.234}{\sqrt{318}} = 0.407$$

Para IC 90%: $z_{\alpha/2} = 1.64$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 25.535 + (1.64 \times 0.407) = 26.202$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 25.535 - (1.64 \times 0.407) = 24.867$$

Interpretaciones correctas:

- Tenemos una confianza del 90 % de que la media de Apache II de la población susceptible de ser caso está entre 24.9 y 26.2.
- En mi muestra he obtenido una media de Apache II en los casos de 35.5 pero si repitiésemos el estudio 100 veces en 90 ocasiones los valores estarían comprendidos entre 24.9 y 26.2.

Solución con Excel

Se genera una etiqueta con todos los valores de Apache II para los casos (caso=1) denominada *apache_1*. Representa la muestra de casos y facilita el uso de fórmulas en **Excel**.

Valor		Función	
n	316	CONTAR(apache_1)	
m	25.535	PROMEDIO(apache_1)	
S^2	52.332	VAR.S(apache_1)	
S	7.234	$RAIZ(S^2)$	
EEM	0.407	s/RAIZ(n)	
IC 90% superior	26.202	m+1.64*EEM	
IC 90% inferior	24.867	m-1.64*EEM	

Solución con Stata

. mean Apache if Caso==1, level(90)

Mean estimation

Number of obs = 316

	Mean	Std. Err.	[90% Conf.	Interval]
Apache	25.53481	. 4069496	24.86346	26.20616

♣ Pregunta 4.7

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{1522.71}{627} = 2.429$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{2621.29}{627 - 1} = 4.187$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{4.187} = 2.046$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{2.046}{\sqrt{627}} = 0.082$$

Para IC 80%: $z_{\alpha/2} = 1.28$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 2.429 + (1.28 \times 0.082) = 2.533$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 2.429 - (1.28 \times 0.082) = 2.324$$

Solución con Excel

Se genera una etiqueta con todos los valores de creatinina en sangre denominada *creatinina*. Representa a toda la muestra y facilita el uso de fórmulas en **Excel**.

Valor		Función	
n	627	CONTAR(creatinina)	
m	2.429	PROMEDIO(creatinina	
S^2	4.187	VAR.S(creatinina)	
S	2.046	$RAIZ(S^2)$	
EEM	0.082	s/RAIZ(n)	
IC 80% superior	2.533	m+1.28*EEM	
IC 80% inferior	2.324	m-1.28*EEM	

Solución con Stata

. mean CreatIng, level(80)

Mean estimation

Number of obs = 627

	Mean	Std. Err.	[80% Conf.	Interval]
CreatIng	2.428565	.0817216	2.323724	2.533406

♣ Pregunta 4.8

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{571.32}{313} = 1.825$$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - m)^{2}}{n - 1} = \frac{597.065}{313 - 1} = 1.914$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{1.914} = 1.383$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{1.383}{\sqrt{313}} = 0.078$$

Para IC 80%: $z_{\alpha/2} = 1.28$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 1.825 + (1.28 \times 0.078) = 1.925$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 1.825 - (1.28 \times 0.078) = 1.725$$

Solución con Excel

Se genera una etiqueta con todos los valores de creatinina en sangre para los controles (caso=0) denominada *creatinina_0*. Representa la muestra de los controles y facilita el uso de fórmulas en **Excel**.

Valor		Función
n	313	CONTAR(creatinina_0)
m	1.825	PROMEDIO(creatinina_
S^2	1.914	VAR.S(creatinina_0)
s	1.383	$RAIZ(S^2)$
EEM	0.078	s/RAIZ(n)
IC 80% superior	1.925	m+1.28*EEM
IC 80% inferior	1.725	m-1.28*EEM

Solución con Stata

. mean CreatIng if Caso==0, level(80)

Mean estimation

Number of obs = 313

	Mean	Std. Err.	[80% Conf.	Interval]
CreatIng	1.825304	.0781918	1.724884	1.925723

♣ Pregunta 4.9

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{951.39}{314} = 3.030$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{951.39}{314 - 1} = 5.740$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{5.740} = 2.396$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{2.396}{\sqrt{314}} = 0.135$$

Para IC 80%: $z_{\alpha/2} = 1.28$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 3.030 + (1.28 \times 0.135) = 3.203$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 3.030 - (1.28 \times 0.135) = 2.857$$

Solución con Excel

Se genera una etiqueta con todos los valores de creatinina en sangre para los casos (caso=1) denominada *creatinina_1*. Representa la muestra de los casos y facilita el uso de fórmulas en **Excel**.

Valor	Función	
n	314	CONTAR(creatinina_1)
m	3.030	PROMEDIO(creatinina_1)
S^2	5.740	VAR.S(creatinina_1)
S	2.396	$RAIZ(S^2)$
EEM	0.135	s/RAIZ(n)
IC 80% superior	3.203	m+1.28*EEM
IC 80% inferior	2.857	m-1.28*EEM

Solución con Stata

. mean CreatIng if Caso==1, level(80)

Mean estimation

Number of obs = 314

	Mean	Std. Err.	[95% Conf.	Interval]
CreatIng	3.029904	. 1352103	2.856259	3.20355

SOLUCIÓN 4.4

♣ Pregunta 4.10

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{54358.59}{625} = 86.974$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{3082005}{625 - 1} = 4939.111$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{4939.111} = 70.279$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{70.279}{\sqrt{625}} = 2.811$$

Para IC 99%: $z_{\alpha/2} = 2.58$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 86.974 + (2.58 \times 2.811) = 94.227$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 86.974 - (2.58 \times 2.811) = 79.721$$

Solución con Excel

Se genera una etiqueta con todos los valores de urea en sangre denominada *urea*. Representa a toda la muestra y facilita el uso de fórmulas en **Excel**.

Valor		Función
n	625	CONTAR(urea)
m	86.974 PROMEDIO(urea	
S^2	4939.111	VAR.S(urea)
S	70.279	$RAIZ(S^2)$
EEM	2.811	s/RAIZ(n)
IC 99% superior	94.227	m+2.58*EEM
IC 99% inferior	79.721	m-2.58*EEM

. mean UreaIng, level(99)

Mean estimation

Number of obs =
$$625$$

	Mean	Std. Err.	[99% Conf.	Interval]
UreaIng	86.97374	2.811152	79.71048	94.237

♣ Pregunta 4.11

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{21868.83}{311} = 70.318$$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - m)^{2}}{n - 1} = \frac{901446.9}{311 - 1} = 2907.893$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{2907.893} = 53.925$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{53.925}{\sqrt{311}} = 3.058$$

Para IC 99%: $z_{\alpha/2} = 2.58$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 70.318 + (2.58 \times 3.058) = 78.207$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 70.318 - (2.58 \times 3.058) = 62.429$$

Solución con Excel

Se genera una etiqueta con todos los valores de urea en sangre para los controles (caso=0) denominada *urea_0*. Representa la muestra de los controles y facilita el uso de fórmulas en **Excel**.

Valor		Función
n	311	CONTAR(urea_0)
m	70.318	PROMEDIO(urea_0)
S^2	2907.893	VAR.S(urea_0)
s	53.925	$RAIZ(S^2)$
EEM	3.058	s/RAIZ(n)
IC 99% superior	78.207	m+2.58*EEM
IC 99% inferior	62.429	m-2.58*EEM

. mean UreaIng if Caso==0, level(99)

Mean estimation

Number of obs = 311

	Mean	Std. Err.	[99% Conf.	Interval]
UreaIng	70.31777	3.0578	62.39262	78.24292

♣ Pregunta 4.12

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{32489.76}{314} = 103.471$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{2008827}{314 - 1} = 6417.976$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{6417.976} = 80.112$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{80.112}{\sqrt{314}} = 4.521$$

Para IC 99%: $z_{\alpha/2} = 2.58$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 103.471 + (2.58 \times 4.521) = 115.135$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 103.471 - (2.58 \times 4.521) = 91.806$$

Solución con Excel

Se genera una etiqueta con todos los valores de urea en sangre para los casos (caso=1) denominada *urea_1*. Representa la muestra de los casos y facilita el uso de fórmulas en **Excel**.

Valor		Función
n	314	CONTAR(urea_1)
m	103.471 PROMEDIO(urea_	
S^2	6417.976	VAR.S(urea_1)
S	80.112	$RAIZ(S^2)$
EEM	4.521	s/RAIZ(n)
IC 99% superior	115.135	m+2.58*EEM
IC 99% inferior	91.806	m-2.58*EEM

Solución con Stata

. mean UreaIng if Caso==1, level(99)

Mean estimation

Number of obs = 314

	Mean	Std. Err.	[99% Conf.	Interval]
UreaIng	103.4706	4.520997	91.75383	115.1873

SOLUCIÓN 4.5

♣ Pregunta 4.13

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{48425.4}{458} = 105.732$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{15626.22}{658 - 1} = 34.193$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{34.193} = 5.847$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{5.847}{\sqrt{458}} = 0.273$$

Para IC 95%: $z_{\alpha/2} = 1.96$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 105.732 + (1.96 \times 0.273) = 106.268$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 105.732 - (1.96 \times 0.273) = 105.197$$

Solución con Excel

Se genera una etiqueta con todos los valores de cloro en sangre denominada *cloro*. Representa a toda la muestra y facilita el uso de fórmulas en **Excel**.

Valor		Función	
n	458	CONTAR(cloro)	
m	105.732 PROMEDIO(cloro		
S^2	34.193	VAR.S(cloro)	
S	5.847	$RAIZ(S^2)$	
EEM	0.273	s/RAIZ(n)	
IC 95% superior	106.268	m+1.96*EEM	
IC 95% inferior	105.197	m-1.96*EEM	

. mean C124h, level(95)

Mean estimation

Number of obs = 458

	Mean	Std. Err.	[95% Conf.	Interval]
C124h	105.7323	. 2732349	105.1954	106.2693

♣ Pregunta 4.14

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{23952}{225} = 106.453$$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - m)^{2}}{n - 1} = \frac{6977.76}{225 - 1} = 31.151$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{31.151} = 5.581$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{5.581}{\sqrt{225}} = 0.372$$

Para IC 95%: $z_{\alpha/2} = 1.96$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 106.453 + (1.96 \times 0.372) = 107.183$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 106.453 - (1.96 \times 0.372) = 105.724$$

Solución con Excel

Se genera una etiqueta con todos los valores de cloro en sangre para los controles (caso=0) denominada *cloro*_0. Representa la muestra de los controles y facilita el uso de fórmulas en Excel.

Valor		Función
n	225	CONTAR(cloro_0)
m	106.453	PROMEDIO(cloro_0)
S^2	31.151	VAR.S(cloro_0)
S	5.581	$RAIZ(S^2)$
EEM	0.372	s/RAIZ(n)
IC 95% superior	107.183	m+1.96*EEM
IC 95% inferior	105.724	m-1.96*EEM

. mean C124h if Caso==0, level(95)

Mean estimation

Number of obs = 225

	Mean	Std. Err.	[95% Conf.	Interval]
C124h	106.4533	. 3720855	105.7201	107.1866

♣ Pregunta 4.15

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{24473.4}{223} = 105.036$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{8418.537}{223 - 1} = 36.287$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{36.287} = 6.024$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{6.024}{\sqrt{233}} = 0.395$$

Para IC 95%: $z_{\alpha/2} = 1.96$

IC superior =
$$m + z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 103.471 + (1.96 \times 0.395) = 105.810$$

IC inferior =
$$m - z_{\alpha/2} \times \frac{s}{\sqrt{n}} = 103.471 - (1.96 \times 0.395) = 104.263$$

Solución con Excel

Se genera una etiqueta con todos los valores de cloro en sangre para los casos (caso=1) denominada *cloro_1*. Representa la muestra de los casos y facilita el uso de fórmulas en **Excel**.

Valor		Función
n	233	CONTAR(cloro_1)
m	105.036	PROMEDIO(cloro_1)
S^2	36.287	VAR.S(cloro_1)
S	6.024	$RAIZ(S^2)$
EEM	0.395	s/RAIZ(n)
IC 95% superior	105.810	m+1.96*EEM
IC 95% inferior	104.263	m-1.96∗EEM

Solución con Stata

. mean C124h if Caso==1, level(95)

Mean estimation

Number of obs = 233

	Mean	Std. Err.	[95% Conf.	Interval]
C124h	105.0361	. 3946357	104.2585	105.8136

SOLUCIÓN 4.6

Solución con calculadora

	Muestra		Controles		Casos	
	media	IC 95%	media	IC 95%	media	IC 95%
Edad	65.736	64.611-66.861	64.223	62.662-65.785	67.248	65.644-68.853
	media	IC 90%	media	IC 90%	media	IC 90%
Puntuación	25.189	24.750-25.628	24.846	24.275-25.417	25.535	24.867-26.202
Apache II						
	media	IC 80%	media	IC 80%	media	IC 80%
Creatinina en	2.429	2.324-2.533	1.825	1.725-1.925	3.030	2.857-3.203
sangre						
	media	IC 99%	media	IC 99%	media	IC 99%
Urea sangre	86.974	79.721-94.227	70.318	62.429-78.207	103.471	91.806-115.135
	media	IC 95%	media	IC 95%	media	IC 95%
Cloro sangre	105.732	105.197-106.268	106.453	105.724-107.183	105.036	104.263-105.810

♣ Pregunta 4.16

Solución con calculadora

- Tenemos una confianza del 95% de que la media de edad en los controles está entre 62.662 y 65.785.
- En mi muestra he obtenido una media de 64.223. pero si repitiésemos el estudio 100 veces en 95 ocasiones las edades de los controles estarían comprendidos entre 62.662 y 65.785.

♣ Pregunta 4.17

Solución con calculadora

- Tenemos una confianza del 95% de que la media de edad en los casos está entre 65.644 y 68.853.
- En mi muestra he obtenido una media de 67.248. pero si repitiésemos el estudio 100 veces en 95 ocasiones las edades de los casos estarían comprendidos entre 65.644 y 68.853.

♣ Pregunta 4.18

Solución con calculadora

- Tenemos una confianza del 95% de que la puntuación Apache II de los controles está entre 24.275 y 25.417.
- En mi muestra he obtenido una media de 24.846. pero si repitiésemos el estudio 100 veces en 95 ocasiones los valores de Apache II de los controles estarían comprendidos entre 24.275 y 25.417.

♣ Pregunta 4.19

Solución con calculadora

- Tenemos una confianza del 95 % de que la puntuación Apache II de los casos está entre 24.867 y 26.202.
- En mi muestra he obtenido una media de 25.535. pero si repitiésemos el estudio 100 veces en 95 ocasiones los valores de Apache II de los casos estarían comprendidos entre 24.867 y 26.202.

♣ Pregunta 4.20

Solución con calculadora

- Tenemos una confianza del 95% de que la media de urea en sangre en los controles está entre 62.429 y78.207.
- En mi muestra he obtenido una media de 70.318. pero Si repitiésemos el estudio 100 veces en 95 ocasiones los valores de los controles estarían comprendidos entre 62.429 y 78.207.

Solución con calculadora

- Tenemos una confianza del 95% de que la media de urea en sangre en los casos está entre 91.806 y 115.135.
- En mi muestra he obtenido una media de 103.471. pero Si repitiésemos el estudio 100 veces en 95 ocasiones los valores de los controles estarían comprendidos entre 91.806 y 115.135.

♣ Pregunta 4.22

Solución con calculadora

- Tenemos una confianza del 95% de que la media de cloro en sangre en los controles está entre 105.724 y 107.183.
- En mi muestra he obtenido una media de 106.453. pero Si repitiésemos el estudio 100 veces en 95 ocasiones los valores de los controles estarían comprendidos entre 105.724 y 107.183.

♣ Pregunta 4.23

Solución con calculadora

- Tenemos una confianza del 95% de que la media de urea en sangre en los casos está entre 104.263 y 105.810.
- En mi muestra he obtenido una media de 105.036. pero Si repitiésemos el estudio 100 veces en 95 ocasiones los valores de los controles estarían comprendidos entre 104.263 y 105.810.

SOLUCIÓN 4.7

♣ Pregunta 4.24

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{41808}{636} = 65.736$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{133007.6}{636 - 1} = 209.461$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{209.461} = 14.473$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{14.473}{\sqrt{636}} = 0.574$$

Solución con Excel

Se genera una etiqueta con todos los valores de la edad denominada *edad*. Representa a toda la muestra y facilita el uso de fórmulas en **Excel**.

	Valor	Función
n	636	CONTAR(edad)
m	65.736	PROMEDIO(edad)
S^2	209.461	VAR.S(edad)
s	14.473	$RAIZ(S^2)$
EEM	0.574	s/RAIZ(n)

Solución con Stata

Para obtener la media, la desviación típica y el error estándar tabstat con la opción stat:

. tabstat Edad, stat(n mean sd semean)

Variable	N	Mean	sd	se(mean)
Edad	636	65.73585	14.47276	. 5738823

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{29127}{447} = 65.161$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{94274.4}{447 - 1} = 211.378$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{211.378} = 14.539$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{14.539}{\sqrt{447}} = 0.688$$

Solución con Excel

Se genera una etiqueta con todos los valores de la edad en la submuestra 1 (submuestra1=1) denominada *edad_submuestra_1*. Representa a toda la muestra y facilita el uso de fórmulas en **Excel**.

	Valor	Función
n	447	CONTAR(edad_submuestra_1)
m	65.161	PROMEDIO(edad_submuestra_1)
S^2	211.378	<pre>VAR.S(edad_submuestra_1)</pre>
s	14.539	$RAIZ(S^2)$
EEM	0.688	s/RAIZ(n)

Solución con Stata

. tabstat Edad if submuestra1==1, stat(n mean sd semean)

Variable	N	Mean	sd	se(mean)
Edad	447	65.16107	14.53883	.6876631

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{12143}{184} = 65.994$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{40176.99}{184 - 1} = 219.546$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{219.546} = 14.817$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{14.817}{\sqrt{184}} = 1.092$$

Solución con Excel

Se genera una etiqueta con todos los valores de la edad en la submuestra 2 (submuestra2=1) denominada *edad_submuestra_2*. Representa a toda la muestra y facilita el uso de fórmulas en **Excel**.

	Valor	Función
n	184	CONTAR(edad_submuestra_2)
m	65.995	PROMEDIO(edad_submuestra_2)
S^2	219.546	<pre>VAR.S(edad_submuestra_2)</pre>
s	14.817	$RAIZ(S^2)$
EEM	1.092	s/RAIZ(n)

Solución con Stata

. tabstat Edad if submuestra2==1, stat(n mean sd semean)

Variable	N	Mean	sd	se(mean)
Edad	184	65.99457	14.8171	1.092331

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{54358.59}{625} = 86.974$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{3082005}{625 - 1} = 4939.111$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{4939.111} = 70.279$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{70.279}{\sqrt{625}} = 2.811$$

Solución con Excel

Se genera una etiqueta con todos los valores de urea en sangre denominada *urea*. Representa a toda la muestra y facilita el uso de fórmulas en **Excel**.

	Valor	Función
n	625	CONTAR(urea)
m	86.974	PROMEDIO(urea)
S^2	4939.111	VAR.S(urea)
s	70.279	$RAIZ(S^2)$
EEM	2.811	s/RAIZ(n)

Solución con Stata

. tabstat UreaIng, stat(n mean sd semean)

Variable	N	Mean	sd	se(mean)
UreaIng	625	86.97374	70.27881	2.811152

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{37015.16}{437} = 84.703$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{2168226}{437 - 1} = 4972.995$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{4972.995} = 70.519$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{70.519}{\sqrt{437}} = 3.373$$

Solución con Excel

Se genera una etiqueta con todos los valores de urea en sangre para la submuestra 1 (submuestra1=1) denominada *urea_submuestra_1*. Representa a toda la submuestra 1 y facilita el uso de fórmulas en **Excel**.

	Valor	Función
n	437	CONTAR(urea_submuestra_1)
m	84.703	PROMEDIO(urea_submuestra_1)
S^2	4972.995	VAR.S(urea_submuestra_1)
s	70.519	$RAIZ(S^2)$
EEM	3.373	s/RAIZ(n)

Solución con Stata

. tabstat UreaIng if submuestra1==1, stat(n mean sd semean)

Variable	N	Mean	sd	se(mean)
UreaIng	437	84.70289	70.51946	3.373403

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{16062.29}{181} = 88.742$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1} = \frac{1115155}{181 - 1} = 6195.307$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}} = \sqrt{6195.307} = 78.710$$

$$EEM = \frac{s}{\sqrt{n}} = \frac{78.710}{\sqrt{181}} = 5.850$$

Solución con Excel

Se genera una etiqueta con todos los valores de urea en sangre para la submuestra 2 (submuestra 2=2) denominada *urea_submuestra* 2. Representa a toda la submuestra 1 y facilita el uso de fórmulas en **Excel**.

	Valor	Función	
n	181	CONTAR(urea_submuestra_2)	
m	88.742	PROMEDIO(urea_submuestra_2)	
S^2	6195.307	VAR.S(urea_submuestra_2)	
s	78.710	RAIZ(S ²)	
EEM	5.850	s/RAIZ(n)	

Solución con Stata

. tabstat UreaIng if submuestra2==1, stat(n mean sd semean)

Variable	N	Mean	sd	se(mean)
UreaIng	181	88.74196	78.71027	5.850488

Solución con calculadora

Edad	Todos	Submuestra1=1	Submuestra2=1
N	636	447	184
Media	65.74	65.16	65.99
Desviación típica	14.47	14.53	14.81
Error estándar de la media	0.57	0.69	1.09
		'	'
Urea en sangre	Todos	Submuestra1=1	Submuestra2=1
Urea en sangre N	Todos 625	Submuestra1=1 437	Submuestra2=1
N	625	437	181

Las tres medias son parecidas, las tres desviaciones típicas son parecidas, pero el error estándar de la media es mayor y por tanto el IC es más ancho cuanto menor sea el tamaño de la muestra.

SOLUCIÓN 4.8

♣ Pregunta 4.31

Solución con calculadora

1. Definir las hipótesis:

$$H_0: \mu = 2.4$$

$$H_1: \mu \neq 2.4$$

2. Calcular el estadístico t:

$$t = \frac{m - \mu_0}{s/\sqrt{n}} = \frac{2.6 - 2.4}{2.18/\sqrt{418}} = 1.744$$

3. Calcular los n-1 grados de libertad:

$$g.l. = n - 1 = 418 - 1 = 417$$

4. Buscar t = 1.744 en la tabla t de Student con 417 grados de libertad, obtenemos p = 0.082.

Conclusión: puesto que el valor-p (0.082) calculado es mayor que el nivel de significación $\alpha=0.05$, no se puede rechazar la hipótesis nula H_0 con un nivel de significación al 5%.

Solución con Stata

Para obtener el valor de p utilizamos el comando ttest:

. ttest CreatIng=2.4 if Sexo==1

One-sample t test

Interpretación de la prueba, según la hipótesis planteada:

- H₀: La media es igual a 2.4.
- El valor-p cuando H_1 es diferente de 2.4 es igual a 0.0819.

Conclusión: puesto que el valor-p calculado es mayor que el nivel de significación $\alpha = 0.05$, no se puede rechazar la hipótesis nula H_0 .

♣ Pregunta 4.32

Solución con calculadora

1. Definir las hipótesis:

$$H_0: \mu = 1.7$$

$$H_1: \mu \neq 1.7$$

2. Calcular el estadístico t:

$$t = \frac{m - \mu_0}{s/\sqrt{n}} = \frac{2.1 - 1.7}{1.70/\sqrt{209}} = 3.499$$

3. Calcular los n-1 grados de libertad:

$$g.l. = n - 1209 - 1 = 208$$

4. Buscar t = 3.499 en la tabla t de Student con 208 grados de libertad, obtenemos p = 0.001.

Conclusión: puesto que el valor-p computado es menor que el nivel de significación $\alpha = 0.05$, se debe rechazar la hipótesis nula H_0 , y aceptar la hipótesis alternativa H_1 con un nivel de significación al 5%.

Solución con Stata

. ttest CreatIng=1.7 if Sexo==0

One-sample t test

```
        Variable
        Obs
        Mean
        Std. Err.
        Std. Dev.
        [95% Conf.Interval]

        CreatIng
        209
        2.113732
        .1182517
        1.709545
        1.880606
        2.346858

        mean = mean(CreatIng)
        t = 3.4987

        Ho: mean = 1.7
        degrees of freedom = 208
```

Interpretación de la prueba, según la hipótesis planteada:

- H_0 : La media es igual a 1.7.
- El valor-p cuando H_1 es diferente de 1.7 es igual a 0.0006.

Conclusión: puesto que el valor-p computado es menor que el nivel de significación $\alpha = 0.05$, se debe rechazar la hipótesis nula H_0 , y aceptar la hipótesis alternativa H_a .

♣ Pregunta 4.33

Solución con calculadora

1. Definir las hipótesis:

$$H_0: \mu = 69$$

$$H_1: \mu \neq 69$$

2. Calcular el estadístico t:

$$t = \frac{m - \mu_0}{s/\sqrt{n}} = \frac{70.3 - 69}{53.9/\sqrt{311}} = 0.4310$$

3. Calcular los n-1 grados de libertad:

$$g.l. = n - 1 = 311 - 1 = 310$$

4. Buscar t = 0.4310 en la tabla t de Student con 310 grados de libertad, obtenemos p = 0.6668.

Conclusión: puesto que el valor-p calculado es mayor que el nivel de significación $\alpha = 0.05$, no se puede rechazar la hipótesis nula H_0 con un nivel de significación al 5%.

. ttest UreaIng=69 if Caso==0

One-sample t test

0bs Std. Err. Std. Dev. [95% Conf.Interval] Variable | Mean 70.31777 3.0578 UreaIng 311 53.92488 64.3011 76.33444 mean = mean(UreaIng) t = 0.4310Ho: mean = 69degrees of freedom = 310

Ha: mean <69 Pr(T <t) = 0.6666 Ha: mean != 69 Pr(|T| > |t|) = 0.6668 Ha: mean >69 Pr(T >t) = 0.3334

♣ Pregunta 4.34

Solución con calculadora

1. Definir las hipótesis:

$$H_0$$
: $\mu = 106$

$$H_1: \mu > 106$$

2. Calcular el estadístico t:

$$t = \frac{m - \mu_0}{s/\sqrt{n}} = \frac{106.5 - 106}{5.58/\sqrt{225}} = 1.218$$

3. Calcular los n-1 grados de libertad:

$$g.l. = n - 1225 - 1 = 224$$

4. Buscar t = 1.218 en la tabla t de Student con 224 grados de libertad, obtenemos p = 0.1122.

Conclusión: puesto que el valor-p calculado es mayor que el nivel de significación $\alpha = 0.05$, no se puede rechazar la hipótesis nula H_0 .

```
Solución con Stata
 . ttest C124h=106 if Caso==0
 One-sample t test
                                      Std. Err.
.3720855
  Variable |
                   0bs
                                                    Std. Dev.
                                                                  [95% Conf.Interval]
                              Mean
                                                                              107.1866
t = 1.2184
 C124h
                   225
                         106.4533
                                                     5.581282
                                                                  105.7201
 mean = mean(CreatIng)
Ho: mean = 106
                                                            degrees of freedom = 224
                               Ha: mean != 106
Pr(|T| > |t|) = 0.2244
                                                                   Ha: mean >106
Pr(T >t) = 0.1122
    Ha: mean <106
 Pr(T < t) = 0.8878
```

Comparación de dos medias

SOLUCIÓN 5.1

♣ Pregunta 5.1

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{87562}{329} = 266.146$$

El colesterol medio de los fallecidos es de 266.146.

Solución con Excel

Se generan dos etiquetas: una etiqueta con los valores de colesterol (COLESTE-ROL) en los vivos (MUERTE=0) denominada *colesterol_muerto_0* y otra con los valores de colesterol (COLESTEROL) en los fallecidos (MUERTE=1) denominada *colesterol_muerto_1*. Representa la muestra de los vivos y fallecidos y facilita el uso de fórmulas en Excel.

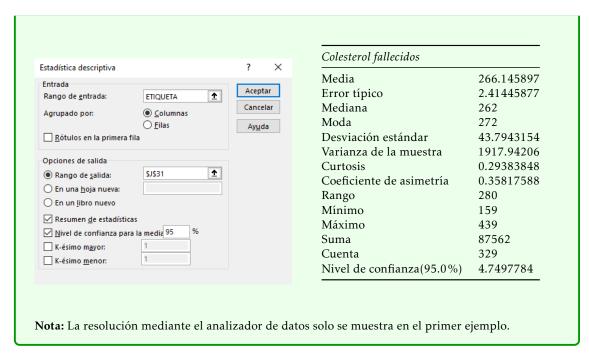
Para resolver el problema utilizaremos las siguientes funciones:

■ Para obtener la *n*: CONTAR .

■ Para obtener la *m*: PROMEDIO.

	Valor	Función
n	329	CONTAR(colesterol_muerte_1)
m	266.146	PROMEDIO(colesterol_muerte_1)

Utilizando el analizador de datos: Estadística descriptiva.



Para obtener la media utilizamos el comando mean: . mean COLESTEROL if MUERTE==1 Mean estimation Number of obs = 329 Mean Std. Err. [95% Conf. Interval] COLESTEROL 266.1459 2.414459 261.3961 270.8957

♣ Pregunta 5.2

Solución con calculadora $m(fallecidos) = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{87562}{329} = 266.146$ $m(vivos) = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{150312}{671} = 224.012$ $s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}$

$$s^2(fallecidos) = \frac{629084.997}{329 - 1} = 1917.942$$

$$s^2$$
 (vivos) = $\frac{9783555.9046}{671 - 1} = 1460.233$

En estos problemas vamos a considerar la regla de Box, es decir, si una varianza no es cuatro veces mayor que la otra, se puede usar directamente la t. Solo si es al menos cuatro veces mayor, usaremos el test de Welch.

$$Homogeneidad\ de\ Varianzas = \frac{varianza_{mayor}}{varianza_{menor}} = \frac{1917.942}{1460.233} = 1.313$$

Homogeneidad de Varianzas = 1.313 < 4 → Varianzas Homogneas

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4, y, por tanto, trabajaremos con la t de Student para varianzas homogéneas.

Varianzas homogéneas

$$\begin{split} s_p^2 &= \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)} \\ &= \frac{(329 - 1)\ 1917.942 + (671 - 1) * 1460.233}{(329 - 1) + (671 - 1)} = 1610.66 \\ s_p &= \sqrt{s_p^2} = \sqrt{1610.66} = 40.133 \\ EEDM &= s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} = 40.133 \sqrt{\frac{1}{329} + \frac{1}{671}} = 2.701 \\ g.l &= n_A + n_B - 2 = 161 + 839 - 2 = 998 \\ t &= \frac{\mathrm{dm}}{\mathrm{EEDM}} = \frac{m_A - m_B}{s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} = \frac{224.0119 - 266.1459}{2.701} = -15.5987 \end{split}$$

El valor de la t-Student es de 15.599.

Solución con Excel

	Valor		Función	
	Fallecidos	Vivos		
	(muerte=1)	(muerte=0)		
MEDIA	266.146	224.012	PROMEDIO(etiqueta)	
VAR	1917.942*	1460.233	VAR.S(etiqueta)	
N	329	671	CONTAR(etiqueta)	
gl	328	670	N - 1	
Homogeneidad de varianzas		1.313	1917.942/1460.233	

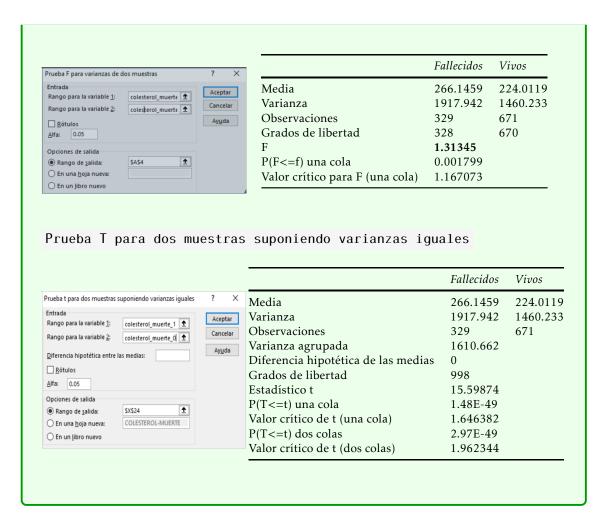
^{*} Varianza mayor

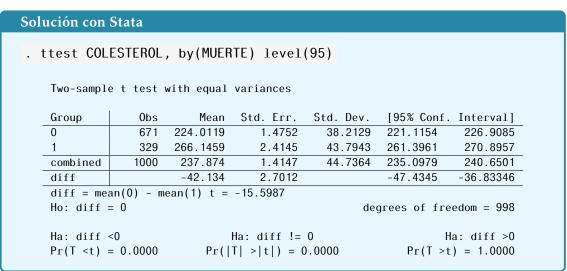
Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4.

Valor		Función
Varianza conjunta (S^2)	1610.662	(VAR muertos*gl muertos
		+ VAR vivos*gl vivos)/
		/(gl muertos+gl vivos)
Desviación ponderada (S)	40.133	RAIZ(varianza conjunta)
Diferencia de medias	-42.134	media mayor-media menor
(DM)		
Error Estándar de la <i>DM</i> (<i>EEDM</i>)	2.701	S* RAIZ(1/N muertos + 1/N vivos)
gl t de Student	998	N muertoss + N vivos - 2
t de Student	-15.5987	dm/eedm
Sig (una cola)	1.48E-49	T.DIST.RT(t-student;gl t-student)
Valor critico de t (una cola)	1.646	T.INV(0.95;gl t-student)
Sig (bilateral)	2.97E-49	<pre>T.DIST.2T(t-student;gl t-student)</pre>
Valor critico de t (dos colas)	1.962	T.INV.2T(0.05;gl t-student)

Utilizando el analizador de datos:

Prueba para varianzas de dos muestras





Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(Colesterol)_{muertos} \le \mu(Colesterol)_{vivos}$$

$$H_1: \mu(Colesterol)_{muertos} > \mu(Colesterol)_{vivos}$$

t-Student →
$$t = -15.5987 \ gl = 998 \rightarrow = 2.97 \times 10^{-49}$$

El valor de p teniendo en cuenta una cola es $5.37x10^{-43}$, es decir, p < 0.05.

♣ Pregunta 5.4

Solución con calculadora

Utilizamos los datos calculados en el apartado anterior.

$$IC 95\%: dm \pm t_{0.025;n_A+n_B-2} \times EEDM$$

$$IC\ Inferior = -42.133 - 1.96 * 2.701 = -47.43$$

$$IC\ Superior = -42.133 + 1.96 * 2.701 = -36.83$$

Utilizando los datos calculados en el apartado anterior obtenemos un IC al 95% de -47.43 - -36.83.

Solución con Excel

Valor		Función
IC Inferior	-47.43	DM-(T.INV.2T(0.05;gl t-student)*EEDM)
IC Superior	-36.83	DM+(T.INV.2T(0.05;gl t-student)*EEDM)

Solución con Stata

Con el comando ttest empleado en el apartado anterior obtenemos el IC al 95 %. Estos valores se muestran en la fila *diff* de la tabla de resultados correspondiente.

♣ Pregunta 5.5

Solución con calculadora

Como p < 0.05 rechazamos la hipótesis nula y podemos concluir que el nivel colesterol aumenta el riesgo de muerte.

Con una confianza del 95% se puede afirmar que las personas que murieron presentaban de media niveles de colesterol entre 36.6 y 47.7 mg/dl más altos que la población que no se murió.

SOLUCIÓN 5.2

♣ Pregunta 5.6

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m(fallecidos) = \frac{44054}{329} = 133.903$$

$$m(vivos) = \frac{86593}{671} = 129.051$$

La tensión arterial media en fallecidos es de 133.903 y en los vivos es de 129.051.

Solución con Excel

Se generan dos etiquetas: una etiqueta con los valores de la tensión arterial sistólica (TAS) en los vivos (MUERTE=0) denominada *TASl_muerto_0* y otra con los valores en los fallecidos (MUERTE=1) denominada *TAS_muerto_1*. Representa la muestra de los vivos y fallecidos y facilita el uso de fórmulas en Excel.

Fallecidos

	Valor	Función
n	329	CONTAR(TAS_muerte_1)
m	133.903	PROMEDIO(TAS_muerte_1)

Vivos

	Valor	Función
n	671	CONTAR(TAS_muerte_0)
m	129.051	PROMEDIO(TAS_muerte_0)

■ Fallecidos . mean TAS if MUERTE==1

Mean estimation

Number of obs = 329

	Mean	Std. Err.	[95% Conf.	Interval]
TAS	133.9027	1.268884	131.4066	136.3989

■ Vivos . mean TAS if MUERTE==0

Mean estimation

Number of obs = 671

	Mean	Std. Err.	[95% Conf.	Interval]
TAS	129.0507	.755899	127.5665	130.5349

♣ Pregunta 5.7

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m \text{ (fallecidos)} = \frac{44054}{329} = 133.903$$

$$m \text{ (vivos)} = \frac{86593}{671} = 129.051$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}$$

$$s^2(\text{fallecidos}) = \frac{173745.387}{329 - 1} = 529.712$$

$$s^2(\text{vivos}) = \frac{256876.778}{671 - 1} = 383.398$$

 $Homogeneidad\ de\ Varianzas = \frac{varianza_{mayor}}{varianza_{menor}} = \frac{529.712}{383.398} = 1.382$

Homogeneidad de Varianzas = 1.382 < 4 → Varianzas Homogneas

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4, y, por tanto, trabajaremos con la t de

Student para varianzas homogéneas.

Varianzas homogéneas

$$s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)}$$

$$= \frac{(329 - 1) 529.712 + (671 - 1)383.398}{(329 - 1) + (671 - 1)} = 431.485$$

$$s_P = \sqrt{s_p^2} = \sqrt{431.485} = 20.772$$

$$EEDM = s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} = 20.772 \sqrt{\frac{1}{329} + \frac{1}{671}} = 1.398$$

$$g.l = n_A + n_B - 2 = 329 + 671 - 2 = 998$$

$$t = \frac{dm}{EEDM} = \frac{m_A - m_B}{s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} = \frac{133.90 - 129.06}{1.398} = 3.471$$

El valor de la t-Student es de 3.471.

Solución con Excel

	Valor		Función		
	Fallecidos	Vivos			
	(muerte=1)	(muerte=0)			
MEDIA	133.903	129.051	PROMEDIO(etiqueta)		
VAR	529.712*	383.398	VAR.S(etiqueta)		
N	329	671	CONTAR(etiqueta)		
gl	328	670	N - 1		
Homogeneidad de varianzas		1.382	529.712/383.398		

^{*} Varianza mayor

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4.

Valor		Función
Varianza conjunta (S²)	431.485	(VAR muertos*gl muertos
		+ VAR vivos*gl vivos)/
		/(gl muertos+gl vivos)
Desviación ponderada (S)	20.772	RAIZ(varianza conjunta)
Diferencia de medias (<i>DM</i>)	4.84	media mayor-media menor
Error Estándar de la <i>DM</i> (<i>EEDM</i>)	1.398	S* RAIZ(1/N muertos + 1/N vivos)
gl t de Student	998	N muertoss + N vivos - 2
t de Student	3.471	dm/eedm
Sig (una cola)	0.003	<pre>T.DIST.RT(t-student;gl t-student)</pre>
Valor critico de t (una co- la)	1.646	T.INV(0.95;gl t-student)
Sig (bilateral)	0.001	<pre>T.DIST.2T(t-student;gl t-student)</pre>
Valor critico de t (dos co- las)	1.962	T.INV.2T(0.05;gl t-student)

. ttest TAS , by(MUERTE) level(95)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	671	129.0507	. 755899	19.58056	127.5665	130.5349
1	329	133.9027	1.268884	23.01546	131.4066	136.3989
combined	1,000	130.647	. 6604965	20.88673	129.3509	131.9431
diff		-4.852065	1.398053		-7.595526	-2.108604

diff = mean(0) - mean(1) t = -3.4706

Ho: diff = 0 degrees of freedom = 998

♣ Pregunta 5.8

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(TAS)_{muertos} \le \mu(TAS)_{vivos}$$

$$H_1: \mu(TAS)_{muertos} > \mu(TAS)_{vivos}$$

$$T - \text{Student} \rightarrow t = 3.471 \ gl = 998 \rightarrow P = 0.003$$

El valor de p teniendo en cuenta una cola es 0.0003, es decir, p < 0.05.

♣ Pregunta 5.9

Solución con calculadora

$$IC 95\%: dm \pm t_{0.025;n_A+n_B-2} \times EEDM$$

$$IC\ Inferior = 4.852 - 1.96 * 1.398 = 2.109$$

$$IC\ Superior = 4.852 + 1.96 * 1.398 = 7.597$$

Utilizando los datos calculados en el apartado anterior obtenemos un IC al 95% de 2.109 - 7.597.

Solución con Excel

Valor		Función
		DM-(T.INV.2T(0.05;gl t-student)*EEDM) DM+(T.INV.2T(0.05;gl t-student)*EEDM)

Solución con Stata

Con el comando ttest empleado en el apartado anterior obtenemos el IC al 95 %. Estos valores se muestran en la fila *diff* de la tabla de resultados correspondiente.

♣ Pregunta 5.10

Solución con calculadora

Como p < 0.05 rechazamos la hipótesis nula y podemos concluir que la tensión arterial sistólica aumenta el riesgo de muerte.

Con una confianza del 95% se puede afirmar que las personas que murieron presentaban de media tensión arterial sistólica entre 2.1 y 7.6 mm de Hg más altos que la población que no se murió.

SOLUCIÓN 5.3

♣ Pregunta 5.11

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(TAS)_{fumador} <= \mu(TAS)_{noFumador}$$

$$H_1: \mu(TAS)_{fumador} > \mu(TAS)_{noFumador}$$

$$m = \frac{\sum_{i=1}^n x_i}{n}$$

$$m \text{ (fumadores)} = \frac{62506.5}{486} = 128.614$$

$$m \text{ (no fumadores)} = \frac{68140.5}{514} = 132.569$$

$$s^2 = \frac{\sum_{i=1}^n (x_i - m)^2}{n-1}$$

$$s^2 \text{ (fumadores)} = \frac{219421.912}{486-1} = 452.416$$

$$s^2 \text{ (no fumadores)} = \frac{21490.298}{514-1} = 414.211$$

$$Homogeneidad \ de \ Varianzas = \frac{varianza_{mayor}}{varianza_{menor}} = \frac{452.416}{414.211} = 1.092$$

Homogeneidad de Varianzas = 1.092 < 4 → Varianzas Homogneas

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4, y, por tanto, trabajaremos con la t de Student para varianzas homogéneas.

Varianzas homogéneas

$$s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)}$$
$$= \frac{(486 - 1) \cdot 452.416 + (514 - 1) * 414.211}{(486 - 1) + (514 - 1)} = 432.778$$

$$s_P = \sqrt{s_p^2} = \sqrt{432.778} = 20.803$$

$$EEDM = s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} = 20.803 \sqrt{\frac{1}{486} + \frac{1}{514}} = 1.316$$

$$g.l = n_A + n_B - 2 = 486 + 514 - 2 = 998$$

$$t = \frac{dm}{EEDM} = \frac{m_A - m_B}{s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} = \frac{128.614 - 132.569}{1.316} = -3.0047$$

$$T - \text{Student} \rightarrow t = -3.0047 \ gl = 998 \rightarrow P = 0.9986$$

El valor de p teniendo en cuenta una cola es 0.9986, es decir, p > 0.05.

Como p > 0.05 la hipótesis nula es verdadera y no hay evidencia estadística para concluir que la tensión arterial sistólica es mayor en los fumadores.

Solución con Excel

	Valor		Función
	TAS	TAS	
	(fumador=1)	(fumador=0)	
MEDIA	128.614	132.569	PROMEDIO(etiqueta)
VAR	452.416*	414.211	VAR.S(etiqueta)
N	486	514	CONTAR(etiqueta)
gl	485	513	N - 1
Homoge	eneidad de varianzas	1.092	452.416/414.211

^{*} Varianza mayor

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4.

Valor		Función
Varianza conjunta (S ²)	432.778	(VAR fumadores*gl fumadores
		+ VAR no fumadores*gl no fumadores)/
		/(gl fumadores+gl no fumadores)
Desviación ponderada (S)	20.803	RAIZ(varianza conjunta)
Diferencia de medias (DM)	3.955	media mayor-media menor
Error Estándar de la <i>DM</i>	1.316	S* RAIZ(1/N fumadores
(EEDM)		+ 1/N no fumadores)
gl t de Student	998	N fumadores + N no fumadores - 2
t de Student	3.005	dm/eedm
Sig (una cola)	0.0014	<pre>T.DIST.RT(t-student;gl t-student)</pre>
Valor critico de t (una cola)	1.646	T.INV(0.95;gl t-student)
Sig (bilateral)	0.003	<pre>T.DIST.2T(t-student;gl t-student)</pre>
Valor critico de t (dos co- las)	1.962	T.INV.2T(0.05;gl t-student)

Solución con Stata

. ttest TAS, by(FUMADOR) level(95)

 $\label{two-sample} \mbox{Two-sample t test with equal variances}$

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	514	132.5691	. 897696	20.35218	130.8055	134.3327
1	486	128.6142	.9648304	21.27008	126.7184	130.51
combined	1,000	130.647	. 6604965	20.88673	129.3509	131.9431
diff	3.954869	1.316233	1.371967	6.53777		

diff = mean(0) - mean(1) t = 3.0047

Ho: diff = 0

degrees of freedom = 998

Ha: diff <0 Pr(T <t) = 0.9986

Ha: diff != 0 Pr(|T| >|t|) = 0.0027 Ha: diff >0 Pr(T >t) = 0.0014

♣ Pregunta 5.12

Solución con calculadora

$$IC 95\%: dm \pm t_{0.025;n_A+n_B-2} \times EEDM$$

$$IC\ Inferior = 3.955 - 1.962 \times 1.316 = 1.372$$

$$IC\ Superior = 3.955 + 1.962 \times 1.316 = 6.538$$

Utilizando los datos calculados en el apartado anterior obtenemos un IC al 95% de 1.372 - 6.538.

Solución con Excel

Valor		Función	
IC Inferior	1.372	DM-(T.INV.2T(0.05;gl	t-student)*EEDM)
IC Superior	6.538	DM+(T.INV.2T(0.05;gl	t-student)*EEDM)

Solución con Stata

Con el comando **ttest** empleado en el apartado anterior obtenemos el IC al 95 %. Estos valores se muestran en la fila *diff* de la tabla de resultados correspondiente.

♣ Pregunta 5.13

Solución con calculadora

Con una confianza del 95% se puede afirmar que la población de fumadores en media presenta niveles de la tensión arterial sistólica entre 1.37 y 6.54 mm de Hg más altos que la población de no fumadores.

SOLUCIÓN 5.4

♣ Pregunta 5.14

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m (fumadores) = \frac{11014.28}{486} = 22.663$$

$$m (no fumadores) = \frac{14786.44}{514} = 28.767$$

El IMC medio en los fumadores es de 22.663 y en los no fumadores es de 28.767.

Solución con Excel

Se generan dos etiquetas: una etiqueta con los valores del IMC en los no fumadores (FUMADOR=0) denominada *IMC_fumador_0* y otra con los valores en los fumadores (FUMADOR=1) denominada *IMC_fumador_1*.

Fumador

	Valor	Función
n	586	CONTAR(IMC_fumador_1)
m	22.663	PROMEDIO(IMC_fumador_1)

No fumador

	Valor	Función
n	514	CONTAR(IMC_fumador_0)
m	28.767	PROMEDIO(IMC_fumador_0)

Solución con Stata

■ Fumador . mean IMC if FUMADOR==1

Mean estimation

Number of obs = 486

	Mean	Std. Err.	[95% Conf.	Interval]
IMC	22.66313	.0880584	22.4901	22.83615

■ No fumador . mean IMC if FUMADOR==0

Mean estimation

Number of obs = 514

	Mean	Std. Err.	[95% Conf.	Interval]
IMC	28.76739	. 1472435	28.47812	29.05667

♣ Pregunta 5.15

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m \text{ (fumadores)} = \frac{11014.28}{486} = 22.663$$

$$m \text{ (no fumadores)} = \frac{14786.44}{514} = 28.767$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}$$

$$s^2 \text{ (fumadores)} = \frac{1827.767}{486 - 1} = 3.769$$

$$s^2 \text{ (no fumadores)} = \frac{5716.799}{514 - 1} = 11.144$$

$$Homogeneidad de Varianzas = \frac{varianza_{mayor}}{varianza_{menor}} = \frac{11.144}{3.769} = 2.957$$

Homogeneidad de Varianzas = 2.957 < 4 → Varianzas Homogneas

Aunque estas varianzas son casi iguales vamos a **suponer que son heterogéneas** para ver un ejemplo con el test de Welch.

Varianzas heterogéneas

$$sd = \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}} = \sqrt{\frac{3.769}{486} + \frac{11.14}{514}} = 0.172$$

$$gl* = \frac{\left(\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}\right)^2}{\left(\frac{s_A^2}{n_A}\right)^2 + \left(\frac{s_B^2}{n_B}\right)^2}$$

$$= \frac{\left(\frac{3.769}{486} + \frac{11.14}{514}\right)^2}{\left(\frac{3.769}{486-1} + \frac{\left(\frac{11.14}{514}\right)^2}{514-1}\right)} = 832.887$$

$$t = \frac{m_A - m_B}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} = \frac{22.663 - 28.767}{0.172} = -35.580$$

El valor de la t-Student es de -35.580.

Solución con Excel

	Valor	Función	
\ <u></u>	IMC	IMC	
	(fumador=1)	(fumador=0)	
MEDIA	22.663	28.767	PROMEDIO(etiqueta)
VAR	3.769	11.144*	VAR.S(etiqueta)
N	486	514	CONTAR(etiqueta)
gl	485	513	N - 1
Homoge	eneidad de varianzas	2.957	11.144/3.769

^{*} Varianza mayor

Solución con Stata

En este caso aplicamos la opcion unequal al comando ttest para indicarle que resuelva el test con varianzas desiguales. . ttest IMC, by(FUMADOR) level(95) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	514	28.76739	. 1472435	3.338242	28.47812	29.05667
1	486	22.66313	.0880584	1.941284	22.4901	22.83615
combined	1,000	25.80072	. 1298832	4.107267	25.54584	26.0556
diff	6.104265	. 1715662	5.767513	6.441018		
diff = mean(0) - mean(1) t = 35.5797						
Ho: diff	= 0		Satterthwa	ite's degree	es of freedom	n = 832.887

♣ Pregunta 5.16

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(IMC)_{noFumador} \le \mu(IMC)_{fumador}$$

$$H_1: \mu(IMC)_{noFumador} > \mu(IMC)_{fumador}$$

Partimos del supuesto en el cuál la hipótesis nula es cierta, y bajo esta premisa se calcula el valor de p. Una p < 0.05 indica que la hipótesis nula es falsa y una p < 0.05 que es verdadera.

Obtenemos el valor de p a partir de la t-Student calculada:

$$t - Student \rightarrow t = -35.580 \ gl = 832.887 \rightarrow P = 1.2x10^{-169}$$

Por lo tanto, y dado que la p calculada es de $1.2x10^{-169}$, es decir, p < 0.05 podemos concluir que la hipótesis nula es falsa, es decir, el índice de masa corporal (IMC) es mayor en los no fumadores.

SOLUCIÓN 5.5

♣ Pregunta 5.17

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$
m (angina) = $\frac{8364}{161}$ = 51.950
m (no angina) = $\frac{41974}{839}$ = 50.029

La media es mayor en el grupo de edad que desarrolla angina.

Solución con Excel

Se generan dos etiquetas: una etiqueta con los valores de la edad (EDAD) en la muestra sin angina de pecho (Angina=0) denominada *EDAD_angina_0* y otra con las edades de la muestra con angina (Angina=1) denominada *EDAD_angina_1*. Representa las dos muestras y facilita el uso de fórmulas en Excel.

Angina

	Valor	Función
n	161	CONTAR(EDAD_angina_1)
m	51.950	PROMEDIO(EDAD_angina_1)

No angina

	Valor	Función
n	839	CONTAR(EDAD_angina_0)
m	50.029	PROMEDIO(EDAD_angina_0)

Solución con Stata

■ Angina . mean EDAD if ANGINA==1

Mean estimation

Number of obs = 161

	Mean	Std. Err.	[95% Conf.	Interval]
EDAD	51.95031	.706052	50.55593	53.34469

■ No angina . mean EDAD if ANGINA==0

Mean estimation

Number of obs = 839

	Mean	Std. Err.	[95% Conf.	Interval]
EDAD	50.02861	. 2975004	49.44467	50.61254

♣ Pregunta 5.18

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m \text{ (angina)} = \frac{8364}{161} = 51.950$$

$$m \text{ (no angina)} = \frac{41974}{839} = 50.029$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}$$

$$s^2 \text{ (fumadores)} = \frac{12841.602}{161 - 1} = 80.260$$

$$s^2 \text{ (no fumadores)} = \frac{62227.313}{839 - 1} = 74.257$$

$$Homogeneidad de Varianzas = \frac{varianza_{mayor}}{varianza_{menor}} = \frac{80.260}{74.257} = 1.081$$

Homogeneidad de Varianzas = $1.081 < 4 \rightarrow V$ arianzas Homogneas

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4, y, por tanto, trabajaremos con la t de

Student para varianzas homogéneas.

Varianzas homogéneas

$$s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)}$$

$$= \frac{(161 - 1)80.260 + (839 - 1) * 74.257}{(161 - 1) + (839 - 1)} = 75.219$$

$$s_P = \sqrt{s_p^2} = \sqrt{75.219} = 8.673$$

$$EEDM = s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} = 8.673 \sqrt{\frac{1}{161} + \frac{1}{839}} = 0.746$$

$$g.l = n_A + n_B - 2 = 161 + 839 - 2 = 998$$

$$t = \frac{dm}{EEDM} = \frac{m_A - m_B}{s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} = \frac{51.950 - 50.029}{0.746} = 2.575$$

El valor del test es de 2.575.

Solución con Excel

	Valor		Función
	EDAD	EDAD	
	(angina=1)	(angina=0)	
MEDIA	51.950	50.029	PROMEDIO(etiqueta)
VAR	80.260*	74.257	VAR.S(etiqueta)
N	161	839	CONTAR(etiqueta)
gl	160	838	N - 1
Homoge	eneidad de varianzas	1.081	80.260/74.257

^{*} Varianza mayor

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4.

Valor		Función
Varianza conjunta (S ²)	75.219	(VAR angina*gl angina
		+ VAR noAngina*gl noAngina)/
		/(gl angina+gl noAngina)
Desviación ponderada (S)	8.673	RAIZ(varianza conjunta)
Diferencia de medias (<i>DM</i>)	1.922	media mayor-media menor
Error Estándar de la <i>DM</i> (<i>EEDM</i>)	0.746	S* RAIZ(1/N angina + 1/N noAngina)
gl t de Student	998	N angina + N noAngina - 2
t de Student	2.5752	dm/eedm
Sig (una cola)	0.0051	<pre>T.DIST.RT(t-student;gl t-student)</pre>
Valor critico de t (una co- la)	1.646	T.INV(0.95;gl t-student)
Sig (bilateral)	0.010	<pre>T.DIST.2T(t-student;gl t-student)</pre>
Valor critico de t (dos co- las)	1.962	T.INV.2T(0.05;gl t-student)

Solución con Stata

. ttest EDAD, by(ANGINA) level(95)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	839	50.02861	. 2975004	8.617247	49.44467	50.61254
1	161	51.95031	.706052	8.958795	50.55593	53.34469
combined	1,000	50.338	. 2750335	8.697321	49.79829	50.87771
diff	-1.921705	.7462269	-3.386059	4573514		

diff = mean(0) - mean(1) t = -2.5752

Ho: diff = 0 degrees of freedom = 998

♣ Pregunta 5.19

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(Edad)_{angina} = \mu(Edad)_{noAngina}$$

$$H_1: \mu(Edad)_{angina} \neq \mu(Edad)_{noAngina}$$

$$t$$
 – Student $\rightarrow t = 2.575 \ gl = 998 \rightarrow P = 0.01016$

El valor de p teniendo en cuenta las dos colas es 0.01016, es decir, p < 0.05.

♣ Pregunta 5.20

Solución con calculadora

p < 0.05 Rechazamos la hipótesis nula y podemos concluir que la edad se relaciona al desarrollo de angina de pecho.

Con una confianza del 95 % se puede afirmar que las personas con angina de pecho presentaban una edad media entre 0.5 y 3 años más altos que la población que tenían angina de pecho.

SOLUCIÓN 5.6

♣ Pregunta 5.21

Solución con calculadora

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m \text{ (ACV)} = \frac{18250}{68} = 268.382$$

$$m \text{ (no ACV)} = \frac{235.648}{932} = 235.648$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - m)^2}{n - 1}$$

$$s^2 \text{ (ACV)} = \frac{70000.059}{68 - 1} = 1044.777$$

$$s^2 \text{ (no ACV)} = \frac{1861438.567}{932 - 1} = 1999.397$$
Homogeneidad de Varianzas = $\frac{varianza_{mayor}}{varianza_{menor}} = \frac{1999.397}{1044.777} = 1.914$

Homogeneidad de Varianzas = 1.914 < 4 → Varianzas Homogneas

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4, y, por tanto, trabajaremos con la t de Student para varianzas homogéneas.

Varianzas homogéneas

$$s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)}$$

$$= \frac{(68 - 1)\ 1044.777 + (932 - 1) * 1999.397}{(68 - 1) + (932 - 1)} = 1935.309$$

$$s_P = \sqrt{s_p^2} = \sqrt{1935.305} = 43.992$$

$$EEDM = s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} = 43.992 \sqrt{\frac{1}{68} + \frac{1}{932}} = 5.526$$

$$g.l = n_A + n_B - 2 = 68 + 932 - 2 = 998$$

$$t = \frac{dm}{EEDM} = \frac{m_A - m_B}{s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} = \frac{268.382 - 235.648}{5.526} = 5.937$$

El valor del test es de 5.937.

Solución con Excel

	Valor		Función
	ACV = 1	ACV = 0	
MEDIA	268.382	235.648	PROMEDIO(etiqueta)
VAR	1044.777	1999.397*	VAR.S(etiqueta)
N	68	932	CONTAR(etiqueta)
gl	67	931	N - 1
Homogeneidad de varianzas		1.914	199.397/1044.777

^{*} Varianza mayor

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4.

Valor		Función
Varianza conjunta (S^2)	1935.309	(VAR ACV*gl ACV + VAR noACV*gl noACV)/
		/(gl ACV+gl noACV)
Desviación ponderada (S)	43.992	RAIZ(varianza conjunta)
Diferencia de medias (<i>DM</i>)	32.734	media mayor-media menor
Error Estándar de la <i>DM</i> (<i>EEDM</i>)	5.526	S* RAIZ(1/N ACV + 1/N noACV)
gl t de Student	998	N ACV + N noACV - 2
t de Student	5.9237	dm/eedm
Sig (una cola)	0.0000	<pre>T.DIST.RT(t-student;gl t-student)</pre>
Valor critico de t (una co- la)	1.646	T.INV(0.95;gl t-student)
Sig (bilateral)	0.000	<pre>T.DIST.2T(t-student;gl t-student)</pre>
Valor critico de t (dos colas)	1.962	T.INV.2T(0.05;gl t-student)

Solución con Stata

. ttest COLESTEROL, by(ACV) level(95)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	932	235.6481	1.464676	44.71462	232.7736	238.5225
1	68	268.3824	3.919741	32.32301	260.5585	276.2062
combined	1,000	237.874	1.414691	44.73644	235.0979	240.6501
diff	-32.73428	5.526024	-43.57824	-21.89032		

diff = mean(0) - mean(1) t = -5.9237

Ho: diff = 0

degrees of freedom = 998

Ha: diff <0 Pr(T <t) = 0.0000

Ha: diff != 0 Pr(|T| > |t|) = 0.0000 Ha: diff >0 Pr(T > t) = 1.0000

♣ Pregunta 5.22

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

 $H_0: \mu(Colesterol)_{ACV} \le \mu(Colesterol)_{noACV}$

 $H_1: \mu(Colesterol)_{ACV} > \mu(Colesterol)_{noACV}$

 $T - \text{Student} \rightarrow t = 5.937 \text{ gl} = 998 \rightarrow = 2.16 \times 10^{-09}$

El valor de p teniendo en cuenta una cola es $5.16x10^{-09}$, es decir, p < 0.05.

♣ Pregunta 5.23

Solución con calculadora

 $IC~95\%: dm \pm t_{0.025;n_A + n_B - 2} \times EEDM$

 $IC\ Inferior = 32.734 - 1.96 * 5.526 = 21.890$

 $IC\ Superior = 32.734 + 1.96 * 5.526 = 43.578$

Utilizando los datos calculados en el apartado anterior obtenemos un IC al $95\,\%$ de 21.890 - 43.578.

Solución con Excel

Valor		Función
IC Inferior	21.890	DM-(T.INV.2T(0.05;gl t-student)*EEDM)
IC Superior	43.578	DM+(T.INV.2T(0.05;gl t-student)*EEDM)

Solución con Stata

Con el comando ttest empleado en el apartado anterior obtenemos el IC al 95 %. Estos valores se muestran en la fila *diff* de la tabla de resultados correspondiente.

♣ Pregunta 5.24

Solución con calculadora

Por lo tanto, y dado que la p calculada es menor a 0.05 podemos rechazar la hipótesis nula y concluir que el nivel de colesterol aumenta el riesgo de ACV.

SOLUCIÓN 5.7

♣ Pregunta 5.25

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(Colesterol)_{despues} >= \mu(Colesterol)_{antes}$$

$$H_1: \mu(Colesterol)_{despues} < \mu(Colesterol)_{antes}$$

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m (antes) = \frac{237874}{1000} = 237.874$$

$$m (despues) = \frac{237330}{1000} = 237.330$$

$$dm = m_A - m_B = 237.330 - 237.874 = -0.544$$

$$s_d = \sqrt{s_d^2} = \sqrt{2990.430} = 53.856$$

$$EEDM = \frac{s_d}{\sqrt{n}} = \frac{53.856}{\sqrt{1000}} = 1.703$$

$$t = \frac{dm}{EEDM} = \frac{-0.544}{1.703} = -0.319$$

$$t - \text{Student} \rightarrow t = -0.319 \ gl = 1000 \rightarrow P = 0.375$$

El valor de p teniendo en cuenta una cola es 0.375, es decir, p > 0.05. Por lo tanto, **la hipótesis nula es verdadera y no hay evidencia estadística** para afirmar que después de un mes de tratamiento se disminuye el nivel de colesterol de los sujetos de nuestro estudio.

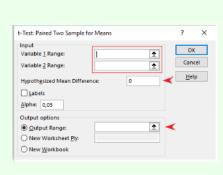
Solución con Excel

Se generan dos etiquetas: una etiqueta con los valores del colesterol antes (COLESTEROL) y otra con los valores de colesterol después (COLESTEROL2). Además, se crea una nueva variable que contiene la diferencia entre el nuevo colesterol y el antiguo (COLESTEROL2 - COLESTEROL) que denominada $d_colesterol$.

	V	Valor	Función	
	COLESTEROL	COLESTEROL2	Diff	
N	1000	1000	1000	CONTAR(etiqueta)
MEDIA	237.874	874 237.330		PROMEDIO(etiqueta)
		Varianza - S2	2900.430	VAR.S(etiqueta)
	Desviación estándar - Sd		53.856	RAIZ(s2)
	Erro	r estándar - EE(d)	1.703	sd/ RAIZ(n)

Valor	Función	
t de Student	-0.3194	(m-0)/ee(d)
Sig (una cola)	0.3747	<pre>T.DIST.RT(abs(t-student);gl t-student)</pre>
Valor critico de t (una cola)	1.646	T.INV(0.95;gl t-student)

Utilizando el analizador de datos: prueba T para dos muestras emparejadas



	COLESTEROL	COLESTEROL2
Media	237.33	237.874
Varianza	2074.239339	2001.34947
Observaciones	1000	1000
Coeficiente de	0.288386871	
Diferencia hip	otética de las medias	0
Grados de libe	rtad	999
Estadístico t St	at	-0.319424092
P(T<=t) una co	ola	0.374735863
Valor crítico de	1.646380345	
$P(T \le t) dos co$	0.749471727	
Valor crítico de	e t (dos cola)	1.962341461

Solución con Stata

. ttest COLESTEROL2=COLESTEROL

Paired t test

Variable	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
COLESTEROL2	1,000	237.33	1.440222	45.54382	234.5038	240.1562
COLESTEROL	1,000	237.874	1.414691	44.73644	235.0979	240.6501
diff	1,000	544	1.703065	53.85564	-3.885995	2.797995

mean(diff) = mean(COLESTEROL2 - COLESTEROL) t = -0.3194

Ho: mean(diff) = 0

degrees of freedom = 999

Ha: mean(diff) <0 Pr(T < t) = 0.3747 Ha: mean(diff) != 0 Pr(|T| > |t|) = 0.7495 Ha: mean(diff) >0 Pr(T > t) = 0.6253

♣ Pregunta 5.26

Solución con calculadora

 $IC 95\% : dm \pm 1.962 \times EE(d)$

 $IC\ inferior: -0.544 - 1.962 \times 1.703 = -3.882$

 $IC\ superior: -0.544 + 1.962 \times 1.703 = 2.7494$

Utilizando los datos calculados en el apartado anterior obtenemos un IC al 95% de -3.882 - 2.794.

Solución con Excel

Valor		Función
		DM-(T.INV.2T(0.05;gl t-student)*EEDM) DM+(T.INV.2T(0.05;gl t-student)*EEDM)

♣ Pregunta 5.27

Solución con calculadora

El valor de p teniendo en cuenta una cola es 0.375, es decir, p > 0.05. Por lo tanto, **la hipótesis nula es verdadera y no hay evidencia estadística** para afirmar que después de un mes de tratamiento se disminuye el nivel de colesterol de los sujetos de nuestro estudio.

Con una confianza del 95 % se puede afirmar que las personas, después de 1 mes de tratamiento con estatinas, presentaban una reducción del nivel de colesterolde entre -3.882 y 2.794.

SOLUCIÓN 5.8

♣ Pregunta 5.28

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(Glucemia)_{despus} >= \mu(Glucemia)_{antes}$$

$$H_1: \mu(Glucemia)_{despus} < \mu(Glucemia)_{antes}$$

$$m = \frac{\sum_{i=1}^n x_i}{n}$$

$$m \text{ (antes)} = \frac{136352}{1000} = 136.352$$

$$m \text{ (despues)} = \frac{81252}{1000} = 81.252$$

$$dm = m_A - m_B = 81.252 - 136.352 = -55.100$$

$$s_d = \sqrt{s_d^2} = \sqrt{1154.084} = 33.972$$

$$EEDM = \frac{s_d}{\sqrt{n}} = \frac{33.972}{\sqrt{1000}} = 1.074$$

$$t = \frac{dm}{EEDM} = \frac{-55.100}{1.074} = -51.290$$

El valor de p teniendo en cuenta una cola es $1.996x10^{-282}$, es decir, p < 0.05. Por lo tanto, **la hipótesis nula es falsa y hay evidencia estadística** para afirmar que después de un mes de actividad fisica se disminuye el nivel de glucemia en sangre de los sujetos de nuestro estudio.

t – Student $\rightarrow t = -51.290 \ gl = 1000 \rightarrow P = 1.996 x 10^{-282}$

Solución con Excel

Se generan dos etiquetas: una etiqueta con los valores de glucemia antes (GLUCE-MIA) y otra con los valores de glucemia después (GLUCEMIA2). Además, se crea una nueva variable que contiene la diferencia entre la nueva glucemia y la antigua

(GLUCEMIA2 – GLUCEMIA) que denominada d_glucemia.

		Valor		Función
	GLUCEMIA	GLUCEMIA2	D_GLUCEMIA	
N	1000	1000	1000	CONTAR(etiqueta)
MEDIA	136.352	81.252	-55.100	PROMEDIO(etiqueta)
		Varianza - S2	2900.430	VAR.S(etiqueta)
	Desviació	n estándar - Sd	53.856	RAIZ(s2)
	Error es	stándar - EE(d)	1.703	sd/ RAIZ(n)

Valor		Función	
t de Student	-51.2900	(m-0)/ee(d)	
Sig (una cola)	0.0000	<pre>T.DIST.RT(abs(t-student);gl t-student)</pre>	
Valor critico de t (una cola)	1.646	T.INV(0.95;gl t-student)	

Solución con Stata

. ttest GLUCEMIA2=GLUCEMIA

Paired t test

Variable	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
GLUCEMIA2	1,000	81.252	. 87 17353	27.56669	79.54136	82.96264
GLUCEMIA	1,000	136.352	.7407475	23.42449	134.8984	137.8056
diff	1,000	-55.1	1.074283	33.97181	-57.20811	-52.99189
mean(diff)	= mean(GLUCEMIA2	- GLUCEMIA)	t = -51.290	0	
Ho: mean(d	iff) = 0			de	arees of fre	edom = 999

degrees of freedom = 999

♣ Pregunta 5.29

Solución con calculadora

 $IC 95\% : dm \pm 1.962 \times EE(dm)$

 $IC\ Inferior: 33.97 + 1.962 \times\ 1.074 = -57.206$

 $IC\ Superior: 33.97 - 1.962 \times\ 1.074 = -52.994$

Utilizando los datos calculados en el apartado anterior obtenemos un IC al 95% de -57.206 - -52.994.

Solución con Excel

Valor		Función
		DM-(T.INV.2T(0.05;gl t-student)*EEDM)
IC Superior	-52.994	DM+(T.INV.2T(0.05;gl t-student)*EEDM)

♣ Pregunta 5.30

Solución con calculadora

El valor de p teniendo en cuenta una cola es $1.9967x10^{-282}$, es decir, p < 0.05. Por lo tanto, **la hipótesis nula es falsa y hay evidencia estadística** para afirmar que después de un mes de actividad física el nivel de glucemia en sangre a disminuido en los sujetos de nuestro estudio.

Con una confianza del 95% podemos afirmar que después de un mes de actividad física el nivel de glucemia de la población disminuye en promedio entre -57.21 y -52.99 mg/dl. Además, como el intervalo de confianza no incluye al 0, podemos estar seguros al 95% de que los individuos que realizan actividad física durante un mes consiguen una reducción en los niveles de glucemia.

SOLUCIÓN 5.9

♣ Pregunta 5.31

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(TAS)_{despues} >= \mu(IMC)_{antes}$$

$$H_1: \mu(TAS)_{despues} < \mu(IMC)_{antes}$$

$$m = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m \text{ (antes)} = \frac{130647}{1000} = 130.647$$

$$m \text{ (despues)} = \frac{130980.5}{1000} = 130.981$$

$$dm = m_A - m_B = 130.981 - 130.647 = 0.334$$

$$s_d = \sqrt{s_d^2} = \sqrt{694.37} = 26.341$$

$$= \frac{s_d}{\sqrt{n}} = \frac{26.341}{\sqrt{1000}} = 0.833$$

$$t = \frac{dm}{\sqrt{n}} = \frac{0.334}{0.833} = 0.400$$

$$t - \text{Student} \rightarrow t = 0.400 \text{ gl} = 1000 \rightarrow P = 0.345$$

El valor de p teniendo en cuenta una cola es 0.345, es decir, p > 0.05. Por lo tanto, **la hipótesis nula es verdadera y no hay evidencia estadística** para afirmar que después de un mes de bajo consumo en sal se disminuye la tensión arterial sistólica de los sujetos de nuestro estudio.

Solución con Excel

Se generan dos etiquetas: una etiqueta con los valores de glucemia antes (GLUCE-MIA) y otra con los valores de glucemia después (GLUCEMIA2). Además, se crea una nueva variable que contiene la diferencia entre la nueva glucemia y la antigua

(GLUCEMIA2 – GLUCEMIA) que denominada d_glucemia.

	Valor			Función
	TAS	TAS2	D_TAS	
N	1000	1000	1000	CONTAR(etiqueta)
MEDIA	130.647	130.981	0.334	PROMEDIO(etiqueta)
	Vari	ianza - S2	694.370	VAR.S(etiqueta)
Desviación estándar - Sd		26.351	RAIZ(s2)	
Error estándar - EE(d)		0.833	sd/RAIZ(n)	

Valor		Función
t de Student	0.4002	(m-0)/ee(d)
Sig (una cola)	0.3445	<pre>T.DIST.RT(abs(t-student);gl t-student)</pre>
Valor critico de t (una cola)	1.646	T.INV(0.95;gl t-student)

Solución con Stata

. ttest TAS2=TAS

Paired t test

Variable	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
TAS2	1,000	130.9805	.6649131	21.0264	129.6757	132.2853
TAS	1,000	130.647	.6604965	20.88673	129.3509	131.9431
diff	1,000	. 3335	.8332889	26.35091	-1.301697	1.968697
mean(diff) = mean(TAS2 - TAS)	t = 0.4002			
Ho: $mean(diff) = 0$ degrees of freedom = 999						
Har maan/	4: tt/ ^U	Ц.,	moon/diff/	1_ 0	∐a, maa,	7/4:tt/ /U

♣ Pregunta 5.32

Solución con calculadora

El valor de p teniendo en cuenta una cola es 0.3445, es decir, p > 0.05. Por lo tanto, **la hipótesis nula es verdadera y no hay evidencia estadística** para afirmar que después de un mes con un menor consumo de sal la tensión arterial sistólica es menor que la tensión arterial sistólica antes.

Comparación de tres o más medias

SOLUCIÓN 6.1

Nota: En este ejercicio se muestra el proceso completo de resolución. A partir del segundo, se omiten los pasos para realizar la comparación dos a dos que ya se ha trabajado en el capítulo anterior mostrando solo los resultados obtenidos.

♣ Pregunta 6.1

Solución con calculadora

m (sobrepeso) =
$$\frac{\sum_{i=1}^{n} x_i}{n} = \frac{100867}{417} = 241.887$$

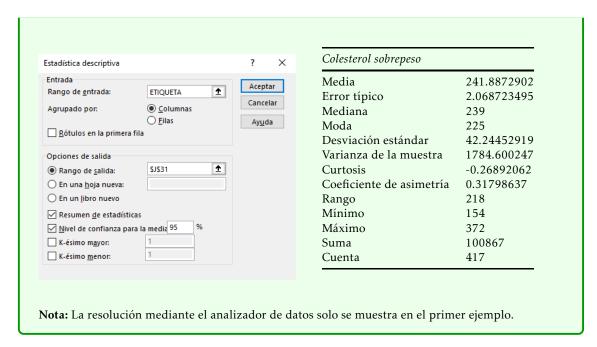
La media de colesterol en la muestra con sobrepeso es de 241.887.

Solución con Excel

Se generan tres etiquetas: una etiqueta con los valores del colesterol (COLESTE-ROL) en la muestra con normopeso denominada colesterol_imc_1, otra con sobrepeso denominada colesterol_imc_2 y, por último, otra con la muestra de obesidad denominada imc_3. Representa la muestra y facilita el uso de fórmulas en Excel.

	C	OLESTEROL	1	
		Valor		Función
	Normopeso	Sobrepeso	Obesidad	
n	456	417	127	CONTAR(etiqueta)
m	234.509	241.887	236.780	PROMEDIO(etiqueta)

Utilizando el analizador de datos: Estadística descriptiva



♣ Pregunta 6.2

Solución con calculadora

Varianzas

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - m)^{2}}{n - 1}$$

$$s^{2} \text{ (normopeso)} = \frac{998012}{456 - 1} = 2193.433$$

$$s^{2} \text{ (sobrepeso)} = \frac{742393.7}{417 - 1} = 1784.600$$

$$s^{2} \text{ (obesidad)} = \frac{246909.8}{127 - 1} = 1959.602$$

$$s^2 = \frac{1999348.12}{1000 - 1} = 2001.349$$

■ Fuente de variación: *Total*

$$Total(SCT) = (n-1)s^2$$

= $(1000-1)2001.349 = 1999348.124$

• Fuente de variación: *Entre grupos*

Entre grupos(SCeg) =
$$\sum_{i=1}^{k} n_i (m_i - m)^2$$

= $456 (234.509 - 237.874)^2$
+ $417 (241.887 - 237.874)^2$
+ $456 (236.780 - 237.874)^2$
= 12032.630

Entre grupos
$$(g.l) = k - 1 = 3 - 1 = 2$$

$$s_{\text{entre grupos}}^2 = \frac{\text{SCeg}}{\text{g.l. entre grupos}} = \frac{12032.630}{2} = 6016.315$$

• Fuente de variación: Residual

$$Residual(SCR) = SCT - SCeg$$

$$= 1999348.124 - 12032.630 = 1987315.494$$

$$Residual(g.l) = n - k = 1000 - 3 = 997$$

$$s_{residual}^2 = \frac{SCR}{g.l. residuales} = \frac{1987315.494}{997} = 1993.295$$

Valor F

$$F = \frac{s_{\text{entre grupos}}^2}{s_{\text{residual}}^2} = \frac{6016.315}{1993.295} = 3.018$$

El valor de F es 3.018.

Valor p

$$F = 3.018 \ gl = 997; 2 \rightarrow P = 0.049$$

Como hay diferencias significativas entre los grupos p(p=0.049) se realizan **comparaciones dos a dos** con la corrección de **Bonferroni** para determinar en qué grupos hay diferencias. Como se vio en el capítulo 5, estas comparaciones dos a dos se realizan con la t de Student. Para ello, todavía nos falta conocer las varianzas de cada grupo:

$$s^2$$
 (normopeso) = 2193.433
 s^2 (sobrepeso) = 1784.600
 s^2 (obesidad) = 1959.602

■ Primera comparación: Normopeso - Sobrepeso

$$Homogeneidad\ de\ Varianzas = \frac{varianza_{mayor}}{varianza_{menor}} = \frac{2193.433}{1784.600} = 1.229$$

Homogeneidad de Varianzas = 1.229 < 4 → Varianzas Homogéneas

Varianzas homogéneas

$$s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)}$$

$$= \frac{(456 - 1) 2193.433 + (417 - 1) 1784.600}{(456 - 1) + (417 - 1)}$$

$$= 1998.170$$

$$s_P = \sqrt{s_p^2} = \sqrt{1998.170} = 44.701$$

$$EEDM = s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} = 44.701 \sqrt{\frac{1}{456} + \frac{1}{417}} = 3.029$$

$$g.l = n_A + n_B - 2 = 456 + 417 - 2 = 871$$

$$t = \frac{dm}{EEDM} = \frac{m_A - m_B}{s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} = \frac{241.887 - 234.509}{3.029} = 2.4361$$

$$t - \text{Student} \rightarrow t = 2.4361 \ gl = 871 \rightarrow P = 0.015$$

Como se realizan 3 comparaciones dos a dos para obtener una **p penalizada** para un valor significativo de p<0.05 debemos multiplicar el valor de la p de la t de Student por el número de comparaciones realizado, en este caso por 3.

$$P = 0.015 \times 3 comparaciones = 0.045$$

Segunda comparación: Normopeso - Obesidad

$$Homogeneidad\ de\ Varianzas = \frac{varianza_{mayor}}{varianza_{menor}} = \frac{2193.433}{1959.602} = 1.119$$

Homogeneidad de Varianzas = 1.119 < 4 → Varianzas Homogéneas

Varianzas homogéneas

$$s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)}$$

$$= \frac{(456 - 1) 2193.433 + (417 - 1) 1959.602}{(456 - 1) + (127 - 1)}$$

$$= 2142.723$$

$$s_P = \sqrt{s_p^2} = \sqrt{2142.723} = 46.290$$

$$EEDM = s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} = 44.701 \sqrt{\frac{1}{456} + \frac{1}{127}} = 2.271$$

$$g.l = n_A + n_B - 2 = 456 + 127 - 2 = 581$$

$$t = \frac{dm}{EEDM} = \frac{m_A - m_B}{s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} = \frac{234.509 - 236.780}{2.271} = 0.4889$$

$$t - Student \rightarrow t = 0.4889 \ gl = 581 \rightarrow P = 0.625$$

p penalizada = p × número comparaciones = $0.625 \times 3 = 1.875 \rightarrow 1$

Tercera comparación: Sobrepeso - Obesidad

$$Homogeneidad \ de \ Varianzas = \frac{varianza_{mayor}}{varianza_{menor}} = \frac{1784.600}{1959.602} = 1.098$$

Homogeneidad de Varianzas = 1.098 < 4 → Varianzas Homogéneas

Varianzas homogéneas

$$s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)}$$

$$= \frac{(417 - 1) 1784.600 + (127 - 1) 1929.602}{(417 - 1) + (127 - 1)}$$

$$= 1825.283$$

$$s_P = \sqrt{s_p^2} = \sqrt{1825.283} = 42.723$$

$$EEDM = s_P \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} = 42.723 \sqrt{\frac{1}{417} + \frac{1}{127}} = 4.330$$

$$g.l = n_A + n_B - 2 = 417 + 127 - 2 = 542$$

$$t = \frac{\text{dm}}{\text{EEDM}} = \frac{m_A - m_B}{s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} = \frac{241.887 - 236.780}{4.330} = 1.1796$$

$$t - Student \rightarrow t = 1.180 \ gl = 542 \rightarrow P = 0.239$$

p penalizada = $p \times n$ úmero comparaciones = $0.239 \times 3 = 0.716$

Solución con Excel

	COLESTEROL							
	Normopeso Sobrepeso Obesidad Total							
m	234.509	241.887	236.780	237.874				
s2	2193.433	1784.600	1959.602	2001.349				
n	456	417	127	1000				
gl	455	416	126	999				
k	1	1	1	3				

Para rellenar la tabla con el excel utilizamos las siguientes funciones:

- Suma de cuadrados de SCT: gl total * s2 total
- Suma de cuadrados de SCR:

- \blacksquare Suma de cuadrados de SC_{eg} : SCT-SCR
- Grados de libertad SCT: n-1
- Grados de libertad SCR: n-k
- Grados de libertad SC_{eg}: k-1

■ Varianzas tanto de SCR como de SC_{eg}: SC/gl

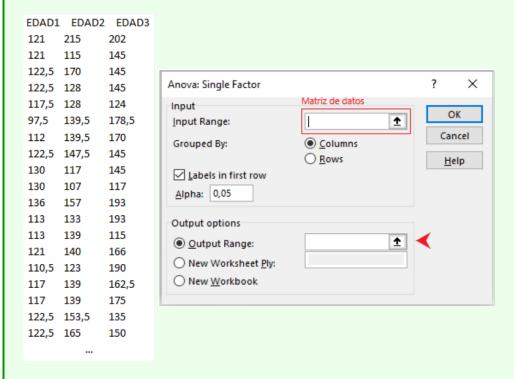
• Valor de F: Varianza SCE Varianza SCR

Valor de P: F.DIST.RT(F;gl SC_{eq};gl SCR)

	SC	g.l	S^2	F	P
SC _{eg}	12032.630	2	6016.315	3.018	0.049
SCR	1987315.494	997	1993.295		
SCT	1999348.124	999			

Utilizando el analizador de datos: Anova: factor simple

A diferencia de los ejercicios planteados en los capítulos anteriores, la función Anova del analizador de datos no utiliza rangos de valores como entrada, sino que necesita una matriz de datos sobre los que realizar la operación. Por lo tanto, el primer paso será generar dicha matriz.



SUMMARY				
Grupo	Contar	Suma	Promedio	Varianza
IMC1	456	106936	234.5087719	2193.43289
IMC2	417	100867	241.8872902	1784.600247
IMC3	127	30071	236.7795276	1959.6018

ANOVA						
Fuente de va- riación	SS	df	MS	F	P-valor	F crit
Entre grupos Dentro gru- pos	12032.629 1987315.494	2 997	6016.3148 1993.2953	3.0182756	0.049332	3.004752
Total	1999348.124	999				

Como hay diferencias significativas entre los grupos (p = 0.049 < 0.05) se realiza **comparaciones dos a dos** con la corrección para determinar en qué grupos hay diferencias.

• Primera comparación: Normopeso - Sobrepeso

	Valor		Función
	Normopeso	Sobrepeso	
MEDIA	234.509	241.887	PROMEDIO(etiqueta)
VAR	2193.433*	1784.600	VAR.S(etiqueta)
N	456	417	CONTAR(etiqueta)
gl	455	416	N - 1
Homog	geneidad de varianzas	1.229	2193.433/1784.600

^{*} Varianza mayor

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4.

Valor		Función
Varianza conjunta (S ²)	1998.170	(VAR normopeso*gl normopeso
		+ VAR sobrepeso*gl sobrepeso)
		/(gl normopeso+gl sobrepeso)
Desviación ponderada (S)	44.701	RAIZ(varianza conjunta)
Diferencia de medias (<i>DM</i>)	7.379	media mayor-media menor
Error Estándar de la <i>DM</i> (<i>EEDM</i>)	3.029	S* RAIZ(1/N normopeso + 1/N sobrepeso)
gl t de Student	871	N normopeso + N sobrepeso - 2
t de Student	2.4361	dm/eedm
Sig (una cola)	0.0075	<pre>T.DIST.RT(t-student;gl t-student)</pre>
Valor critico de t (una co- la)	3.554	T.INV(0.95;gl t-student)
<i>'</i>	0.015	T DICT OT/+ -+d-n+1 + -+d-n+)
Sig (bilateral)	0.015	T.DIST.2T(t-student;gl t-student)
Valor critico de t (dos co- las)	3.153	T.INV.2T(0.05;gl t-student)

■ Segunda comparación: Normopeso - Obesidad

	Valor		Función
	Normopeso	Obesidad	
MEDIA	234.509	236.780	PROMEDIO(etiqueta)
VAR	2193.433*	1959.602	VAR.S(etiqueta)
N	456	127	CONTAR(etiqueta)
gl	455	126	N - 1
Homog	eneidad de varianzas	1.119	2193.433/1959.602

^{*} Varianza mayor

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4.

Valor		Función
Varianza conjunta (S^2)	2142.723	(VAR normopeso*gl normopeso
		+ VAR obesidad*gl obesidad)
		/(gl normopeso+gl obesidad)
Desviación ponderada (S)	46.290	RAIZ(varianza conjunta)
Diferencia de medias (DM)	2.271	media mayor-media menor
Error Estándar de la <i>DM</i> (<i>EEDM</i>)	4.644	S* RAIZ(1/N normopeso + 1/N obesidad)
gl t de Student	581	N normopeso + N obesidad - 2
t de Student	0.4889	dm/eedm
Sig (una cola)	0.3125	T.DIST.RT(t-student;gl t-student)
9 (
Valor critico de t (una co- la)	3.562	T.INV(0.95;gl t-student)
Sig (bilateral)	0.625	<pre>T.DIST.2T(t-student;gl t-student)</pre>
Valor critico de t (dos colas)	2.401	T.INV.2T(0.05;gl t-student)

■ Tercera comparación: Sobrepeso - Obesidad

	Valor		Función
	Sobrepeso	Obesidad	
MEDIA	241.887	236.780	PROMEDIO(etiqueta)
VAR	1784.600	1959.602*	VAR.S(etiqueta)
N	417	127	CONTAR(etiqueta)
gl	416	126	N - 1
Homoge	eneidad de varianzas	1.098	1959.602/1784.600

^{*} Varianza mayor

Estas varianzas son casi iguales. Al dividir la varianza mayor entre la menor observamos que el resultado es menor de 4.

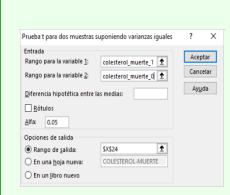
Valor		Función
Varianza conjunta (S^2)	1825.283	(VAR sobrepeso*gl sobrepeso
		+ VAR obesidad*gl obesidad)
		/(gl sobrepeso+gl obesidad)
Desviación ponderada (S)	42.723	RAIZ(varianza conjunta)
Diferencia de medias (DM)	5.108	media mayor-media menor
Error Estándar de la <i>DM</i> (<i>EEDM</i>)	4.330	S* RAIZ(1/N sobrepeso + 1/N obesidad)
gl t de Student	542	N sobrepeso + N obesidad - 2
t de Student	1.1796	dm/eedm
Sig (una cola)	0.1193	<pre>T.DIST.RT(t-student;gl t-student)</pre>
Valor critico de t (una cola)	3.562	T.INV(0.95;gl t-student)
Sig (bilateral)	0.239	<pre>T.DIST.2T(t-student;gl t-student)</pre>
Valor critico de t (dos co- las)	2.401	T.INV.2T(0.05;gl t-student)

Para obtener la **p penalizada** para un valor significativo de p < 0.05 debemos multiplicar el valor de la p de la t de Student por el número de comparaciones realizado, en este caso.

	Grupos a comparar	p t de Student	p penalizada
Colesterol	Normopeso - Sobrepeso Normopeso - Obesidad Sobrepeso - Obesidad	0.625083132	0.045137394 1.00 0.716026507

Utilizando el analizador de datos:

Prueba T para dos muestras suponiendo varianzas iguales



	Normopeso	Sobrepeso
Media	234.508	241.887
Varianza	2193.432	1784.600
Observaciones	456	417
Varianza agrupada	1998.169	
Diferencia hipotética de las medias	0	
Grados de libertad	871	
Estadístico t	-2.43610675	
P(T<=t) una cola	0.00752*	
Valor crítico de t (una cola)	1.6466	
P(T<=t) dos colas	0.015045*	
Valor crítico de t (dos colas)	1.9626	

	Normopeso	Obesidad
Media	234.5087719	236.779527
Varianza	2193.43289	1959.6018
Observaciones	456	127
Varianza agrupada	2142.722533	
Diferencia hipotética de las medias	0	
Grados de libertad	581	
Estadístico t	-0.48891959	
P(T<=t) una cola	0.312541566*	
Valor crítico de t (una cola)	1.647480506	
P(T<=t) dos colas	0.625083132*	
Valor crítico de t (dos colas)	1.964055442	

Sobrepeso	Obesidad
241.8872902	236.7795276
1784.600247	1959.6018
417	127
1825.283265	
0	
542	
1.179603376	
0.119337751*	
1.64766985	
0.238675502*	
1.964350493	

Cuando hacemos la t de Student con el *analizador de datos*, la p obtenida no está corregida por el número de comparaciones. Como en este ejemplo tenemos 3 comparaciones dos a dos se considera significativa toda p < 0.0167, es decir, p = 0.05 dividida entre las 3 comparaciones. Lo mismo para las siguientes tablas.

Solución con Stata

En **stata** utilizamos el comando **oneway**. Además, indicando la opción de **bonferroni** después de la coma nos realiza el análisis completo con una sola llamada.

. oneway COLESTEROL IMC__CAT, tab bonferroni

	Summary	of COLESTE	ROL
IMC_CAT	Mean	Std. Dev.	Freq.
1	234.50877		456
2	241.88729	42.244529	417
3	236.77953	44.26739	127
Total	237.874	44.736445	1,000

Analysis of Variance

Source	SS	df	MS	F	Prob >F	
Between groups	12032.6297	2	6016.31484	3.02	0.0493	
Within groups	1987315.49	997	1993.29538			
Total	1999348.12	999	2001.34947			

Bartlett's test for equal variances: chi2(2) = 4.6128 Prob>chi2 = 0.100

Comparison of COLESTEROL by IMC_CAT

(Bonferroni)

(DO	mrerromr)
1	2
7.37852	
0.045	
2.27076	-5.10776
1.000	0.778
	7.37852 0.045 2.27076 1.000

♣ Pregunta 6.3

Solución con calculadora

El valor de la p es de 0.049332.

♣ Pregunta 6.4

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

 $H_0: \mu(Colesterol)_{normopeso} = \mu(Colesterol)_{sobrepeso} = \mu(Colesterol)_{obesidad}$

 $H_1: \mu(Colesterol)_{normopeso} \neq \mu(Colesterol)_{sobrepeso} \neq \mu(Colesterol)_{obesidad}$

El valor de p es menor de 0.05 por lo tanto **tenemos evidencia estadística suficiente para rechazar la hipótesis nula** y concluir que el colesterol se relaciona con el índice de masa corporal.

Al hacer comparaciones dos a dos con la t de Student corregida por Bonferroni vemos que solo hay diferencias significativas entre la categoría 2 (sobrepeso) respecto de la categoría 1(normopeso). Así, podemos observar que la categoría 2 (media 241.9) es significativamente mayor el nivel de colesterol que la 1 (media 234.5). Sin embargo, la categoría 3 tiene resultados equivalentes a la 1 y a la 2 (no hay diferencias significativas entre estas categorías).

SOLUCIÓN 6.2

♣ Pregunta 6.5

Solución con calculadora

$$Media(m) = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$m (edad1) = \frac{633651.5}{492} = 128.784$$

$$m (edad2) = \frac{64753.5}{454} = 142.629$$

$$m (edad3) = \frac{8237}{54} = 152.537$$

La media de glucemia para el grupo de edad 1 es de 128.784, para el grupo 2 de 142.629 y para el grupo 3 de 152.537.

Solución con Excel

Se generan tres etiquetas, una etiqueta con los valores de glucemia (GLUCEMIA) por cada grupo de edad (glucemia_edad_1, glucemia_edad_2 Y glucemia_edad_3). Representa la muestra y facilita el uso de fórmulas en Excel.

	G	LUCEMIA Valor		Función
	EDAD1	EDAD2	EDAD3	
n	492	454	54	CONTAR(etiqueta)
m	128.784	142.629	152.537	PROMEDIO(etiqueta)

Solución con Stata

. mean GLUCEMIA if $GRUP_EDAD==1$

Mean estimation

	Mean	Std. Err.	[95% Conf.	Interval]
GLUCEMIA	128.7835	.8392642	127.1345	130.4325

Number of obs = 492

. mean GLUCEMIA if GRUP_EDAD==2

Mean estimation

Number of obs = 454

	Mean	Std. Err.	[95% Conf.	Interval]
GLUCEMIA	142.6289	1.180892	140.3081	144.9496

. mean GLUCEMIA if GRUP_EDAD==3

Mean estimation

Number of obs = 54

	Mean	Std. Err.	[95% Conf.	Interval]
GLUCEMIA	152.537	3.290682	145.9368	159.1373

♣ Pregunta 6.6

Solución con calculadora

Varianzas

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - m)^{2}}{n - 1}$$

$$s^{2} (edad = 1) = \frac{170154.7}{492 - 1} = 346.547$$

$$s^{2} (edad = 2) = \frac{286796.7}{454 - 1} = 633.105$$

$$s^{2} (edad = 3) = \frac{30991.43}{54 - 1} = 584.744$$

$$s^{2} = \frac{548158.096}{1000 - 1} = 548.707$$

■ Fuente de variación: *Total*

$$Total(SCT) = (n-1)s^2$$

= $(1000-1)548.707 = 548158.096$

• Fuente de variación: Entre grupos

$$Entre\ grupos(SCeg) = \sum_{i=1}^{k} n_i (m_i - m)^2$$

$$= 492 (128.784 - 136.352)^2$$

$$+ 454 (142.629 - 136.352)^2$$

$$+ 54 (152.537 - 136.352)^2$$

$$= 60215.261$$

$$Entre\ grupos(g.l) = k - 1 = 3 - 1 = 2$$

$$s_{\text{entre grupos}}^2 = \frac{\text{SCE}}{\text{g.l. entre grupos}} = \frac{60215.261}{2} = 30107.631$$

■ Fuente de variación: Residual

$$Residual(SCR) = SCT - SCeg$$

$$= 548158.096 - 60215.261 = 487942.835$$

$$Residual(g.l) = n - k = 1000 - 3 = 997$$

$$s_{residual}^2 = \frac{SCR}{g.l. residuales} = \frac{487942.835}{997} = 489.411$$

Valor F

$$F = \frac{s_{\text{entre grupos}}^2}{s_{\text{residual}}^2} = \frac{30107.631}{489.411} = 61.518$$

El valor de F es 61.518.

Valor p

$$F = 61.518 \ gl = 997; 2 \rightarrow P = 6.417x10^{-26}$$

Como hay diferencias significativas entre los grupos $p(p=6.417x10^{-26})$ se realiza **comparaciones dos a dos** con la corrección de **Bonferroni** para determinar en qué grupos hay diferencias.

En el problema 6.2 se muestra el desarrollo completo para obtener los resultados de las comparaciones dos a dos con la t de Student y la corrección de Bonferroni. A continuación, se muestran los resultados de las comparaciones correspondientes al presente ejercicio siguiendo el mismo desarrollo.

	Grupos a comparar	p t de Student	p penalizada
Glucemia	edad1 - edad2	3.7298x10 ⁻²¹	1.11894x10 ⁻²⁰
	edad1 - edad3	7.48831x10 ⁻¹⁷	2.24649x10 ⁻¹⁶
	edad2 - edad3	0.006236475	0.018709425

Solución con Excel

	GLUCEMIA			
	Edad1	Edad2	Edad3	Total
MEDIA	128.784	142.629	152.537	136.352
s2	346.547	633.105	584.744	548.707
n	492	454	54	1000
gl k	491	453	53	999
k	1	1	1	3

	SC	g.l	S^2	F	P
SC _{eg}	60215.261	2	30107.631	61.518	0.000
SCR	487942.835	997	489.411		
SCT	548158.096	999			

Solución con Stata

. oneway GLUCEMIA GRUP_EDAD, tab bonferroni

	Summary of GLUCEMIA				
GRUP_EDAD	Mean	Std. Dev.	Freq.		
1		18.615779	492		
2	142.62885	25.161584	454		
3	152.53704	24.181478	54		
Total	136.352	23.424492	1,000		

	A	\nalysi:	s of Variance		
Source	SS	df	MS	F	Prob >F
Between groups	60215.2614	2	30107.6307	61.52	0.0000
Within groups	487942.835	997	489.411068		
Total	548158.096	999	548.706803		

Bartlett's test for equal variances: chi2(2) = 43.2756 Prob>chi2 = 0.000

Comparison of GLUCEMIA by $\ensuremath{\mathsf{GRUP}}\xspace_{\ensuremath{\mathsf{EDAD}}}$

(Bonferroni)

	(
Row Mean - Col Mean	1	2
2	13.8453	
	0.000	
3	23.7535	9.90818
	0.000	0.006

♣ Pregunta 6.7

Solución con calculadora

El valor de la p es de 6.417×10^{-26}

♣ Pregunta 6.8

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

 $H_0: \mu(Glucemia)_{edad1} = \mu(Glucemia)_{edad2} = \mu(Glucemia)_{edad3}$

 $H_1: \mu(Glucemia)_{edad1} \neq \mu(Glucemia)_{edad2} \neq \mu(Glucemia)_{edad3}$

El valor de p es menor de 0.05 por lo tanto tenemos evidencia estadística suficiente para rechazar la hipótesis nula y concluir que la glucemia varía según el grupo de edad.

Al hacer comparaciones dos a dos con la t de Student corregida por Bonferroni vemos que hay diferencias significativas entre las comparaciones de las tres categorías. Así, podemos observar que en el grupo de edad 1 (media 128.7) el nivel de glucemia es significativamente menor que grupo de edad 2 (media 142.63) y este, a su vez, presenta esta significación en el grupo de edad 3 (media 152.53).

SOLUCIÓN 6.3

♣ Pregunta 6.9

Solución con calculadora

m (obesidad) =
$$\frac{\sum_{i=1}^{n} x_i}{n} = \frac{16869.5}{127} = 132.831$$

La tensión arterial sistólica media en la muestra con obesidad es de 132.831.

Solución con Excel

Se generan tres etiquetas, una etiqueta con los valores de tensión arterial sistólica (TAS) por cada grupo de edad (tas_edad_1, tas_edad_2 Y tas_edad_3). Representa la muestra y facilita el uso de fórmulas en Excel.

,				
		Valor		Función
	Normopeso	Sobrepeso	Obesidad	
n	456	417	127	<pre>CONTAR(etiqueta)</pre>
m	128.498	132.332	132.831	PROMEDIO(etiqueta)

Solución con Stata

. mean TAS if $IMC_CAT==3$

Mean estimation Number of obs = 127

	Mean	Std. Err.	[95% Conf.	Interval]
TAS	132.8307	1.868449	129.1331	136.5283

♣ Pregunta 6.10

Solución con calculadora

Varianzas

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - m)^{2}}{n - 1}$$

$$s^{2} \text{ (normopeso)} = \frac{212875}{456 - 1} = 467.857$$

$$s^{2} \text{ (sobrepeso)} = \frac{163183.7}{417 - 1} = 392.269$$

$$s^{2} \text{ (obesidad)} = \frac{55864.61}{127 - 1} = 443.370$$

$$s^{2} = \frac{435819.391}{1000 - 1} = 436.256$$

• Fuente de variación: *Total*

$$Total(SCT) = (n-1)s^{2}$$
$$= (1000-1)436.256 = 435819.391$$

• Fuente de variación: *Entre grupos*

Entre grupos(SCeg) =
$$\sum_{i=1}^{k} n_i (m_i - m)^2$$

= 456 (128.498 – 130.647)²
+ 417 (132.332 – 130.647)²
+ 127 (132.831 – 130.647)²
= 3896.034

Entre grupos(g.l) =
$$k - 1 = 3 - 1 = 2$$

 $s_{\text{entre grupos}}^2 = \frac{\text{SCeg}}{\text{g.l. entre grupos}} = \frac{3896.034}{2} = 1948.017$

• Fuente de variación: Residual

$$Residual(SCR) = SCT - SCeg$$

$$= 435819.391 - 3896.034 = 431923.357$$

$$Residual(g.l) = n - k = 1000 - 3 = 997$$

$$s_{residual}^2 = \frac{SCR}{g.l. residuales} = \frac{431923.357}{997} = 433.223$$

Valor F

$$F = \frac{s_{\text{entre grupos}}^2}{s_{\text{residual}}^2} = \frac{1948.017}{433.223} = 4.497$$

El valor de F es 4.497.

Valor p

$$F = 4.497 \ gl = 997; 2 \rightarrow P = 0.011$$

Como hay diferencias significativas entre los grupos p(p=0.011) s realiza **comparaciones dos a dos** con la corrección de **Bonferroni** para determinar en qué grupos hay diferencias.

En el problema 6.2 se muestra el desarrollo completo para obtener los resultados de las comparaciones dos a dos con la t de Student y la corrección de Bonferroni. A continuación, se muestran los resultados de las comparaciones correspondientes al presente ejercicio siguiendo el mismo desarrollo.

	Grupos a comparar	p t de Student	p penalizada
TAS	Normopeso - Sobrepeso	0.006590371	0.019771113
	Normopeso - Obesidad	0.045111937	0.135335811
	Sobrepeso - Obesidad	0.806783058	2.420349175

Solución con Excel

		TAS		
'	Normopeso	Sobrepeso	Obesidad	Total
MEDIA	128.498	132.332	132.831	130.647
s2	467.857	392.269	443.370	436.256
n	456	417	127	1000
gl	455	416	126	999
k	1	1	1	3

	SC	g.l	S^2	F	P
SC _{eg}	3896.034	2	1948.017	4.497	0.011
SCR	431923.357	997	433.223		
SCT	435819.391	999			

Solución con Stata

. oneway TAS IMC_CAT, tab bonferroni

	Summary of TAS			
IMC_CAT	Mean	Std. Dev.	Freq.	
1		21.630006	456	
2	132.33213	19.805773	417	
3	132.83071	21.056351	127	
Total	130.647	20.886734	1,000	

Analysis of Variance

Source	SS	df	MS	F	Prob >F
Between groups	3896.03356	2	1948.01678	4.50	0.0114
Within groups	431923.357	997	433.223027		
Total	435819.391	999	436.255647		

Bartlett's test for equal variances: chi2(2) = 3.3934 Prob>chi2 = 0.183

Comparison of TAS by IMC_CAT

(Bonferroni)

	(DOI)	Terrour)
Row Mean - Col Mean	1	2
2	3.83433	
	0.020	
3	4.3329	. 498574
	0.115	1.000

♣ Pregunta 6.11

Solución con calculadora

El valor de la p es de 0.011.

♣ Pregunta 6.12

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(TAS)_{normopeso} = \mu(TAS)_{sobrepeso} = \mu(TAS)_{obesidad}$$

$$H_1: \mu(TAS)_{normopeso} \neq \mu(TAS)_{sobrepeso} \neq \mu(TAS)_{obesidad}$$

El valor de p es menor de 0.05 por lo tanto **tenemos evidencia estadística suficiente para rechazar la hipótesis nula**, y por tanto, la tensión arterial sistólica se relaciona con el índice de masa corporal.

Al hacer comparaciones dos a dos con la t de Student corregida por Bonferroni vemos que solo hay diferencias significativas entre la categoría 2 (sobrepeso) respecto de la categoría 1(normopeso). Así, podemos observar que en la categoría 2 (media 132.33) la tensión arterial sistólica es significativamente mayor que en la 1 (media 128.5). Sin embargo, la categoría 3 tiene resultados equivalentes a la 1 y a la 2 (no hay diferencias significativas entre estas categorías).

SOLUCIÓN 6.4

♣ Pregunta 6.13

Solución con calculadora

$$Media(m) = \frac{\sum_{i=1}^{n} x_i}{n}$$
m (normopeso) = $\frac{22624}{456}$ = 49.614
m (sobrepeso) = $\frac{21331}{417}$ = 51.153
m (obesidad) = $\frac{6383}{127}$ = 50.260

La edad media mayor se encuentra en el grupo de sobrepeso (IMC_CAT = 2) con un valor de 51.153.

Solución con Excel

Se generan tres etiquetas, una etiqueta con los valores de edad (EDAD) por cada grupo de IMC (edad_imc_1, edad_imc_2 y edad_imc_3). Representa la muestra y facilita el uso de fórmulas en Excel.

				EDAD
		Valor		Función
	Normopeso	Sobrepeso	Obesidad	
n	456	417	127	<pre>CONTAR(etiqueta)</pre>
m	49.614	51.153	50.260	PROMEDIO(etiqueta)

Solución con Stata

. mean EDAD if $IMC_CAT==1$

Mean estimation Number of obs = 127

	Mean	Std. Err.	[95% Conf.	Interval]
EDAD	49.61404	. 4162225	48.79608	50.43199

. mean EDAD if IMC_CAT==2

Mean estimation

Number of obs = 417

	Mean	Std. Err.	[95% Conf.	Interval]
EDAD	51.15348	. 4116945	50.34422	51.96274

. mean EDAD if $IMC_CAT==3$

Mean estimation

Number of obs = 127

	Mean	Std. Err.	[95% Conf.	Interval]
EDAD	50.25984	.7787495	48.71872	51.80096

♣ Pregunta 6.14

Solución con calculadora

Varianzas

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - m)^{2}}{n - 1}$$

$$s^{2} \text{ (normopeso)} = \frac{35944.07}{456 - 1} = 78.998$$

$$s^{2} \text{ (sobrepeso)} = \frac{29402.18}{417 - 1} = 70.678$$

$$s^{2} \text{ (obesidad)} = \frac{9704.425}{127 - 1} = 77.019$$

$$s^{2} = \frac{75567.756}{1000 - 1} = 75.643$$

• Fuente de variación: *Total*

$$Total(SCT) = (n-1)s^2$$

= $(1000-1)75.643 = 75567.756$

• Fuente de variación: *Entre grupos*

$$Entre\ grupos(SCeg) = \sum_{i=1}^{k} n_i (m_i - m)^2$$

$$= 456 (49.614 - 50.338)^2$$

$$+ 417 (51.153 - 50.338)^2$$

$$+ 127 (50.260 - 50.338)^2$$

$$= 517.083$$

$$Entre\ grupos(g.l) = k - 1 = 3 - 1 = 2$$

$$s_{\text{entre\ grupos}}^2 = \frac{\text{SCE}}{\text{g.l.\ entre\ grupos}} = \frac{517.083}{2} = 258.542$$

• Fuente de variación: Residual

Residual(SCR) =
$$SCT - SCeg$$

= $75567.756 - 517.083 = 75050.673$
Residual(g.l) = $n - k = 1000 - 3 = 997$
 $s_{\text{residual}}^2 = \frac{SCR}{g.l. \text{ residuales}} = \frac{75050.673}{997} = 75.277$

Valor F

$$F = \frac{s_{\text{entre grupos}}^2}{s_{\text{residual}}^2} = \frac{258.542}{75.277} = 3.435$$

El valor de F es 3.435.

Valor p

$$F = 3.435$$
 $gl = 997; 2 \rightarrow P = 0.033$

Como hay diferencias significativas entre los grupos p(p=0.033) se realiza **comparaciones dos a dos** con la corrección de **Bonferroni** para determinar en qué grupos hay diferencias.

En el problema 6.2 se muestra el desarrollo completo para obtener los resultados de las comparaciones dos a dos con la t de Student y la corrección de Bonferroni. A continuación, se muestran los resultados de las comparaciones correspondientes al presente ejercicio siguiendo el mismo desarrollo.

	Grupos a comparar	p t de Student	p penalizada
Edad	Normopeso - Sobrepeso	0.008867143	0.026601429
	Normopeso - Obesidad	0.468037669	1.404113006
	Sobrepeso - Obesidad	0.299724335	0.899173005

Solución con Excel

		EDAD		
	Normopeso	Sobrepeso	Obesidad	Total
MEDIA	49.614	51.153	50.260	130.647
s2	78.998	70.678	77.019	436.256
n	456	417	127	1000
gl	455	416	126	999
k	1	1	1	3

	SC	g.l	S^2	F	P
SC _{eg}	517.083	2	258.542	3.435	0.033
	75050.673	997	75.277		
SCT	75567.756	999			

Solución con Stata

. oneway EDAD IMC_CAT, tab bonferroni

	Summary of EDAD				
IMC_CAT	Mean	Std. Dev.	Freq.		
1	49.614035	8.8880795	456		
2	51.153477	8.4070394	417		
3	50.259843	8.7760611	127		
Total	50.338	8.6973214	1,000		

Analysis of Variance

Source	SS	df	MS	F	Prob >F	
Between groups	517.08317	2	258.541585	3.43	0.0326	
Within groups	75050.6728	997	75.2765023			
Total	75567.756	999	75.6433994			

Bartlett's test for equal variances: chi2(2) = 1.3782 Prob>chi2 = 0.502

♣ Pregunta 6.15

Solución con calculadora

El valor de la p es de 0.033.

♣ Pregunta 6.16

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

$$H_0: \mu(Edad)_{normopeso} = \mu(Edad)_{sobrepeso} = \mu(Edad)_{obesidad}$$

$$H_1: \mu(Edad)_{normopeso} \neq \mu(Edad)_{sobrepeso} \neq \mu(Edad)_{obesidad}$$

El valor de p es menor de 0.05 por lo tanto **tenemos evidencia estadística suficiente para rechazar la hipótesis nula**. Y por tanto, concluir que la edad varía según el grupo de índice de masas corporal del paciente.

Al hacer comparaciones dos a dos con la t de Student corregida por Bonferroni vemos que solo hay diferencias significativas entre la categoría 2 (sobrepeso) respecto de la categoría 1 (normopeso). Así, podemos observar que la categoría 2 (media 51.15) la edad media es significativamente mayor que la categoría 1 (media 49.61). Sin embargo, la categoría 3 tiene resultados equivalentes a la categoría 1 y a la categoría 2 (no hay diferencias significativas entre estas categorías).

SOLUCIÓN 6.5

♣ Pregunta 6.17

Solución con calculadora

Varianzas

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - m)^{2}}{n - 1}$$

$$s^{2} \text{ (normopeso)} = \frac{270249.7}{456 - 1} = 593.955$$

$$s^{2} \text{ (sobrepeso)} = \frac{1952222.6}{417 - 1} = 469.285$$

$$s^{2} \text{ (obesidad)} = \frac{64332.54}{127 - 1} = 510.576$$

$$s^{2} = \frac{548158.096}{1000 - 1} = 548.707$$

• Fuente de variación: Total

$$Total(SCT) = (n-1)s^2$$

= $(1000-1)548.707 = 548158.096$

• Fuente de variación: Entre grupos

Entre grupos(SCeg) =
$$\sum_{i=1}^{k} n_i (m_i - m)^2$$

= $456 (132.508 - 136.352)^2$
+ $417 (137.747 - 136.352)^2$
+ $127 (145.575 - 136.352)^2$
= 18353.275

Entre grupos
$$(g.l) = k - 1 = 3 - 1 = 2$$

$$s_{\text{entre grupos}}^2 = \frac{\text{SCeg}}{\text{g.l. entre grupos}} = \frac{18353.275}{2} = 9176.637$$

• Fuente de variación: Residual

$$Residual(SCR) = SCT - SCeg$$

= 548158.096 - 18353.275 = 529804.821

$$Residual(g.l) = n - k = 1000 - 3 = 997$$

$$s_{\text{residual}}^2 = \frac{\text{SCR}}{\text{g.l. residuales}} = \frac{529804.821}{997} = 531.399$$

Valor F

$$F = \frac{s_{\text{entre grupos}}^2}{s_{\text{residual}}^2} = \frac{9176.637}{531.399} = 17.269$$

El valor de la F es 17.269.

Valor p

$$F = 17.269 \ gl = 997; 2 \rightarrow P = 4.239x10^{-8}$$

Como hay diferencias significativas entre los grupos p(p=0.011) se realiza **comparaciones dos** a **dos** con la corrección de **Bonferroni** para determinar en qué grupos hay diferencias.

En el problema 6.2 se muestra el desarrollo completo para obtener los resultados de las comparaciones dos a dos con la t de Student y la corrección de Bonferroni. A continuación, se muestran los resultados de las comparaciones correspondientes al presente ejercicio siguiendo el mismo desarrollo.

	Grupos a comparar	p t de Student	p penalizada
Glucemia	Normopeso - Sobrepeso Normopeso - Obesidad	0.000858346 8.42244E-08	0.002575039 2.52673x10 ⁻⁰⁷
	Sobrepeso - Obesidad	0.000451985	0.001355955

Solución con Excel

GLUCEMIA					
Normopeso Sobrepeso Obesidad Total					
MEDIA	132.508	137.747	145.575	136.352	
s2	593.955	469.285	510.576	548.707	
n	456	417	127	1000	
gl	455	416	126	999	
k	1	1	1	3	

	SC	g.l	S^2	F	P
SC _{eg}	18353.275	2	9176.637	17.269	0.000
_	529804.821	997	531.399		
SCT	548158.096	999			

Solución con Stata

. oneway GLUCEMIA IMC__CAT, tab bonferroni

	Summary of GLUCEMIA			
GRUP_EDAD	Mean	Std. Dev.	Freq.	
1	132.50768	24.371201	456	
2	137.747	21.662987	417	
3	145.5748	22.595922	127	
Total	136.352	23.424492	1,000	

Analysis of Variance

		,			
Source	SS	df	MS	F	Prob >F
Between groups	18353.2747	2	9176.63737	17.27	0.0000
Within groups	529804.821	997	531.399018		
Total	548158.096	999	548.706803		

Bartlett's test for equal variances: chi2(2) = 6.0976 Prob>chi2 = 0.047

Comparison of GLUCEMIA by IMC_CAT

(Bonferroni)

	(DOILE	CII OIII)
Row Mean - Col Mean	1	2
2	5.23933	
	0.002	
3	13.0671	7.8278
	0.000	0.003

♣ Pregunta 6.18

Solución con calculadora

Las hipótesis planteadas en el ejercicio son:

 $H_0: \mu(Glucemia)_{normopeso} = \mu(Glucemia)_{sobrepeso} = \mu(Glucemia)_{obesidad}$

 $H_1: \mu(Glucemia)_{normopeso} \neq \mu(Glucemia)_{sobrepeso} \neq \mu(Glucemia)_{obesidad}$

El valor de p es de $4.239x10^{-8}$. Como p es menor de 0.05 por lo tanto **tenemos evidencia estadística suficiente para rechazar la hipótesis nula** y concluir que la glucemia varía según el IMC categorizado del paciente.

Al hacer comparaciones dos a dos con la t de Student corregida por Bonferroni vemos que hay diferencias significativas entre las comparaciones de las tres categorías. Así, podemos observar que en la categoría 1(normopeso; media 128.7) el nivel de glucemia es significativamente menor que en la categoría 2 (sobrepeso: media 142.63) y este, a su vez, presenta esta significación en la categoría 3 (obesidad; media 152.53).

Estimación de una proporción

SOLUCIÓN 7.1

Solución con calculadora

La proporción de mujeres con menarquia antes de los 13 años es de un 61.55%

Solución con Excel

Primero, generamos la variable **Menar13**, que indica si la menarquia había sucedido antes (1) o después (0) de los 13 años:

En Excel, aplicaremos la función lógica SI:

```
=SI(ESBLANCO(H2);;SI(H2<13;1;0))
```

donde H2 es el valor de la variable EdadMenar de la primera mujer de la base de datos.

Ahora, es necesario borrar aquellas celdas de la variable Menar 13 cuyo valor es , que, a pesar de que no son visibles, Excel interpreta como texto. Para ello, seleccionamos el rango de valores de la variable Menar 13 y pulsamos F5. Hacemos clic en «Especial...» y, activando *Celdas con fórmulas*, dejamos seleccionado únicamente «Texto». Después de aceptar, se suprimen las celdas seleccionadas.

Utilizando Estadística descriptiva del Analizador de datos con las opciones *Resumen de estadísticas* y *Nivel de de confianza para la media* marcadas, al tratarse de una variable binaria codificada como 0 y 1, la salida nos da la proporción de mujeres con menarquia antes de los 13 años bajo la etiqueta «Media».

Solución con Stata

En Stata utilizaremos los comandos generate y replace:

- . generate Menar13 = EdadMenar <13
- . replace Menar13 = . if missing(EdadMenar)
- . tabulate Menar13

Menar13	Freq.	Percent	Cum.
0	584	38.45	38.45
1	935	61.55	100.00
Total	1,519	100.00	

Tabla 7.1: Solución Stata - Poblema 7.1

♣ Pregunta 7.1

Solución con calculadora

La proporción muestral es

$$p = \frac{935}{1519} = 0.6155 .$$

Empleando la aproximación normal, los extremos del intervalo de confianza al 95% pueden calcularse mediante

$$p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}} = 0.6155 \pm 1.96 \sqrt{\frac{0.6155 \times (1-0.6155)}{1519}}$$
,

es decir,

$$0.6155 \pm 1.96 \times 0.0125 \Longrightarrow (0.5911; 0.6400)$$
.

El intervalo de confianza al 95% es de 0.5911 - 0.6400.

Solución con Excel

En la salida del Analizador de datos, el intervalo de confianza es, en realidad, la precisión del intervalo, es decir, la mitad de su amplitud. Por tanto, es necesario sumarla a y restarla de la proporción muestral para obtener el intervalo de confianza:

$$0.6155 \pm 0.0245 \Longrightarrow (0.5911; 0.6400)$$
.

Solución con Stata

En Stata, con el comando ci:

. ci proportions Menar13, wald

 Variable
 Obs
 Proportion
 Std. Err
 [95% Conf. Interval]

 Menar13
 1,519
 .6155365
 .0124818
 .5910728
 .6400003

Tabla 7.2: Solución Stata - Pregunta 7.1

♣ Pregunta 7.2

Solución con calculadora

Si se repitiera el estudio con muestras independientes un número elevado de veces, el 95% de los intervalos de confianza calculados contendrían el verdadero parámetro poblacional. Asumiendo que este intervalo de confianza pertenece a ese 95%, apoya la afirmación del enunciado.

♣ Pregunta 7.3

Solución con calculadora

 $H_0: \pi = 0.65$ $H_1: \pi \neq 0.65$

Usando la aproximación normal, llevamos a cabo un contraste de hipótesis sobre la proporción muestral:

$$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0 \times (1 - \pi_0)}{n}}} = \frac{0.6155 - 0.65}{0.0125} = -2.8161$$

que sigue una distribución normal estándar.

Para calcular el valor p, en la tabla de la distribución normal z=2.82, obtendremos p=0.0024, como el contraste de hipótesis es a dos colas multiplicamos p por z, p=0.0049.

A la luz de los resultados obtenidos, se puede decir que existen diferencias estadísticamente significativas entre ambas proporciones por ser p=0.0049<0.05, por lo que no puede asumirse que la muestra proceda de una población con $\pi=0.65$.

Solución con Excel

En **Excel**, para calcular el valor *p*, teniendo en cuenta que se trata de un contraste de hipótesis a dos colas, escribiremos

```
=2*(1-DISTR.NORM.ESTAND.N(ABS(-2.8161); VERDADERO))
```

donde VERDADERO le indica a Excel que utilice la función de distribución en vez de la función de densidad de probabilidad.

Solución con Stata

En **Stata**, el comando prtest realiza la misma función:

. prtest Menar13 == 0.65

One-sample test of proportion

Number of obs = 1519

Variable	Mean	Std. Err	[95% Conf. Interval]
Menar13	.6155365	.0124818	.5910728 .6400003

p = proportion(Menar13)

z = -2.8161

Ho: p = 0.65

Ha:
$$p < 0.65$$
 Ha: $p != 0.65$

Ha: p >0.65

 $Pr(Z \le z) = 0.0024$ Pr(|Z| > |z|) = 0.0049 Pr(Z > z) = 0.9976

Tabla 7.3: Solución Stata - Pregunta 7.3

Nota: en esta salida de Stata se obtienen 3 posibles valores de p. El que figura a la izquierda (p=0.0024) corresponde a la hipótesis nula Ho: $\pi<0.65$; el del centro (p=0.0049) se refiere a la hipótesis nula Ho: $\pi=0.65$ y el de la derecha (p=0.9976) corresponde a la hipótesis nula Ho: $\pi>0.65$. En este caso, puesto que la pregunta de investigación se plantea como igualdad (Ho: $\pi=0.65$), nos quedaremos con el valor p del contraste bilateral (p=0.005).

SOLUCIÓN 7.2

Solución con Excel

Primero, generamos la variable **Parto30**, que indica si el primer parto había sucedido antes (0) o después (1) de los 30 años.

En Excel, aplicaremos la función lógica SI:

```
=SI(K2=99;;SI(K2>30;1;0))
```

donde K2 es el valor de la variable EdadParto de la primera mujer de la base de datos y 99 el código para los datos faltantes.

Ahora, es necesario borrar aquellas celdas de la variable Parto30 cuyo valor es , que, a pesar de que no son visibles, Excel interpreta como texto. Para ello, seleccionamos el rango de valores de la variable Parto30 y pulsamos F5. Hacemos clic en «Especial...» y, activando *Celdas con fórmulas*, dejamos seleccionado únicamente «Texto». Después de aceptar, se suprimen las celdas seleccionadas.

Utilizando Estadística descriptiva del Analizador de datos con las opciones *Resumen de estadísticas* y *Nivel de de confianza para la media* marcadas, al tratarse de una variable binaria codificada como 0 y 1, la salida nos da la proporción de mujeres cuyo primer parto hubiera sucedido después de los 30 años bajo la etiqueta «Media»: 0.1171.

Solución con Stata

- . generate Parto30 = EdadParto > 30
- . tabulate Parto30

Parto30	Freq.	Percent	Cum.
0	807	88.29	88.29
1	107	11.71	100.00
Total	914	100.00	

Tabla 7.4: Solución Stata - Poblema 7.2

♣ Pregunta 7.4

Solución con calculadora

La proporción muestral es

$$p = \frac{107}{914} = 0.1171$$

Empleando la aproximación normal, los extremos del intervalo de confianza al 90% pueden calcularse mediante

$$p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}} = 0.1171 \pm 1.645 \sqrt{\frac{0.1171 \times (1-0.1171)}{914}} ,$$

es decir,

$$0.1171 \pm 1.645 \times 0.0106 \Longrightarrow (0.0996; 0.1346)$$

Nota: en este problema al tratarse de un IC al 90 % cambia el valor de $Z_{1-\alpha/2}$ (es de 1.645, en vez de 1.96).

Solución con Excel

En la salida del Analizador de datos, el intervalo de confianza es, en realidad, la precisión del intervalo, es decir, la mitad de su amplitud. Por tanto, es necesario sumarla a y restarla de la proporción muestral para obtener el intervalo de confianza:

$$0.1171 \pm 0.0175 \Longrightarrow (0.0996; 0.1346)$$

Solución con Stata

En Stata, con el comando ci,

. ci proportions Parto30, wald level(90)

Tabla 7.5: Solución Stata - Pregunta 7.4

♣ Pregunta 7.5

Solución con calculadora

Si se repitiera el estudio con muestras independientes un número elevado de veces, el 90% de los intervalos de confianza calculados contendrían el verdadero parámetro poblacional. Asumiendo que este intervalo de confianza pertenece a ese 90%, apoya la afirmación del enunciado.

♣ Pregunta 7.6

Solución con calculadora

Usando la aproximación normal, llevamos a cabo un contraste de hipótesis sobre la proporción muestral:

$$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0 \times (1 - \pi_0)}{n}}} = \frac{0.3196 - 0.35}{0.0138} = -2.1525 ,$$

que sigue una distribución normal estándar.

Para calcular el valor p, en la tabla de la distribución normal para z=2.79 encontramos p=0.0026, como el contraste de hipótesis es a dos colas, p=0.0052.

A la luz de los resultados obtenidos, se puede decir que existen diferencias estadísticamente significativas entre ambas proporciones por ser p = 0.0053 < 0.10, por lo que no puede asumirse que la muestra proceda de una población con $\pi = 0.15$.

Solución con Excel

En **Excel**, teniendo en cuenta que se trata de un contraste de hipótesis a dos colas, escribiremos

=2*(1-DISTR.NORM.ESTAND.N(ABS(-2.7883); VERDADERO))

donde VERDADERO le indica a Excel que utilice la función de distribución en vez de la función de densidad de probabilidad.

En **Stata**, el comando **prtest** realiza la misma función:

. prtest Parto30 == 0.15, level(90)

One-sample test of proportion

Number of obs = 914

 Variable
 Mean
 Std. Err
 [90% Conf. Interval]

 Parto30
 .1170678
 .0106343
 .0995759
 .1345597

 p = proportion(Parto30)
 z = -2.7883

Ho: p = 0.15

Ha: p < 0.15

Ha: p != 0.15

Ha: p > 0.15

Pr(Z < z) = 0.0026 Pr(|Z| > |z|) = 0.0053 Pr(Z > z) = 0.9974

Tabla 7.6: Solución Stata - Pregunta 7.6

SOLUCIÓN 7.3

♣ Pregunta 7.7

Solución con calculadora

La proporción muestral es

$$p = \frac{364}{1139} = 0.3196 .$$

Empleando la aproximación normal, los extremos del intervalo de confianza al 90% pueden calcularse mediante

$$p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}} = 0.3196 \pm 2.576 \sqrt{\frac{0.3196(1-0.3196)}{1139}} ,$$

es decir,

$$0.3196 \pm 2.576 \times 0.0138 \Longrightarrow (0.284; 0.355)$$
.

Solución con Excel

Usando el Analizador de datos, sumamos a y restamos de la proporción muestral («Media») la precisión del intervalo («Nivel de confianza (99.0%)»):

$$0.3196 \pm 0.0354 \Longrightarrow (0.284; 0.355)$$
.

Solución con Stata

En Stata, con el comando ci,

. ci proportions THS, wald level(99)

Tabla 7.7: Solución Stata - Pregunta 7.7

♣ Pregunta 7.8

Solución con calculadora

Si se repitiera el estudio con muestras independientes un número elevado de veces, el 99% de los intervalos de confianza calculados contendrían el verdadero parámetro poblacional. Asumiendo que este intervalo de confianza pertenece a ese 99%, apoya la afirmación del enunciado.

♣ Pregunta 7.9

Solución con calculadora

Usando la aproximación normal, llevamos a cabo un contraste de hipótesis sobre la proporción muestral:

$$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0 \times (1 - \pi_0)}{n}}} = \frac{0.3196 - 0.35}{0.0138} = -2.1525 ,$$

que sigue una distribución normal estándar.

Para calcular el valor p, en la tabla de la distribución normal para z=2.15 encontramos p=0.0158, como el contraste de hipótesis es a dos colas, p=0.0316.

A la luz de los resultados arrojados, se puede decir que no existen diferencias estadísticamente significativas entre ambas proporciones por ser p = 0.0314 > 0.01, por lo que no puede descartarse que la muestra proceda de una población con $\pi = 0.35$.

Solución con Excel

En **Excel** teniendo en cuenta que se trata de un contraste de hipótesis a dos colas, escribiremos

=2*(1-DISTR.NORM.ESTAND.N(ABS(-2.1525); VERDADERO))

donde VERDADERO le indica a Excel que utilice la función de distribución en vez de la función de densidad de probabilidad.

En **Stata**, el comando **prtest** realiza la misma función:

. prtest THS == 0.35, level(99)

One-sample test of proportion

Number of obs = 1139

 Variable
 Mean
 Std. Err
 [99% Conf. Interval]

 THS
 .3195786
 .0138171
 .2839882
 .355169

 p = proportion(THS)
 z = -2.1525

Ho: p = 0.35

Ha: p <0.35 Ha: p != 0.35

Ha: p > 0.35

Pr(Z < z) = 0.0157 Pr(|Z| > |z|) = 0.0314 Pr(Z > z) = 0.9843

Tabla 7.8: Solución Stata - Pregunta 7.9

SOLUCIÓN 7.4

♣ Pregunta 7.10

Solución con calculadora

La proporción muestral es

$$p = \frac{6}{41} = 0.1463 .$$

Empleando la aproximación normal, los extremos del intervalo de confianza de π al 95% pueden calcularse mediante

$$0.1463 \pm 1.96 \sqrt{\frac{0.1463(1 - 0.1463)}{41}}$$
,

es decir,

$$0.1463 \pm 1.96 \times 0.0552 \Longrightarrow (0.0382; 0.2545)$$
.

Solución con Stata

En Stata, con el comando cii,

. cii proportions 41 6, wald

Tabla 7.9: Solución Stata - Pregunta 7.10

♣ Pregunta 7.11

Solución con calculadora

Se trata de hallar el intervalo (a, b) tal que

$$P(X \le 5 \mid \pi = a) = 0.975$$
 y $P(X \le 6 \mid \pi = b) = 0.025$

En **Stata**, respectivamente, invbinomial(41, 5, 0.975) y invbinomial(41, 6, 0.025), es decir, (0,0557; 0,2917).

Con el comando cii,

. cii proportions 41 6, exact

```
        Variable
        Obs
        Proportion
        Std. Err
        [95% Conf. Interval]

        41
        .1463415
        .0551993
        .0556574
        .2917305
```

Tabla 7.10: Solución Stata - Pregunta 7.11

♣ Pregunta 7.12

Solución con calculadora

Si se repitiera el estudio con muestras independientes un número elevado de veces, el 95% de los intervalos de confianza calculados contendrían el verdadero parámetro poblacional. Asumiendo que este intervalo de confianza pertenece a ese 95%, la proporción de mujeres que, con las características (1) y (2), recibe THS durante más de dos años es menor que la de aquellas que, con las mismas características, reciben THS durante menos de 2 años.

Comparación de dos proporciones

SOLUCIÓN 8.1

♣ Pregunta 8.1

Solución con calculadora

	Mujer con cáncer	Mujer sin cáncer	
Consumo AO > 1 año	548	610	1158
Consumo AO < 1 año	163	196	359
	711	806	1517

♣ Pregunta 8.2

Solución con calculadora

$$P(AO > 1 \ a\tilde{n}o) = \frac{1158}{1517} = 0.763$$

♣ Pregunta 8.3

Solución con calculadora

$$p_1 = P(AO > 1 \ a\tilde{n}o \mid C = 1) = \frac{548}{711} = 0.771$$

$$p_0 = P(AO > 1 \ a\tilde{n}o \mid C = 0) = \frac{610}{806} = 0.757$$

♣ Pregunta 8.4

Solución con calculadora

Para responder a esta pregunta, se calcula el valor del estadístico z de la distribución normal:

$$z = \frac{p_0 - p_1}{\operatorname{EE}(p_0 - p_1)}$$

Así,

$$p_0 - p_1 = \frac{610}{806} - \frac{548}{711} = -0.0139$$

y

$$EE(p_0 - p_1) = \sqrt{\frac{1158}{1517} \left(1 - \frac{1158}{1517}\right) \left(\frac{1}{806} + \frac{1}{711}\right)} = 0.0219$$

Por lo tanto,

$$z = -\frac{0.0139}{0.0219} = -0.6366$$

que sigue una distribución normal estándar.

Para calcular el valor *p*, teniendo en cuenta que se trata de un contraste de hipótesis a dos colas:

En la tabla de la distribución normal estandarizada obtenemos para z = -0.64 un valor p = 0.261 que multiplicamos este valor por 2 (contraste de hipótesis a dos colas) obteniendo una p = 0.522.

A la luz de los resultados, se puede decir que no existen diferencias estadísticamente significativas entre ambas proporciones por ser p = 0.5244 > 0.05.

Solución con Excel

En Excel, escribiremos:

=2*(1-DISTR.NORM.ESTAND.N(ABS(-0.6366); VERDADERO))

donde VERDADERO le indica a Excel que utilice la función de distribución en vez de la función de densidad de probabilidad. Esto da un resultado de 0.5244

En **Stata**, el comando **prtest**, junto con su versión inmediata, realiza la misma función. Los parámetros que se le introducen son el número de observaciones de una de las muestras, su proporción, el número de observaciones de la otra muestra y su proporción:

. prtesti 806 `=610/806' 711 `=548/711'

Two-sample test of proportions

x: Number of obs = 806

y: Number of obs = 711

	Mean	Std. Err.	Z	P> z	[95% Conf.	Interval]
Х	.7568238	.0151109			.727207	.7864406
у	.7707454	.0157645			.7398476	.8016432
diff	0139216	.0218371			0567215	.0288783
	under Ho:	.0218679	-0.64	0.524		

diff = prop(x) - prop(y)

z = -0.6366

Ho: diff = 0

Ha: diff <0 Pr(Z < z) = 0.2622

Ha: diff != 0 Pr(|Z| > |z|) = 0.5244 Ha: diff >0 Pr(Z >z) = 0.7378

♣ Pregunta 8.5

Solución con calculadora

Calculados la diferencia de proporciones y su error estándar en la pregunta anterior, la construcción del intervalo de confianza al 95% de la diferencia de proporciones es inmediata:

$$-0.0139 \pm 1.96 \times 0.0219 \Longrightarrow (-0.0567; 0.0289)$$

Es decir, si se repitiera el mismo experimento un número elevado de veces, el 95 % de las veces, el verdadero valor de la diferencia de proporciones estaría incluido entre los extremos del intervalo de confianza que hemos calculado. Al incluir tanto valores positivos como negativos, se puede concluir que las diferencias no son estadísticamente significativas.

Solución con Excel

La comparación de una variable binaria en función de otra variable binaria es equivalente a una prueba t de Student. Así, ordenamos por la variable Caso y etiquetamos las submuestras de AnovOrales que en función de aquella se generan. En el analizador de datos, seleccionamos *Prueba t para dos muestras suponiendo varianzas iguales* e indicamos el nombre de las etiquetas que se refieren a las submuestras antes mencionadas. El intervalo de confianza al 95 % es (-0.0567;0.0289).

Solución con Stata

El comando usado para resolver la pregunta anterior, **prtesti**, retorna también el intervalo de confianza de la comparación de dos proporciones:

(-0.0567; 0.0289)

SOLUCIÓN 8.2

♣ Pregunta 8.6

Solución con Excel

Para obtener la tabla observada procederemos de la siguiente manera:

Aplicaremos la orden CONTAR.SI.CONJUNTO(VAR1; valor; VAR2; valor) a cada celda interior de la tabla. Esta orden cuenta el número de celdas de la base de datos que cumplen unos determinados criterios. Una vez etiquetadas las variables Hijos y Caso, la orden para la casilla 1,1 sería:

=CONTAR.SI.CONJUNTO(Menopausia;1;Caso;1)

	Mujer con cáncer	Mujer sin cáncer
Menopáusicas	=CONTAR.SI.CONJUNTO(Menopausia;1;Caso;1)	
No menopáusicas Total		

Solución con Stata

En Stata,

. tab Menopausia Caso

	Mujer con cáncer	Mujer sin cáncer	Total
Menopáusicas	544	604	1148
No menopáusicas	167	211	378
Total	711	815	1526

♣ Pregunta 8.7

Solución con calculadora

Sean π_0 y π_1 las proporciones poblacionales de menopáusicas en mujeres sin o con cáncer de mama, respectivamente. Así,

$$H_0: \pi_0 \ge \pi_1$$

 $H_1: \pi_0 < \pi_1$

Nota: en este caso el contraste de hipótesis será unilateral (o de 1 cola) ya que se plantea el sentido de la diferencia de proporciones.

♣ Pregunta 8.8

Solución con calculadora

$$p_1 = P(Menop\'{a}usicas \mid C = 1) = \frac{544}{711} = 0.765$$

$$p_0 = P(Menop\'{a}usicas \mid C = 0) = \frac{604}{815} = 0.741$$

Así,

$$p_0 - p_1 = \frac{604}{815} - \frac{544}{711} = -0.024$$

y

$$EE(p_0 - p_1) = \sqrt{\frac{1148}{1526} \left(1 - \frac{1148}{1526}\right) \left(\frac{1}{815} + \frac{1}{711}\right)} = 0.0222$$

Por lo tanto,

$$z = -\frac{0.024}{0.0222} = -1.081$$

que sigue una distribución normal estándar.

Para calcular el valor p, teniendo en cuenta que se trata de un contraste de hipótesis a dos colas,

En la tabla de la distribución normal estandarizada obtenemos para z=1.08 un valor p=0.14.

Solución con Excel

En Excel escribiremos

=DISTR.NORM.ESTAND.N(-1.081; VERDADERO)

donde VERDADERO le indica a Excel que utilice la función de distribución en vez de la función de densidad de probabilidad. Nótese que, en esta ocasión, al tratarse de un contraste de hipótesis a una cola, no hemos calculado el valor absoluto del estadístico de contraste ni hemos multiplicado por dos el valor p resultante. Tampoco se lo hemos restado a 1, ya que se trata de un contraste de cola izquierda.

Esto da un resultado de p = 0.139.

Solución con Stata

En **Stata**, el comando **prtest**, junto con su versión inmediata, realiza la misma función:

. prtesti 815 "=604/815" 711 "=544/711"

Two-sample test of proportions

x: Number of obs = 815

y: Number of obs = 711

				,		
	Mean	Std. Err.	Z	P> z	[95% Conf.	Interval]
Х	.7411043	.0153435			.7110317	.7711769
у	.7651195	.0158984			.7339593	. 7962798
diff	0240153	.0220948			0673203	.0192898
	under Ho:	.0221527	-1.08	0.278		

 $diff = prop(x) - prop(y) \qquad z = -1.0841$

Ho: diff = 0

Ha: diff <0 Ha: diff != 0 Pr(Z < z) = 0.1392 Pr(|Z| > |z|) = 0.2783 Ha: diff >0 Pr(Z >z) = 0.8608

♣ Pregunta 8.9

Solución con calculadora

A la luz de los resultados obtenidos, se puede decir que no existen diferencias estadísticamente significativas entre ambas proporciones por ser p = 0.1392 > 0.05.

Por tanto el estado menopáusico no se asocia en nuestro estudio al cáncer de ma-

♣ Pregunta 8.10

proporciones de menopáusicas en ambos grupos.

Solución con calculadora

Calculados la diferencia de proporciones y su error estándar, la construcción del intervalo de confianza al 95% de la diferencia de proporciones es inmediata:

$$-0.024 \pm 1.96 \times 0.0222 \Longrightarrow (-0.0674; 0.01940)$$

Es decir, si se repitiera el mismo experimento un número elevado de veces, el 95% de las veces, el verdadero valor de la diferencia de proporciones estaría incluido entre los extremos del intervalo de confianza que hemos calculado. Al incluir tanto valores positivos como negativos, se puede concluir que las diferencias no son estadísticamente significativas.

Solución con Excel

La comparación de una variable binaria en función de otra variable binaria es equivalente a una prueba t de Student. Así, ordenamos por la variable Caso y etiquetamos las submuestras de Menopausia que en función de aquella se generan. En el analizador de datos, seleccionamos *Prueba t para dos muestras suponiendo varianzas iguales* e indicamos el nombre de las etiquetas que se refieren a las submuestras antes mencionadas. El intervalo de confianza al 95 % es (-0.0674; 0.01940).

Solución con Stata

El comando usado para resolver la pregunta anterior, **prtesti**, retorna también el intervalo de confianza de la comparación de dos proporciones:

(-0.0674; 0.01940)

SOLUCIÓN 8.3

♣ Pregunta 8.11

Solución con Excel

Antes de nada, hay que crear la variable dicotómica Hijos y codificarla como 0 = No / 1 = S. Para ello, contamos con la variable NumHijos (número de hijos), que podemos transformar de forma sencilla.

En Excel, aplicaremos la función lógica SI:

```
=SI(J2=0;0;1)
```

donde J2 es el valor de la variable *NumHijos* de la primera mujer de la base de datos.

Para obtener la tabla observada, aplicaremos la orden CONTAR.SI.CONJUNTO(VAR1; valor; VAR2; valor) a cada celda interior de la tabla. Esta orden cuenta el número de celdas de la base de datos que cumplen unos determinados criterios. Una vez etiquetadas las variables Hijos y Caso, la orden para la casilla 1,1 sería:

=CONTAR.SI.CONJUNTO(Hijos;1;Caso;1)

Solución con Stata

Antes de nada, hay que crear la variable dicotómica Hijos y codificarla como 0 = No / 1 = S. Para ello, contamos con la variable NumHijos (número de hijos), que podemos transformar de forma sencilla.

En Stata,

```
recode NumHijos (0=0) (1/max=1), generate(Hijos)
```

Para obtener la tabla observada utilizamos el comando tab,

. tab Hijos Caso

Solución con calculadora

Así, la tabla de contingencia queda como sigue:

	Mujer con cáncer	Mujer sin cáncer	
Con hijos	413	500	913
Sin hijos	306	318	624
	719	818	1537

♣ Pregunta 8.12

Solución con calculadora

En este caso, el planteamiento de las hipótesis es bilateral, puesto que los investigadores pretenden evaluar si hay asociación entre haber tenido hijos y desarrollar cáncer de mama, pero no se plantea la dirección de dicha asociación. Así, sean π_0 y π_1 las proporciones poblacionales de mujeres con hijos en aquellas sin o con cáncer de mama, respectivamente. Así,

$$H_0: \pi_0 = \pi_1$$

 $H_1: \pi_0 \neq \pi_1$

♣ Pregunta 8.13

Solución con calculadora

$$p_1 = P \text{ (Con hijos } | C = 1) = \frac{413}{719} = 0.574$$

$$p_0 = P(\text{Sin hijos} \mid C = 0) = \frac{500}{818} = 0.611$$

Así,

$$p_0 - p_1 = \frac{500}{818} - \frac{413}{719} = 0.0368$$

y

$$EE(p_0 - p_1) = \sqrt{\frac{913}{1537} \left(1 - \frac{913}{1537}\right) \left(\frac{1}{818} + \frac{1}{719}\right)} = 0.0251$$

Por lo tanto,

$$z = \frac{0.0368}{0.0251} = 1.4661$$

que sigue una distribución normal estándar.

Para calcular el valor p, teniendo en cuenta que se trata de un contraste de hipótesis a dos colas,

En la tabla de la distribución normal estandarizada obtenemos para z=1.47 un valor p=0.070 que multiplicado por 2 (al ser un contraste bilateral) nos da p=0.14.

Solución con Excel

En **Excel** escribiremos

=2*(1-DISTR.NORM.ESTAND.N(ABS(1.4661); VERDADERO))

donde VERDADERO le indica a Excel que utilice la función de distribución en vez de la función de densidad de probabilidad.

La solución obtenida con Excel es p = 0.0711, como el contraste es bilateral habrá que multiplicar este resultados por 2, con lo que obtendremos un valor p = 0.142.

Solución con Stata

En **Stata**, el comando prtest realiza la misma función:

. prtest Hijos, by(Caso)

Two-sample test of proportions

0: Number of obs = 818

1: Number of obs = 719

	Mean	Std. Err.	Z	P> z	[95% Conf.	Interval]
0	.6112469	.0170439			.5778415	. 6446523
1	. 5744089	.0184392			. 5382687	.6105491
diff	.036838	. 025 1097			0123761	.0860522
	under Ho:	.0251044	1.47	0.142		

diff = prop(0) - prop(1) z = 1.4674

Ho: diff = 0

♣ Pregunta 8.14

Solución con calculadora

A la luz de los resultados arrojados, se puede decir que no existen diferencias estadísticamente significativas entre ambas proporciones por ser p = 0.1423 > 0.05.

♣ Pregunta 8.15

Solución con calculadora

Calculados la diferencia de proporciones y su error estándar, la construcción del intervalo de confianza al 95% de la diferencia de proporciones es inmediata:

$$0.0368 \pm 1.96 \times 0.0251 \Longrightarrow (-0.0124; 0.0861)$$

Es decir, si se repitiera el mismo experimento un número elevado de veces, el 95% de las veces, el verdadero valor de la diferencia de proporciones estaría incluido entre los extremos del intervalo de confianza que hemos calculado. Al incluir el IC tanto valores positivos como negativos, se puede concluir que las diferencias no son estadísticamente significativas.

Solución con Excel

La comparación de una variable binaria en función de otra variable binaria es equivalente a una prueba t de Student. Así, ordenamos por la variable Caso y etiquetamos las submuestras de Hi jos que en función de aquella se generan. En el analizador de datos, seleccionamos *Prueba t para dos muestras suponiendo varianzas iguales* e indicamos el nombre de las etiquetas que se refieren a las submuestras antes mencionadas. El intervalo de confianza al 95 % es (-0.0124; 0.0861).

Solución con Stata

El comando usado para resolver la pregunta anterior, prtest, retorna también el intervalo de confianza de la comparación de dos proporciones:

(-0.0124; 0.0861)

SOLUCIÓN 8.4

♣ Pregunta 8.16

Solución con calculadora

	Mujer con cáncer	Mujer sin cáncer	
Con THS	168	196	364
Sin THS	375	400	775
	543	596	1139

Solución con Excel

Para obtener la tabla observada, aplicaremos la orden CONTAR.SI.CONJUNTO(VAR1; valor; VAR2; valor) a cada celda interior de la tabla. Esta orden cuenta el número de celdas de la base de datos que cumplen unos determinados criterios. Una vez etiquetadas las variables THS y Caso, la orden para la casilla 1,1 sería:

=CONTAR.SI.CONJUNTO(THS;1;Caso;1)

Solución con Stata

. tab THS Caso

♣ Pregunta 8.17

Solución con calculadora

Nuevamente, el planteamiento de las hipótesis es bilateral, puesto que los investigadores pretenden evaluar si hay asociación entre el consumo de THS y desarrollar cáncer de mama, pero no se plantea la dirección de dicha asociación. Así, sean π_0 y π_1 las proporciones poblacionales de mujeres con THS en aquellas sin o con cáncer de mama, respectivamente. Así,

$$H_0: \pi_0 = \pi_1$$

 $H_1: \pi_0 \neq \pi_1$

♣ Pregunta 8.18

Solución con calculadora

$$p_1 = P \text{ (Con THS } | C = 1) = \frac{168}{543} = 0.309$$

$$p_0 = P(\text{Sin THS} \mid C = 0) = \frac{196}{596} = 0.329$$

Así,

$$p_0 - p_1 = \frac{196}{596} - \frac{168}{543} = 0.0195$$

y

$$EE(p_0 - p_1) = \sqrt{\frac{364}{1139} \left(1 - \frac{364}{1139}\right) \left(\frac{1}{596} + \frac{1}{543}\right)} = 0.0277$$

Por lo tanto,

$$z = \frac{0.0195}{0.0277} = 0.70397$$

que sigue una distribución normal estándar.

Para calcular el valor *p*, teniendo en cuenta que se trata de un contraste de hipótesis a dos colas,

En la tabla de la distribución normal estandarizada obtenemos para z=0.70 un valor p=0.242, como es un contraste a dos colas, multiplicaremos este valor por 2, obteniendo p=0.484.

Solución con Excel

En Excel escribiremos

=2*(1-DISTR.NORM.ESTAND.N(ABS(0.70397); VERDADERO))

donde VERDADERO le indica a Excel que utilice la función de distribución en vez de la función de densidad de probabilidad. Eso da un resultado de 0.4815.

Solución con Stata

En **Stata**, el comando prtest realiza la misma función:

. prtest THS if THS != 9, by(Caso)

Two-sample test of proportions

0: Number of obs = 596

1: Number of obs = 543

	Mean	Std. Err.	Z	P> z	[95% Conf.	Interval]
0	. 3288591	.0192437			. 2911421	. 366576
1	.3093923	.0198368			. 2705129	.3482716
diff	.0194668	.0276372			0347012	.0736348
	under Ho:	.0276641	0.70	0.482		

diff = prop(0) - prop(1)

z = 0.7037

Ho: diff = 0

♣ Pregunta 8.19

Solución con calculadora

A la luz de los resultados arrojados, se puede decir que no existen diferencias estadísticamente significativas entre ambas proporciones por ser p = 0.4816 > 0.05.

♣ Pregunta 8.20

Solución con calculadora

Calculados la diferencia de proporciones y su error estándar, la construcción del intervalo de confianza al 95% de la diferencia de proporciones es inmediata:

$$0.0195 \pm 1.96 \times 0.0277 \Longrightarrow (-0.0347; 0.0737)$$

Es decir, si se repitiera el mismo experimento un número elevado de veces, el 95 %

de las veces, el verdadero valor de la diferencia de proporciones estaría incluido entre los extremos del intervalo de confianza que hemos calculado. Al incluir tanto valores positivos como negativos, se puede concluir que las diferencias no son estadísticamente significativas.

Solución con Excel

La comparación de una variable binaria en función de otra variable binaria es equivalente a una prueba t de Student. Así, ordenamos por la variable Caso y etiquetamos las submuestras de THS que en función de aquella se generan. En el analizador de datos, seleccionamos *Prueba t para dos muestras suponiendo varianzas iguales* e indicamos el nombre de las etiquetas que se refieren a las submuestras antes mencionadas. El intervalo de confianza al 95 % es (-0.0347; 0.0737).

Solución con Stata

El comando usado para resolver la pregunta anterior, prtest, retorna también el intervalo de confianza de la comparación de dos proporciones:

(-0.0347; 0.0737)

SOLUCIÓN 8.5

♣ Pregunta 8.21

Solución con calculadora

Sean π_0 y π_1 las proporciones poblacionales de menarquia precoz en mujeres sin o con cáncer de mama, respectivamente. Así,

$$H_0 : \pi_0 \ge \pi_1$$

 $H_1 : \pi_0 < \pi_1$

Nota: en este caso el contraste de hipótesis será unilateral (o de 1 cola) ya que se plantea el sentido de la diferencia de proporciones.

♣ Pregunta 8.22

Solución con calculadora

$$p_1 = P \text{ (Menarquia precoz } | C = 1) = \frac{191}{709} = 0.269$$

$$p_0 = P \text{ (Menarquia precoz } | C = 0) = \frac{170}{810} = 0.210$$

Así,

$$p_1 - p_0 = \frac{191}{709} - \frac{170}{810} = 0.06$$

y

$$EE(p_0 - p_1) = \sqrt{\frac{361}{1519} \left(1 - \frac{361}{1519}\right) \left(\frac{1}{709} + \frac{1}{810}\right)} = 0.0219$$

Por lo tanto,

$$z = -\frac{0.06}{0.0219} = 2.719$$

En la tabla de la distribución normal estandarizada obtenemos para z=2.72 un valor p=0.0033.

Solución con Excel

En **Excel**, escribiremos:

=1-DISTR.NORM.ESTAND.N(2.719; VERDADERO)

donde VERDADERO le indica a Excel que utilice la función de distribución en vez de la función de densidad de probabilidad. Esto da un resultado de 0.00327.

Solución con Stata

En **Stata**, el comando **prtest**, junto con su versión inmediata, realiza la misma función. Los parámetros que se le introducen son el número de observaciones de una de las muestras, su proporción, el número de observaciones de la otra muestra y su proporción:

. prtest Menar11 if Menar11 != 9, by(Caso)

Two-sample test of proportions

0: Number of obs = 810

1: Number of obs = 709

	Mean	Std. Err.	Z	P> z	[95% Conf.	Interval]
0	. 2098765	.0143083			. 1818329	. 2379202
1	. 2693935	.0166614			. 2367377	.3020493
diff	059517	.021962			1025617	0164722
	under Ho:	.0218909	-2.72	0.007		

diff = prop(0) - prop(1)

z = -2.7188

Ho: diff = 0

Ha: diff <0 Pr(Z < z) = 0.0033

Ha: diff != 0 Pr(|Z| > |z|) = 0.0066 Ha: diff >0 Pr(Z > z) = 0.9967

♣ Pregunta 8.23

Solución con calculadora

Sí se asocian. La proporción de mujeres que tuvieron una menarquia precoz es significativamente mayor en las mujeres con cáncer de mama.

♣ Pregunta 8.24

Solución con calculadora

Calculados la diferencia de proporciones y su error estándar, la construcción del intervalo de confianza al 95% de la diferencia de proporciones es inmediata:

$$0.0595 \pm 1.96 \times 0.0219 \Longrightarrow (0.0166; 0.103)$$

Si se repitiera el estudio con muestras independientes un número elevado de veces, el 95 % de los intervalos de confianza calculados contendrían el verdadero parámetro poblacional.

Solución con Excel

La comparación de una variable binaria en función de otra variable binaria es equivalente a una prueba t de Student. Así, ordenamos por la variable Caso y etiquetamos las submuestras de Menar 11 que en función de aquella se generan. En el analizador de datos, seleccionamos *Prueba t para dos muestras suponiendo varianzas iguales* e indicamos el nombre de las etiquetas que se refieren a las submuestras antes mencionadas. El intervalo de confianza al 95% es (0.0166;0.103).

Solución con Stata

El comando usado para resolver la pregunta anterior, prtest, retorna también el intervalo de confianza de la comparación de dos proporciones:

(0.0166; 0.103)

SOLUCIÓN 9.1

♣ Pregunta 9.1

Solución con calculadora

	Mujer con cáncer	Mujer sin cáncer	Total
Consumo AO > 1 año	548	610	1158
Consumo AO < 1 año	163	196	359
Total	711	806	1517

Tabla 9.1: Relación entre consumo de AO y desarrollo de cáncer de mama (**Tabla observada**)

Para completar la **tabla de valores esperados** utilizaremos la siguiente fórmula:

$$E_{i,j} = \frac{n_{i.} \times n_{.j}}{n}$$

Por ejemplo, el valor esperado en la casilla 1,1 es:

$$E_{1,j} = \frac{n_{1.} \times n_{.j}}{n} = \frac{1158 \times 711}{1517} = 542.74$$

	Mujer con cáncer	Mujer sin cáncer	Total
Consumo AO > 1 año	542.74 1158×711 1517	615.26 1158×806 1517	1158
Consumo AO < 1 año	168.26 359×711 1517	190.74 359×806 1517	359
Total	711	806	1517

Tabla 9.2: Relación entre consumo de AO y desarrollo de cáncer de mama (**Tabla esperada**)

Solución con Excel

Para preparar la tabla de datos observados en **Excel** puede utilizarse una *tabla dinámica* o la opción CONTARSICONJUNTO .

Solución con Stata

El comando tabulate con la opción expected produce la misma salida que la del cuadro «Solución»:

tabulate AnovOrales Caso, expected

♣ Pregunta 9.2

Solución con calculadora

$$\chi^{2} = \sum \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

$$= \frac{(548 - 542.7)^{2}}{542.7} + \frac{(610 - 615.3)^{2}}{615.3} + \frac{(163 - 168.3)^{2}}{168.3} + \frac{(196 - 190.7)^{2}}{190.7}$$

$$= 0.41$$

El valor de la ji cuadrado (0.41) es igual al cuadrado del valor obtenido aplicando la prueba z $(0.636^2 = 0.4053)$. Ambos procedimientos son válidos para resolver la comparación de dos proporciones.

Solución con Excel

Una vez se tienen las tablas observada y esperada, el estadístico χ^2 se obtiene aplicando la fórmula mediante operaciones matriciales, es decir, se escribe en una celda:

(RANGO OBSERVADO-RANGO ESPERADO)^2/RANGO ESPERADO

y se pulsa la combinación Ctrl + Mayús + Intro: 0.41.

El comando tabulate con la opción chi2 produce la misma salida que la del cuadro «Solución»:

tabulate AnovOrales Caso, chi2:0.41

♣ Pregunta 9.3

Solución con calculadora

En la tabla de la ji cuadrado, con 1 g.l. el valor obtenido de χ^2 (0.41) se sitúa entre 0.27 y 0.45, luego 0.60 > p > 0.50

Solución con Excel

En **Excel** se obtiene el valor exacto de p con la orden:

DISTR.CHICUAD.CD (0.41;1)

, donde **0.41** es el valor del estadístico de contraste (es decir de χ^2 calculado arriba) y **1** son los grados de libertad (se obtienen multiplicado el número de filas -1 por el número de columnas -1: $(f-1)\times(c-1)$).

Se obtiene p = 0.524

Solución con Stata

El comando tabulate con la opción chi2 produce la misma salida que la del cuadro «Solución»:

tabulate AnovOrales Caso, chi2:0.524.

♣ Pregunta 9.4

Solución con calculadora

Valor crítico de χ^2 (para tablas de 1 grado de libertad y nivel de significación de (0.05)=3.84

Solución con Excel

En Excel se obtiene con la orden:

INVCHICUAD.CD (0.05;1)

, donde 0.05 es el nivel de significación y 1 los g.l. de la tabla de contingencia.

Solución con Stata

En Stata, la función se denomina invchi2tail, y se le suministran los grados de libertad y el nivel de significación:

display invchi2tail(1, 0.05):3.84.

♣ Pregunta 9.5

Solución con calculadora

A la vista de los resultados podemos concluir:

- 1) El consumo de anovulatorios orales y el cáncer de mama son variables independientes.
- 2) La proporción de consumidoras de anovulatorios orales entre las mujeres con o sin cáncer de mama no presenta diferencias estadísticamente significativas.

Solución con Stata

En Stata todos los cálculos anteriores se realizarían con la siguiente orden:

. tab AnovOrales Caso, chi

	Ca	S0	
Anov0rales	0	1	Total
0	196 610	163	359
1	610	548	1,158
Total	806	711	1,517

Pearson chi2(1) = 0.4053 Pr = 0.524

En general, para obtener el **valor crítico** del estadístico χ^2 en Stata se utiliza la orden:

. di invchi2tail(df, p)

, donde df son los grados de libertad y p la p.

En nuestro estudio, como trabajamos con una tabla de 2x2 (anovulatorios (Si/No) y cáncer (Si/No) sustituiremos los g.l. por 1:

. di invchi2tail(1, 0.05)

El resultado obtenido es: 3.8414588.

SOLUCIÓN 9.2

♣ Pregunta 9.6

Solución con calculadora

A partir de la tabla observada (la podemos hacer en Excel con la opción tabla dinámica)

	Mujer con cáncer	Mujer sin cáncer	Total
THS	168	196	364
No THS	375	400	775
Total	543	596	1139

Tabla 9.3: Relación entre THS y desarrollo de cáncer de mama (Tabla observada)

vemos que hay 168 consumidoras de THS entre las 543 mujeres con cáncer de mama luego la proporción de consumo de THS es

$$\frac{168}{543} = 0.3094 = 30.94\%$$

, mientras que de las 596 mujeres sin cáncer de mama, 196 consumieron THS,

$$\frac{196}{596} = 0.3289 = 32.89\%$$

♣ Pregunta 9.7

Solución con calculadora

Para ello calcularemos la tabla de efectivos esperados y aplicaremos la prueba χ^2 .

Para completar la tabla de valores esperados utilizaremos la siguiente fórmula:

$$E_{i,j} = \frac{n_{\rm i.} \times n_{.j}}{n}$$

Por ejemplo, el valor esperado en la casilla 1,1 es:

$$E_{1,j} = \frac{n_{1.} \times n_{.j}}{n} = \frac{364 \times 543}{1139} = 173.53$$

	Mujer con cáncer	Mujer sin cáncer	Total
THS	$ \begin{array}{r} 173.53 \\ \underline{364 \times 543} \\ \hline 1139 \end{array} $	$ \begin{array}{c c} 190.47 \\ & \frac{364 \times 596}{1139} \end{array} $	364
No THS	$ \begin{array}{r} 369.47 \\ \hline 775 \times 543 \\ \hline 1139 \end{array} $	405.53 775×596 1139	775
Total	543	596	1139

Tabla 9.4: Relación entre THS y desarrollo de cáncer de mama (Tabla esperada)

Cálculo del estadístico de contraste χ^2 :

$$\chi^{2} = \sum \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

$$= \frac{(168 - 173.5)^{2}}{173.5} + \frac{(196 - 190.5)^{2}}{190.5} + \frac{(375 - 369.5)^{2}}{369.5} + \frac{(400 - 405.5)^{2}}{405.5}$$

$$= 0.495$$

Nota: Este problema se ha resuelto en el capítulo anterior (problema 8.4) aplicando la distribución normal. Puede comprobarse que elevando al cuadrado el valor z se obtiene el estadístico ji cuadrado $(0.70397^2 = 0.495)$

Solución con Excel

Para preparar la tabla de datos observados en **Excel** puede utilizarse una *tabla dinámica* o la opción CONTARSICONJUNTO .

Una vez se tienen las tablas observada y esperada, el estadístico χ^2 se obtiene aplicando la fórmula mediante operaciones matriciales, es decir, se escribe en una celda:

(RANGO_OBSERVADO-RANGO_ESPERADO)^2/RANGO_ESPERADO

y se pulsa la combinación Ctrl + Mayús + Intro: 0.495.

El comando tabulate con las opciones expected y chi2 produce la misma salida que la del cuadro «Solución»:

tabulate THS Caso, expected chi2: $\chi^2 = 0.495$.

♣ Pregunta 9.8

Solución con calculadora

En la tabla de la ji cuadrado, con 1 g.l. el valor obtenido de χ^2 (0.495) se sitúa entre 0.45 y 0.71, lo que corresponde a 0.5 > p > 0.40

Conclusión: El consumo de THS no se asocia al cáncer de mama.

Solución con Excel

En **Excel** se obtiene el valor exacto de p con la orden:

DISTR.CHICUAD.CD (0.495;1)

, donde **0.495** es el valor del estadístico de contraste (es decir de χ^2 calculado arriba) y **1** son los grados de libertad (se obtienen multiplicado el número de filas -1 por el número de columnas $-1:(f-1)\times(c-1)$).

Se obtiene un valor p = 0.482, por lo tanto, el consumo de THS no se asocia al cáncer de mama.

Con un solo comando podemos obtener el porcentaje de expuestas a THS en los dos grupos (con y sin cáncer de mama) y el estadístico de contraste χ^2

tab THS Caso, col chi

	Ca	S0	
THS	0	1	Total
0	400	375	775
	67.11	69.06	68.04
1	196	168	364
	32.89	30.94	31.96
Total	596	543	1,139
	100.00	100.00	100.00

Pearson chi2(1) = 0.4952 Pr = 0.482

SOLUCIÓN 9.3

♣ Pregunta 9.9

Solución con calculadora

Observe que la variable AFamCancer (antecedentes familiares) tiene 4 categorías (0-3) mientras que la variable cáncer de mama tiene 2 (0,1). Por tanto, las tablas de contingencia de este problema serán tablas de 4 filas (f=4) y 2 columnas (c=2).

Antecedentes familiares (AFamCancer)	Mujer con cáncer	Mujer sin cáncer	Total
Sin antecedentes (0)	413	573	986
1: Familiar 1er grado	99	60	159
2: Familiar 20 grado	90	58	148
3: Otro familiar	117	128	245
Total	719	819	1538

Tabla 9.5: Relación entre Antecedentes familiares y desarrollo de cáncer de mama (**Tabla observada**)

Antecedentes familiares (AFamCancer)	Mujer con cáncer	Mujer sin cáncer	Total
Sin antecedentes (0)	460.95	525.05	986
1: Familiar 1er grado	74.33	84.67	159
2: Familiar 2o grado	69.19	78.81	148
3: Otro familiar	114.54	130.46	245
Total	719	819	1538

Tabla 9.6: Relación entre Antecedentes familiares y desarrollo de cáncer de mama (**Tabla esperada**)

Solución con Excel

Para preparar la tabla de datos observados en Excel puede utilizarse una tabla dinámica o la opción CONTARSICONJUNTO .

Para obtener la tabla observada con los porcentajes de mujeres con antecedentes familiares de cáncer de mama en cada grupo, añadiremos la opción col al comando tab:

. tab AFamCancer Caso, col

	Caso		
AFamCancer	0	1	Total
0	573	413	986
	69.96	57.44	64.11
1	60	99	159
	7.33	13.77	10.34
2	58	90	148
	7.08	12.52	9.62
3	128	117	245
	15.63	16.27	15.93
Total	819	719	1,538
	100.00	100.00	100.00

♣ Pregunta 9.10

Solución con calculadora

Sí, en este estudio puede aplicarse la prueba χ^2 ya que todos los efectivos de la tabla esperada son mayores de 5.

♣ Pregunta 9.11

Solución con calculadora

Para el cálculo de los g.l. se aplica la fórmula: $g.l. = (filas - 1) \times (columnas - 1)$ En este caso: $g.l. = (4-1) \times (2-1) = 3$

♣ Pregunta 9.12

Solución con calculadora

$$\chi^{2} = \sum \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

$$= \frac{(413 - 460.9)^{2}}{460.9} + \frac{(573 - 525.1)^{2}}{525.1} + \frac{(99 - 74.3)^{2}}{74.3} + \frac{(60 - 84.7)^{2}}{84.7} + \frac{(90 - 69.2)^{2}}{69.2} + \frac{(58 - 78.8)^{2}}{78.8} + \frac{(117 - 114.5)^{2}}{114.5} + \frac{(128 - 130.5)^{2}}{130.5}$$

$$= 36.595$$

Solución con Stata

Para el cálculo del estadístico χ^2 y su valor p, añadiremos la opción chi al comando tab:

. tab AFamCancer Caso, chi

	Caso		
AFamCancer	0	1	Total
0	573	413	986
	69.96	57.44	64.11
1	60	99	159
	7.33	13.77	10.34
2	58	90	148
	7.08	12.52	9.62
3	128	117	245
	15.63	16.27	15.93
Total	819	719	1,538
	100.00	100.00	100.00

Pearson chi2(3) = 36.5951 Pr = 0.000

♣ Pregunta 9.13

Solución con calculadora

En la tabla de la ji cuadrado, con 3 g.l. el valor obtenido de χ^2 (36.595) se sitúa por encima de 16.27, luego p < 0.001

Solución con Excel

En **Excel** se obtiene el valor exacto de p con la orden:

DISTR.CHICUAD.CD (36.595;3)

, siendo 36.595 el valor de la χ^2 y 3 los grados de libertad.

De esta forma obtenemos una $p = 1.131.04 \times 10^{-8}$.

Para la mayor parte de las aplicaciones de estadística en medicina, no necesitamos expresar la p con tanta precisión, podríamos poner simplemente p < 0.001.

♣ Pregunta 9.14

Solución con calculadora

Los antecedentes familiares de cáncer de mama se asocian al desarrollo de cáncer de mama. La tabla de valores observados muestra que las mujeres con cáncer de mama presentan un porcentaje claramente superior de antecedentes familiares de primer (13.8 % vs 7.3 %) y 2º grado (12.5 % vs 7.1 %) que las mujeres sin cáncer.

SOLUCIÓN 9.4

Nota: este problema plantea valorar la asociación entre tener hijos y desarrollar cáncer de mama, utilizando una información más detallada de la variable hijos que la expuesta en el problema 8.3 del capítulo anterior. Para valorar la relación entre tener o no tener hijos (variable dicotómica) y tener o no cáncer de mama podemos aplicar indistintamente la prueba z o la ji cuadrado. Sin embargo, si queremos evaluar si tener un solo hijo o más cambia la asociación respecto a no tenerlos, la prueba z no podrá aplicarse porque una de las variables tiene más de dos categorías.

♣ Pregunta 9.15

Solución con calculadora

Tabla observada

	Mujer con cáncer	Mujer sin cáncer	Total
2 o más hijos	222	282	504
1 hijo	191	218	409
NO hijos	306	319	625
Total	719	819	1538

Tabla esperada al azar

	Mujer con cáncer	Mujer sin cáncer
2 o más hijos	235.62	268.38
1 hijo	191.20	217.80
NO hijos	292.18	332.82

$$E_{i,j} = \frac{n_{i.} \times n_{.j}}{n}$$

Cálculo de la ji cuadrado

$$\chi^{2} = \sum \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

$$= \frac{(222 - 235.6)^{2}}{235.6} + \frac{(282 - 268.4)^{2}}{268.4} + \frac{(191 - 191.2)^{2}}{191.2} + \frac{(218 - 217.8)^{2}}{217.8} + \frac{(306 - 292.2)^{2}}{292.2} + \frac{(319 - 2332.8)^{2}}{332.8}$$

$$= 2.705$$

Solución con Excel

Para preparar la tabla de datos observados en **Excel** puede utilizarse una *tabla dinámica* o la opción CONTARSICONJUNTO .

Una vez se tienen las tablas observada y esperada, el estadístico χ^2 se obtiene aplicando la fórmula mediante operaciones matriciales, es decir, se escribe en una celda:

(RANGO_OBSERVADO-RANGO_ESPERADO) 2RANGO_ESPERADO

y se pulsa la combinación Ctrl + Mayús + Intro:2.705.

Solución con Stata

En Stata todos los cálculos anteriores se realizarían con la siguiente orden:

. tab Hijos_cat Caso , chi

	Caso				
Hijos_ cat	0	1	Total		
0	319	306	625		
1	218	191	409		
2	282	222	504		
Total	819	719	1,538		

Pearson chi2(2) = 2.7051 Pr = 0.259

♣ Pregunta 9.16

Solución con calculadora

En la tabla de la ji cuadrado, con 2 g.l. el valor obtenido de χ^2 (2.705) se sitúa entre 2.41 y 3.22, luego 0.30 > p > 0.20

Solución con Excel

En **Excel** se obtiene el valor exacto de p con la orden:

DISTR.CHICUAD.CD (2.705;2)

siendo 2.705 el valor de la χ^2 y 2 los grados de libertad ((3-1)X(2-1)).

Se obtiene un valor p = 0.259

♣ Pregunta 9.17

Solución con Excel

En Excel se obtiene con la orden:

INVCHICUAD.CD (0.05;2)

, donde 0.05 es el nivel de significación y 2 los g.l. de la tabla de contingencia.

La solución es: $\chi^2 = 5.991$

Solución con Stata

En Stata utilizamos la función invchi2tail:

. di invchi2tail(2,0.05)

El resultado obtenido es: 5.9914645

♣ Pregunta 9.18

Solución con calculadora

En nuestro estudio no se ha encontrado una relación estadísticamente significativa entre el número de hijos (categorizado como sin hijos, 1 hijo o más hijos) y el cáncer de mama.

Cálculo del tamaño de muestra

SOLUCIÓN 10.1

♣ Pregunta 10.1

Solución con calculadora

Comparación de una proporción.

- IC = 90%; $Error \alpha = 10\% \rightarrow z_{a/2} = 1.64$
- $Precision = 2\% \rightarrow d = 0.02$
- Frecuencia esperada $(p) = 15\% \rightarrow p = 0.15$

$$n = \frac{\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} p (1 - p)}{d^{2}}$$

$$= \frac{(1.64 + 0.854)^{2} \times 0.15 \times 0.85}{0.02^{2}} = 1976.3 \rightarrow 1977 \text{ escolares}$$

Solución con Excel

Error (b)	0.2	zb	0.85
Error (a)	0.10	Z	1.64
Precisión (d)	0.02		
Frecuencia esperada (p)	0.15		
	Valor		Función
Tamaño muestra (n)	1976.282	((z+	$(-zb)^2*p*(1-p))/(d^2)$

Solución con Stata

Si utilizamos Stata como calculadora deberemos introducir la siguiente operación: . di (1.64+.85)^2*.15*.85/.02^2

Resultado: 1976.2819

A través, de comando power oneproportion. En la orden power oneproportion, el primer número que se pone NO es la proporción que dé la muestra (0.15) sino la hipótesis nula que, en este caso, podría ser 0.13 o 0.17.

```
. power oneproportion .13, diff(.02) alpha(.10) test(wald)
      Performing iteration ...
      Estimated sample size for a one-sample proportion test
      Wald z test
      Ho: p = p0 versus Ha: p != p0
      Study parameters:
      alpha = 0.1000
      power = 0.8000
      delta = 0.0200
         p0 = 0.1300
         pa = 0.1500
       diff = 0.0200
      Estimated sample size:
          N = 1,971
. power one proportion .17, diff(-.02) alpha(.10) test(wald)
      Performing iteration ...
      Estimated sample size for a one-sample proportion test
      Wald z test
      Ho: p = p0 versus Ha: p != p0
      Study parameters:
      alpha = 0.1000
      power = 0.8000
      delta = 0.0200
         p0 = 0.1700
         pa = 0.1500
       diff = -0.0200
      Estimated sample size:
          N = 1,971
```

SOLUCIÓN 10.2

♣ Pregunta 10.2

Solución con calculadora

Comparación de una media.

- IC = 95%; $Error \alpha = 5\% \rightarrow z_{a/2} = 1.96$
- Diferencia minima que se desea detectarPrecisin(d) = 5
- $Varianza(s^2) = 200s = 14.14$

$$n = \frac{\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} s^{2}}{d^{2}}$$

$$= \frac{\left(1.64 + 0.854\right)^{2} \times 200}{5^{2}} = 63.17 \rightarrow 64 \text{ pacientes}$$

Solución con Excel		
Error (b)	0.2	z_{β} 0.85
Error (a)	0.05	z 1.96
Precisión (d)	5	
Varianza (s2)	200.00	
	Valor	Función
Tamaño muestra (n)	63.1688	(D16+D15)^2*B18/B17^2
		_

. power onemean 55 60, sd(14.14) (55 y 60 son dos edades arbitrarias con diferencia 5)

Performing iteration \ldots Estimated sample size for a one-sample mean test t test

Study parameters:

Ho: m = m0 versus Ha: m != m0

alpha = 0.0500 power = 0.8000 delta = 0.3536 m0 = 0.5500 ma = 0.6000 sd = 14.1400

Estimated sample size:

N = 65

SOLUCIÓN 10.3

♣ Pregunta 10.3

Solución con calculadora

Comparación de dos proporciones

- IC = 95%; $Errora = 5\% \rightarrow z_{a/2} = 1.96$
- $Potencia = 90\%; b = 10\% \rightarrow z_b = 1.28 <$
- Diferencia minima que se desea detectar = 3% → Precision(d) = 0.03
- Frecuencia(p) = $70\% \rightarrow p = 0.7$

$$Varianza(s^2) = p(1-p) = 0.7 \times 0.3 = 0.21$$

$$n = \frac{2(z_{\alpha/2} + z_{\beta})^{2} s^{2}}{d^{2}}$$

$$= \frac{2(1.96 + 1.28)^{2} \times 0.21}{0.03^{2}} = 4899 \text{ pacientes por grupo}$$

Solución con Excel

Error (a)	0.05	z _a 1.96
Potencia (b)	0.10	z _b 1.28
Precision (d)	0.03	
Frecuencia esperada (p)	0.7	
	Valor	Función
Desviación estandár (s)	0.458258	$RAIZ(p^*(1-p))$
Tamaño muestra (n)	4898.88	$(2*(za+zb)^2*(s^2))/(d^2)$

```
. power twoproportions .7 .73,beta(.1)

Performing iteration ...
Estimated sample sizes for a two-sample proportions test
Pearson's chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
beta = 0.1000
delta = 0.0300 (difference)
p1 = 0.7000
p2 = 0.7300

Estimated sample size:
N = 9514
N per group = 4757
```

SOLUCIÓN 10.4

♣ Pregunta 10.4

Solución con calculadora

Comparación de dos medias.

•
$$IC = 90\%$$
; $Errora = 10\% \rightarrow z_{a/2} = 1.64$

$$\blacksquare \ \textit{Potencia} = 90\,\%; b = 10\,\% \rightarrow z_{\text{b}} = 1.28$$

- Diferencia minima que se desea detectar = $5\% \rightarrow Precision(d) = 0.05$
- Desviacinestndaresperada(s) = 10

$$n = \frac{2(z_{\alpha/2} + z_{\beta})^{2} s^{2}}{d^{2}}$$

$$= \frac{2(1.64 + 1.28)^{2} \times 10^{2}}{5^{2}} = 68.2112 \rightarrow 69 \text{ pacientes}$$

Solución con Excel

Error (a)	0.10	za 1.64
Potencia (b)	0.10	z_{β} 1.28
Precision (d)	5.00	,
Desviación estandar (s)	10	
	Valor	Función
Tamaño muestra (n)	68.2112	$(2*(za+zb)^2*(s^2))/(d^2)$

```
. power twomeans 15 20, sd(10) power(.9) alpha(.1)

Performing iteration ...

Estimated sample sizes for a two-sample means test t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.1000
power = 0.9000
delta = 5.0000
m1 = 15.0000
m2 = 20.0000
sd = 10.0000

Estimated sample size:
N = 140
N per group = 70
```

SOLUCIÓN 10.5

♣ Pregunta 10.5

Solución con calculadora

Potencia estadística.

• A partir de la fórmula empleada para calcular el tamaño muestral, se despeja z_{β} :

$$n = \frac{2\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} s^{2}}{d^{2}} \Rightarrow z_{\beta} = \sqrt{\frac{nd^{2}}{2s^{2}}} - z_{\frac{\alpha}{2}}$$

• Y se sustituye por los datos del problema: d=5, s=10, α =0.05, y n=60 (los pacientes que hubo realmente en cada grupo):

$$z_{\beta} = \sqrt{\frac{nd^2}{2s^2}} - z_{\alpha/2} = \sqrt{\frac{60 \times 5^2}{2 \times 10^2}} - 1.64 = 1.09$$

■ Mirando este valor de z en la tabla normal se obtiene la probabilidad bajo la curva (=1-p):

$$\beta = 0.14 \rightarrow potencia = 0.86$$

Solución con Excel

Error (a)	0.10	za	1.64
Precision (d)	5		
Desviación estandar (s)	10		
Tamaño muestra (n)	60		
Potencia estadística	Valor		Función
$\overline{z_{eta}}$	1.099		RAIZ((n*(d^2))/(2*(s^2)))-za
\dot{eta}	0.864	DIST	R.NORM.ESTAND.N(zb;VERDADERO)

```
. power twomeans 15 20, sd(10) n(120) alpha(.1)

Estimated power for a two-sample means test
    t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.1000
    N = 120
N per group = 60
delta = 5.0000
m1 = 15.0000
m2 = 20.0000
sd = 10.0000

Estimated power:
    power = 0.8595
```

SOLUCIÓN 10.6

♣ Pregunta 10.6

Solución con calculadora

$$n = \frac{\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} p (1 - p)}{d^{2}}$$

$$= \frac{(0.85 + 1.96)^{2} \times 0.2 \times 0.8}{0.04^{2}} = 789.6 \rightarrow 790 \text{ escolares}$$

Solución con Excel

Error (b)	0.2	z_{β}	0.85
Error (a)	0.05	z	1.96
Precisión (d)	0.04		
Frecuencia esperada (p)	0.2		
	Valor		Función
Tamaño muestra (n)	789.61	((z+	$-zb)^2*p*(1-p))/(d^2)$

Solución con Stata

. power one proportion .16, diff(.04) alpha(.05) test(wald)

Estimated sample size for a one-sample proportion test $\mbox{Wald } \mbox{z test}$

Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500 power = 0.8000 delta = 0.0400 p0 = 0.1600 pa = 0.2000 diff = 0.0400

Estimated sample size:

N = 785

Solución con calculadora

$$n = \frac{\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} p (1 - p)}{d^{2}}$$

$$= \frac{(0.85 + 1.96)^{2} \times 0.8 \times 0.2}{0.04^{2}} = 789.6 \rightarrow 790 \text{ escolares}$$

Solución con Excel

Error (b)	0.2	z_{β}	0.85
Error (a)	0.05	z	1.96
Precisión (d)	0.04		
Frecuencia esperada (p)	0.8		
	Valor		Función
Tamaño muestra (n)	789.61	((z+	$(zb)^2 p^*(1-p))/(d^2)$

Solución con Stata

. power one proportion .76, diff(.04) alpha(.05) test(wald)

Estimated sample size for a one-sample proportion test $\mbox{Wald}\ \mbox{z test}$

Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500 power = 0.8000 delta = 0.0400 p0 = 0.7600 pa = 0.8000 diff = 0.0400

Estimated sample size:

N = 785

Solución con calculadora

$$n = \frac{\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} p (1 - p)}{d^{2}}$$

$$= \frac{(0.85 + 1.96)^{2} \times 0.5 \times 0.5}{0.04^{2}} = 1233.8 \rightarrow 1234 \text{ escolares}$$

Solución con Excel

Error (b)	0.2	z_{β}	0.85
Error (a)	0.05	z	1.96
Precisión (d)	0.04		
Frecuencia esperada (p)	0.5		
	Valor		Función
Tamaño muestra (n)	1233.766	((z+	$(-zb)^2p^*(1-p)/(d^2)$

Solución con Stata

. power one proportion .46, diff(.04) alpha(.05) test(wald)

Estimated sample size for a one-sample proportion test $\mbox{Wald}\ \mbox{z}$ test

Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500 power = 0.8000 delta = 0.0400 p0 = 0.4600 pa = 0.5000 diff = 0.0400

Estimated sample size:

N = 1,227

Solución con calculadora

$$n = \frac{\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} p (1 - p)}{d^{2}}$$

$$= \frac{(0.85 + 2.58)^{2} \times 0.2 \times 0.8}{0.04^{2}} = 1233.8 \rightarrow 1234 \text{ escolares}$$

Solución con Excel

Error (b)	0.2	z_{β}	0.85
Error (a)	0.01	z'	2.6
Precisión (d)	0.04		
Frecuencia esperada (p)	0.2		
	Valor		Función
Tamaño muestra (n)	1190.25	((z+	$(-zb)^2p^*(1-p)/(d^2)$

Solución con Stata

. power one proportion .16, diff(.04) alpha(.01) test(wald)

Estimated sample size for a one-sample proportion test $\mbox{Wald}\ \mbox{z test}$

Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.1000 power = 0.8000 delta = 0.0400 p0 = 0.1600 pa = 0.2000 diff = 0.0400

Estimated sample size:

N = 1,168

Solución con calculadora

$$n = \frac{\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} p (1 - p)}{d^{2}}$$

$$= \frac{(0.85 + 1.96)^{2} \times 0.2 \times 0.8}{0.02^{2}} = 3158.4 \rightarrow 3159 \text{ escolares}$$

Solución con Excel

Error (b)	0.2	z_{β}	0.85
Error (a)	0.05	z	1.96
Precisión (d)	0.02		
Frecuencia esperada (p)	0.2		
	Valor		Función
Tamaño muestra (n)	3158.44	((z+	$(zb)^2 p^*(1-p))/(d^2)$

Solución con Stata

. power one proportion .18, diff(.02) alpha(.05) test(wald)

Estimated sample size for a one-sample proportion test $\mbox{Wald}\ \mbox{z}$ test

Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500 power = 0.8000 delta = 0.0200 p0 = 0.1800 pa = 0.2000 diff = 0.0200

Estimated sample size:

$$N = 3,140$$

Solución con calculadora

Tamaño muestral (partos)	790	790	1234	1191	3159
Frecuencia esperada	0.2	0.8		0.2	0.2
Error α	5%	5%		1%	5%
Precisión	4%	4%		4%	2%

Conclusiones:

- 1. Con una la frecuencia esperada es 50 % se requiere el mayor tamaño muestral porque es cuando p(1-p) es máximo. Es lo que se conoce como "máxima indeterminación".
- 2. Si se reduce el error alpha al 1 %, somos más precisos, entonces se incrementa el tamaño muestral, ya que entonces alpha medios es 0.005, es decir deja por debajo el 99.5 % de la distribución frente al error alpha del 5 % donde alpha medios es 0.025, es decir, deja por debajo el 97.5 % de la distribución.
- 3. Reducir la precisión a la mitad supone multiplicar por 4 el tamaño muestral (790partosx4 = 3160partos)

Regresión y correlación

SOLUCIÓN 11.1

♣ Pregunta 11.1

Solución con calculadora

Con los datos del enunciado podemos calcular directamente el coeficiente de correlación aplicando la fórmula:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_y} = \frac{144.42}{12.09 \times 33.69} = 0.35$$

Interpretación: El coeficiente de correlación lineal vale 0.354, por tanto se trata de una relación lineal moderada positiva.

Solución con Excel

En Excel se obtiene con la orden PEARSON(Pisa;pib) . Tras el paréntesis se pone el nombre de las variables dependiente (Pisa) e independiente (pib) si se han creado etiquetas para definir los datos.

Si no se han creado etiquetas, se definirá la columna que contiene esos campos de valor para toda la población de estudio en la base de datos. En este caso utilizaríamos la orden PEARSON(L1:L31;C1:C31), donde la variable Pisa ocupa las celdas L1 a L31.

La solución que se obtiene es r = 0.354

Solución con Stata

En Stata se utilizará correlate: . correlate pisa pib

$$(obs=30)$$

Solución con calculadora

Esta pregunta se responde calculando el coeficiente de determinación.

$$r^2 = 0.35^2 = 0.13$$

Interpretación: El 13% de la puntuación obtenida en el PISA puede explicarse por el PIB del país.

Solución con Excel

En Excel se obtiene también con la orden: =COEFICIENTE.R2(Pisa;pib)

Solución con Stata

Ver solución en la pregunta 11.4.

♣ Pregunta 11.3

Solución con calculadora

Esta pregunta se responde calculando la pendiente de la recta.

$$\widehat{\beta_1} = r \times \frac{s_y}{s_x} = 0.35 \times \frac{33.69}{12.09} = 0.988$$

Interpretación: Por cada 1000 dólares de aumento del PIB aumenta 0.988 puntos la nota del PISA.

Solución con Excel

En Excel podemos utilizar las siguientes orden: =PENDIENTE(Pisa;pib)

Solución con Stata

Ver solución en la pregunta 11.14.

Solución con calculadora

Para responder a esta pregunta calcularemos la intersección de la recta en el origen (x=0).

$$\widehat{\beta_0} = m_{\text{pisa}} - \widehat{\beta_1} \times m_{\text{pib}} = 439.12 - 0.988 \times 20.72 = 463.77$$

Solución con Excel

En **Excel** podemos utilizar las siguientes orden: =INTERSECCION.EJE(Pisa;pib) =INTERSECCION.EJE(Pisa;pib)

Para obtener todos los parámetros anteriores (ejercicios 11.1 a 11.4) de una sola vez podemos utilizar el **analizador de datos de Excel** y seleccionar Regresión.

Con esta opción hay que introducir las etiquetas de las variables Y(Pisa) y X(pib).

Estadísticas de la regresión	
Coeficiente de correlación múltiple	0.35445414
Coeficiente de determinación R^2	0.12563773
R^2 ajustado	0.09441051
Error típico	32.0615206
Observaciones	30

Análisis d	e varianza				_
	Grados libertad	Suma cua- drados	Promedio cuadrados	F	Valor crítico F
Regresión	1	4135.756	4135.756	4.023	0.055
Residuos	28	28782.351	1027.941		
Total	29	32918.107			

	Coef.	Error típico	Estdístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	463.776	15.758	29.431	1.3×10 ⁻²²	431.5	496.055
PIB	0.988	0.492	2.006	0.0546	-0.021	1.996

Solución con Stata para los ejercicios 11.1 a 11.4.

En **Stata** con el comando regress obtendremos el análisis de regresión completo:

. regress pisa pib

				Number of obs	= 30
Source	SS	df	MS	F(1, 28)	= 4.02
Model	4135.75717	1	4135.75717	Prob>F	= 0.0546
Residual	28782.3509	28	1027.9411	R-squared	= 0.1256
Total	32918.1081	29	1135.10718	Adj R-squared	= 0.0944
	'			Root MSE	= 32.062
pisa	Coef.	Std. Err.	t	P> t [95% Con	f. Interval]

pib .9875088 .4923201 2.01 0.055 -.0209632 1.995981 cons 463.7763 15.75789 29.43 0.000 431.4977 496.0549

♣ Pregunta 11.5

Solución con calculadora

■ Relación PIB-PISA matemáticas:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_y} = \frac{150.6}{12.09 \times 38.6} = 0.32$$

$$\widehat{\beta}_1 = r \times \frac{s_y}{s_x} = 0.32 \times \frac{38.6}{12.09} = 1.03$$

$$\widehat{\beta}_0 = m_{\text{pisamate}} - \widehat{\beta}_1 \times m_{\text{pib}} = 492.4 - 1.03 \times 20.72 = 463.77$$

• Relación PIB-PISA ciencias:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_y} = \frac{139}{12.09 \times 34.4} = 0.334$$

$$\widehat{\beta}_1 = r \times \frac{s_y}{s_x} = 0.33 \times \frac{34.4}{12.09} = 0.95$$

$$\widehat{\beta}_0 = m_{\text{pisaciencias}} - \widehat{\beta}_1 \times m_{\text{pib}} = 498.1 - 0.95 \times 20.72 = 469.86$$

• Relación PIB-PISA lectura:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_y} = \frac{143.62}{12.09 \times 29.8} = 0.40$$

$$\widehat{\beta}_1 = r \times \frac{s_y}{s_x} = 0.40 \times \frac{29.8}{12.09} = 0.98$$

$$\widehat{\beta}_0 = m_{\text{pisalectura}} - \widehat{\beta}_1 \times m_{\text{pib}} = 488.9 - 0.98 \times 20.72 = 459.68$$

• Relación PIB-PISA matemáticas: . regress pisamate pib

				N I C I	0.0
				Number of ob	s = 30
Source	SS	df	MS	F(1, 28)	= 3.26
Mode1	4499.1172	1	4499.1172	Prob>F	= 0.0816
Residual	38614.0828	28	1379.07439	R-squared	= 0.1044
Total	43113.2	29	1486.66207	Adj R-square	d = 0.0724
	'			Root MSE	= 37.136
pisamate	Coef.	Std. Err.	t	P> t [95%	Conf. Interval]
pib	1.029976	.5702395	1.81	0.082138	31067 2.198059
cons	461 7921	18 25189	25 30	0 000 424	4048 499 1794

• Relación PIB-PISA ciencias: . regress pisaciencia pib

				Number of obs	= 30
Source	SS	df	MS	F(1, 28)	= 3.52
Model	3831.20888	1	3831.20888	Prob>F	= 0.0712
Residual	30509.4911	28	1089.62468	R-squared	= 0.1116
Total	34340.7	29	1184.16207	Adj R-squared	= 0.0798
	•			Root MSE	= 33.009

pisacien.	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pib	. 9504546	.5068762	1.88	0.071	0878343	1.988743
_cons	469.8552	16.22379	28.96	0.000	436.6223	503.0882

• Relación PIB-PISA lectura: . regress pisalectura pib

Source	SS	df	MS	F(1, 28)		= 5.30
Mode1	4090.53912	1	4090.53912	Prob>F		= 0.0290
Residual	21614.9275	28	771.961698	R-square	ed	= 0.1591
Total	25705.4667	29	886.395402	Adj R-so	quared	= 0.1291
	'			Root MSE		= 27.784
pisalec.	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
pib	. 9820955	. 4266398	2.30	0.029	. 1081636	1.856027
cons	459.6816	13.65563	33.66	0.000	431.7093	487.6539

Number of obs

= 30

SOLUCIÓN 11.2

♣ Pregunta 11.6

Solución con calculadora

Aplicando la fórmula del coeficiente de correlación lineal obtendremos:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_v} = \frac{1278.82}{34.4 \times 38.6} = 0.96$$

Interpretación: Ambas variables (resultados pisa en ciencias y en matemáticas) están fuertemente correlacionadas con un coeficiente de correlación (r=0.96) próximo a 1 (relación lineal perfecta positiva).

Solución con Excel

En Excel se obtiene con la orden: PEARSON(pisamate;pisaciencia)

La solución que se obtiene es r = 0.9638

Solución con Stata

En **Stata** con el comando **correlate** obtendremos los coeficientes de correlación entre las variables: . **correlate** pisaciencia pisamate

$$(obs=30)$$

Solución con calculadora

Aplicando la fórmula del coeficiente de correlación lineal obtendremos:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_y} = \frac{1075.2}{38.6 \times 29.8} = 0.94$$

Interpretación: Ambas variables están fuertemente correlacionadas con un coeficiente de correlación (r=0.94) próximo a 1 (relación lineal perfecta positiva).

Solución con Excel

En Excel se obtiene con la orden PEARSON(pisamate;pisalectura)

La solución que se obtiene es r = 0.9367

Solución con Stata

En Stata:

. correlate pisamate pisalectura

$$(obs=30)$$

	pisamate	pisalectura
pisamate	1.0000	
pisalectura	0.9367	1.0000

♣ Pregunta 11.8

Solución con calculadora

Aplicando la fórmula del coeficiente de correlación lineal obtendremos:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_y} = \frac{975.32}{34.4 \times 29.8} = 0.95$$

Interpretación: Ambas variables están fuertemente correlacionadas con un coeficiente de correlación (r=0.95) próximo a 1 (relación lineal perfecta positiva).

Solución con Excel

En Excel se obtiene con la orden PEARSON(pisalectura; pisaciencia)

La solución que se obtiene es r = 0.9520

Solución con Stata

En **Stata**:

. correlate pisaciencia pisalectura

	pisaciencia	pisalectura
pisaciencia	1.0000	
pisalectura	0.9520	1.0000

Estos tres resultados se pueden obtener con una sola orden:

. correlate pisaciencia pisamate pisalectura

	pisaciencia	pisamate	pisalectura
pisaciencia	1.0000		
pisamate	0.9638	1.0000	
pisalectura	0.9520	0.9367	1.0000

SOLUCIÓN 11.3

♣ Pregunta 11.9

Solución con calculadora

El coeficiente de correlación de Pearson indica la fuerza de la relación lineal entre dos variables continuas. Podemos calcularlo con los datos del enunciado aplicando la fórmula:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_y} = \frac{-2.23}{12.09 \times 7.86} = -0.023$$

Interpretación: Se trata de una asociación débil ($|R| \approx 0$) e inversa (R < 0).

Solución con Excel

En Excel: PEARSON(consumoazucar;pib)

Solución con Stata

En Stata: . correlate consumoazucar pib

$$(obs=30)$$

♣ Pregunta 11.10

Solución con Stata

Primero, ajustamos un modelo de regresión lineal simple en que el consumo de azúcares refinados depende del PIB del país:

. regress consumoazucar pib

				Number	of obs	= 30
Source	SS	df	MS	F(1, 28	3)	= 0.02
Model	.98213912	1	.98213912	Prob>F		= 0.9022
Residual	1789.95453	28	63.9269475	R-squar	red	= 0.0005
Total	1790.93667	29	61.7564369	Adj R-s	squared	= -0.0351
	'			Root MS	SE	= 7.9954
consu r.	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pib	0152177	. 1227737	-0.12	0.902	2667083	. 2362728
_cons	6.273227	3.929669	1.60	0.122	-1.776335	14.32279

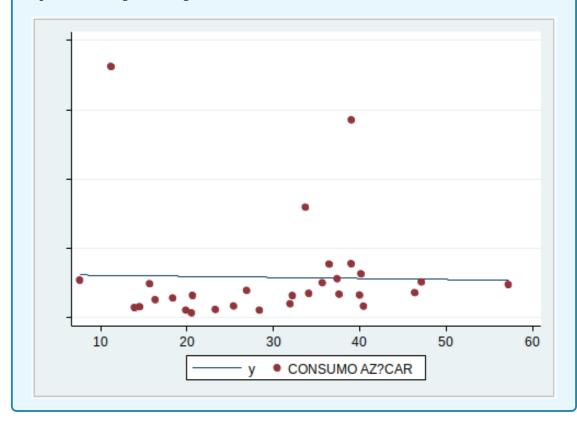
Por lo tanto, la ecuación del modelo es:

Consumo de azcar = $6.2732 - 0.0152 \times pib$

Stata, después de ajustar un modelo de regresión, permite acceder a los coeficientes ajustados mediante _b[nombre de la variable]. Así,

graph twoway function $y = _b[_cons] + _b[pib] * x, range(pib)|| scatter consumoazucar pib$

, produce la siguiente figura



Solución con calculadora

El coeficiente de determinación, R^2 , da cuenta de la variación en consumo de azúcar que es justificable por la variable que representa el PIB del país.

Se obtiene elevando al cuadrado el coeficiente de correlación lineal:

$$R^2 = (-0.023)^2 = 0.0005$$

Interpretación: El 0.055 % de la variabilidad del consumo de azúcar se puede explicar por el PIB del país.

Solución con Excel

En Excel, COEFICIENTE.R2(consumoazucar; pib)

Se obtiene $R^2 = 0.00054839$

Solución con Stata

En Stata: . correlate consumoazucar pib

Si utilizamos Stata como una calculadora . di $r(C)[2,1]^2$ Resultado: .00054839

♣ Pregunta 11.12

Solución con calculadora

Esta pregunta se responde calculando la pendiente de la recta.

$$\widehat{\beta_1} = -0.023 \times \frac{7.86}{12.09} = -0.015$$

Solución con Excel

En Excel se obtiene con la orden: PENDIENTE (consumoazucar; pib)

Solución con Stata

La orden y la salida en Stata aparece en los resultados de la pregunta 11.10.

Solución con Stata

Al haber 30 países en la base de datos, los 15 con menor puntuación PISA en lectura pueden identificarse mediante la mediana (percentil 50) de puntuación PISA en lectura.

En Stata,

. tabstat pisalectura, stat(median)

Es decir, 494.5 es la puntuación PISA en lectura por debajo de la cual se sitúan los 15 países a que hace referencia el enunciado del problema.

♣ Pregunta 11.13

Solución con calculadora

El porcentaje de variabilidad explicada por la variable independiente corresponde al coeficiente de determinación. Para responder esta pregunta calcularemos primero r y luego lo elevaremos al cuadrado:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_v} = \frac{50.74}{2.30 \times 30.18} = 0.732$$

Siendo $R^2 = 0.536$

El coeficiente de determinación, R^2 , da cuenta de la variación en número de premios Nobel que es justificable por la variable que representa el consumo de chocolate.

Solución con Excel

En **Excel**, habrá que seleccionar sólo los países que cumplan la condición de tener una puntuación en pisalectura <494.5, para ello se puede utilizar un filtro (datos \rightarrow filtro) y crear las etiquetas de las variables de los 15 países seleccionados, que hemos llamado **nobel15** y **chocolate15** respectivamente.

La función a ejecutar es: COEFICIENTE.R2(nobel15; chocolate15)

Solución con Stata

En **Stata**, con la orden **if**, seleccionamos los registros con los que vamos a trabajar, en este caso **if** pisalectura<494.5

. correlate nobel consumochocolate if pisalectura < 494.5

$$(obs=15)$$

	nobel	consum e
nobel	1.0000	
consumocho e	0.7318	1.0000

. display $r(C)[2,1]^2$

Resultado: .53558471

Es decir, el 53.56% de la variabilidad en el número de premios Nobel se puede explicar por el consumo de chocolate en los países con puntuación Pisa en lectura inferior a la mediana.

♣ Pregunta 11.14

Solución con Excel

Primero, calculamos el consumo medio de chocolate de los 15 países con mayor puntuación PISA en lectura.

En Excel, filtrando puntuación superior a la mediana =PROMEDIO(chocolate)

Solución con Stata

En Stata, con la orden if (if pisalectura>494.5).

. tabstat consumochocolate if pisalectura>494.5, stat(mean)

Solución con calculadora

Es decir, 5.6227 kg. Ahora, ajustamos un modelo de regresión lineal simple en que el número de premios Nobel depende del consumo de chocolate:

$$\widehat{\beta_1} = 0.73 \times \frac{30.18}{2.30} = 9.61$$

$$\widehat{\beta_0} = 12.6 - 9.61 \times 3.65 = -22.48$$

Con estos datos podemos construir la ecuación del modelo

$$\widehat{y} = \widehat{\beta_0} + \widehat{\beta_1}x = -22.48 + 9.61x$$

Y , sustituyendo x por el valor del consumo medio de chocolate (5.63), obtendremos:

$$\widehat{y} = -22.48 + 9.61 \times 5.63 = 31.56$$

Por tanto, para un país con un consumo medio de chocolate de 5.63, esperaremos una media de **31.56 premios nobel**

Solución con Excel

En Excel:

1º Calculamos la pendiente:

=PENDIENTE(nobel15;chocolate15)

Resultado: $\widehat{\beta_1} = 9.6118$

2º Calculamos la intersección en el origen:

=INTERSECCION.EJE(nobel15;chocolate15)

Resultado: $\widehat{\beta_0} = -22.4829$

La ecuación del modelo es

$$\widehat{y} = -22.4829 + 9.6118x$$

Solución con Stata

En Stata

. regress nobel consumochocolate if pisalectura < 494.5

				Number	of obs	= 15
Source	SS	df	MS	F(1, 13	3)	= 14.99
Model	6827.41961	1	6827.41961	Prob>F		= 0.0019
Residual	5920.18039	13	455.398491	R-squai	red	= 0.5356
Total	12747.6	14	910.542857	Adj R-s	squared	= 0.4999
	'			Root MS	SE	= 21.34
nobel	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
consumochocolate	9.611752	2.48239	3.87	0.002	4.248874	14.97463
_cons	-22.48289	10.60456	-2.12	0.054	-45.39265	. 4268575

La ecuación del modelo es

$$\widehat{y} = -22.4829 + 9.6118x$$
 ,

por lo que, si $x = 5.6227 \Longrightarrow \widehat{y} = 31.5614$ premios Nobel, en contraposición a los 12.6 que tienen de media los países con menor puntuación PISA en lectura.

. summarize nobel if pisalectura < 494.5

Variable	0bs	Mean	Std. Dev.	Min	Max
nobel	15	12.6	30.1752	0	119

♣ Pregunta 11.15

Solución con calculadora

Por cada incremento de 1kg en el consumo de chocolate, se espera encontrar 9.6118 premios Nobeles más. Si el país decide incrementar el consumo en 125 g, es decir, 1/8 kg, se esperaría encontrar 9.6118/8 = 1.2015 premios Nobel más.

♣ Pregunta 11.16

Solución con Stata

Primero, hallamos el consumo de chocolate y el número de premios Nobel españoles:

En Stata,

. list consumochocolate nobel if pais == "ESPAÑA"

	consum e	nobel
17.	3	8

Solución con calculadora

Después, ajustamos un modelo de regresión lineal simple en que el número de premios Nobel dependa del consumo de chocolate, siguiendo los siguientes pasos: Primero, calculamos r:

$$r = \frac{\text{cov}_{xy}}{s_x \times s_v} = \frac{39.32}{2.82 \times 64.99} = 0.215$$

Segundo, calculamos los coeficientes:

$$\widehat{\beta_1} = 0.215 \times \frac{64.99}{2.82} = 4.95$$

$$\widehat{\beta_0} = 28.23 - 4.64 \times 4.95 = 5.27$$

Tercero, con estos datos ya tenemos la ecuación del modelo:

$$\widehat{y} = \widehat{\beta_0} + \widehat{\beta_1}x = 5.27 + 4.95x$$

Solución con Excel

En **Excel** se obtiene con las órdenes: PENDIENTE(nobel;consumochocolate) y INTERSECCION.EJE(nobel;consumochocolate) o directamente con el analizador de datos Regresión.

Solución con Stata

En Stata: . regress nobel consumochocolate

				Number of obs	= 30
Source	SS	df	MS	F(1, 28)	= 1.35
Mode1	5646.46238	1	5646.4624	Prob>F	= 0.2545
Residual	116828.904	28	4172.4609	R-squared	= 0.0.0461
Total	12747.6	14	910.54286	Adj R-squared	= 0.0120
	•			Root MSE	= 64.595
nobel	Coef.	Std. Err.	t	P> t [95% Conf	f. Interval]
consumochocolate	4 951883	4 256752	1 16	0 255 -3 767677	13 67144

0.23 0.820 -41.81993 52.36944

La ecuación del modelo es

$$y = 5.2748 + 4.9519x$$
,

5.274752 22.99088

por lo que, si $x = 3 \Longrightarrow y = 20.13$ premios Nobel, en contraposición a los 8 de España.

♣ Pregunta 11.17

Solución con calculadora

El error o residuo que se comete es, precisamente, la diferencia entre la predicción y el dato real, es decir, 20.13 - 8 = 12.13 premios Nobel menos de los que nos corresponde por nuestro consumo de chocolate.

♣ Pregunta 11.18

Solución con calculadora

Algebraicamente, la diferencia en número de premios Nobel se corresponde con el coeficiente del consumo de chocolate multiplicado por la diferencia en consumo anual de chocolate, esto es, $4.9519 \times 3 = 14.8557$ premios Nobel más.

Regresión lineal múltiple

SOLUCIÓN 12.1

♣ Pregunta 12.1

Solución con calculadora

Cada intervalo de confianza se obtiene con la fórmula:

$$\widehat{\beta_i} \mp 1.96 \times EE(\widehat{\beta_i})$$

, por ejemplo, para hidratos de carbono:

$$1.10 \mp 1.96 \times 0.31 = 0.49$$
, 1.71

El valor de p se obtiene con el test de Wald. Como el número de grados de libertad es muy alto (n - 1 = 1241), el resultado obtenido sirve para buscar la p en la tabla normal. Aquí se han utilizado siempre valores p de dos colas.

Por ejemplo, para hidratos de carbono:

$$t = \frac{\widehat{\beta_i}}{EE(\widehat{\beta_i})} = \frac{1.10}{0.31} = 3.55$$

Consultando este valor en la tabla Normal, se observa que deja por debajo el 0.9998. Por lo tanto, lo que queda por encima es 0.0002. Como se trata de obtener un valor de dos colas, hay que multiplicar este resultado por 2: 0.0004

Nutriente	\widehat{eta}	IC 95%	p
Hidratos de carbono	1.10	0.49, 1.71	0.0004
Ácidos grasos saturados	1.54	1.09, 1.99	< 0.001
Ácidos grasos poliinsaturados	-0.83	-1.67, 0.01	0.054
Ácidos grasos monoinsaturados	-2.20	-3.08, -1.32	< 0.001
Constante	12.50	9.42, 15.58	< 0.001

Solución con calculadora

La respuesta es mg/dL/(g/día). Para comprenderlo hay que tener en cuenta:

- 1. Las unidades de la variable Y son mg/dL
- 2. Las unidades de ácidos grasos saturados son g/día
- 3. El resultado de multiplicar el coeficiente por los ácidos grasos tiene que ser mg/dL. Es decir: unidades de LDL = unidades de $\beta \times unidades$ de cidos grasos santurados
- 4. Por lo tanto:

$$\frac{mg}{dL} = unidades \ de \ \beta \times \frac{g}{da}$$

5. Despejando:

unidades de
$$\beta = \frac{\text{mg}}{\text{dL}}/(\frac{g}{da})$$

♣ Pregunta 12.3

Solución con calculadora

El modelo que sale de la tabla del enunciado es:

$$LDL = 12.50 + 1.10 \times hidratos \ de \ carbono$$

$$+ 1.54 \times acidos \ g. \ saturados$$

$$- 0.83 \times acidos \ g. \ poliinsaturados$$

$$- 2.20 \times acidos \ g. \ monoinsaturados$$

Aplicado a este paciente sería:

$$LDL = 12.50 + 1.10 \times 180 + 1.54 \times 40 - 0.83 \times 20 - 2.20 \times 18 = 215.9$$

Solución con calculadora

En la tabla del enunciado, el coeficiente para ácidos grasos monoinsaturados es -2.20. Si el paciente A añade 20 g, tendrá $2.20 \times 20 = 44.00 \frac{mg}{dL}$ menos de LDL.

Pero además ha suprimido 20 g de ácidos grasos saturados. A cada gramo que quite le corresponde 1.54 -según indica la tabla del enunciado. Por lo tanto, lo que pierde de LDL por bajar 20 g los ácidos grasos saturados es: $1.54 \times 20 = 30.80 \frac{mg}{dL}$

En total, habrá perdido 44.00+30.80 = 74.80 mg/dL.

♣ Pregunta 12.5

Solución con calculadora

Hay que introducir cuatro variables: una para la edad y tres para el nivel de estudios. La regla para una variable categórica es que hay que incluir tantas variables ficticias como categorías - 1. Por ejemplo, para estudiar el sexo solo hace falta una variable (2 categorías - 1). Para el nivel de estudios tenemos cuatro categorías; por lo tanto, hacen falta tres variables.

♣ Pregunta 12.6

Solución con calculadora

(
	Vai	riables fictici	as
Nivel de estudios	estudio_1	estudio_2	estudio_3
Sin estudios	1	0	0
Primarios	0	0	0
Secundarios	0	1	0
Universitarios	0	0	1

La categoría de referencia (estudios primarios) se pone a 0 en las tres variables ficticias. Cada una de las otras categorías debe tener un 1 en una variable y 0 en el resto. De esta forma se identifica bien el nivel de estudios de cada paciente: si tiene 1 en estudio_1 es una persona sin estudios; si tiene 1 en estudio_2, tiene estudios secundarios. Si tiene 1 en estudio_3, tiene estudios universitarios. Y si tiene 0 en todas, tiene estudios primarios.

Solución con calculadora

La figura tendrá cuatro rectas paralelas, una para cada nivel de estudios.

Si solo se tuviera en cuenta la edad, la figura sería una recta. Al añadir las tres variables ficticias, se añaden tres rectas más. Son todas paralelas porque el coeficiente de cada variable ficticia lo único que hace es añadir una cantidad fija (es decir, desplazar la recta hacia arriba o hacia abajo).

♣ Pregunta 12.8

Solución con calculadora

Las unidades son $\frac{kg}{m^2 \times ao}$

Hay dos formas de comprenderlo:

- 1. La interpretación del coeficiente $\widehat{\beta}$ es en cuánto aumenta Y (índice de masa corporal) por cada unidad que aumente X (edad). Por lo tanto, sus unidades son las del índice de masa corporal divididas entre las unidades de edad.
- 2. El resultado final de la regresión es el índice de masa corporal medido en $\frac{kg}{m^2}$. Como el $\widehat{\beta}$ de la edad va multiplicado por el número de años, necesitamos que las unidades de b multiplicadas por el número de años nos den como resultado $\frac{kg}{m^2}$.

♣ Pregunta 12.9

Solución con calculadora

Las unidades son $\frac{\text{kg}}{m^2}$. El $\widehat{\beta}$ de estudio_2 va multiplicado por un 1 o por un 0, pero estudio_2 no tiene unidades. Por lo tanto, las unidades de $\widehat{\beta}$ tienen que ser las mismas que las del índice de masa corporal.

♣ Pregunta 12.10

Solución con calculadora

Variable	\widehat{eta}	IC 95%	p
Edad	0.21	0.05, 0.37	0.009
estudios_1	1.37	0.57, 2.17	< 0.001
estudios_2	-0.22	-0.96, 0.52	0.563
estudios_3	-0.93	-1.71, -0.15	0.020
Constante	15.21	14.62, 15.80	< 0.001

En cada fila, el intervalo de confianza se obtiene como $\widehat{\beta} \pm 1.96 \times EE(\widehat{\beta})$ y el valor p se obtiene buscando en la tabla normal el valor $z = \left| \frac{\widehat{\beta}}{EE(\widehat{\beta})} \right|$; el valor p obtenido se debe multiplicar por dos para tener las dos colas.

Es importante tener presente el valor absoluto en el cálculo de z.

♣ Pregunta 12.11

Solución con calculadora

El coeficiente de edad (0.21) indica que por cada año más que se cumple, el índice de masa corporal aumenta en $0.21 \ kg/m^2$. El intervalo de confianza indica que puede haber un error al azar que haga que este aumento sea tan bajo como $0.05 \ kg/m^2$ o tan alto como $0.37 \ kg/m^2$.

♣ Pregunta 12.12

Solución con calculadora

Cada coeficiente del nivel de estudios hay que interpretarlo respecto al nivel de estudios primarios (que se puso como categoría de referencia). Por lo tanto:

- Las personas sin estudios (variable estudios_1) tienen de media $1.37 \ kg/m^2$ más que los que tienen estudios primarios. Al azar, este valor podría cambiar entre $0.57 \ kg/m^2$ y $2.17 \ kg/m^2$.
- Las personas con estudios secundarios (variable estudios_2) tiene un índice de masa corporal muy parecido al de quienes tiene estudios primarios: $0.22 \ kg/m^2$ menos. Al azar, el resultado podría estar entre que su índice de masa corporal es menor en $0.97 \ kg/m^2$ o mayor que el de estudios primarios en $0.52 \ kg/m^2$
- Las personas con estudios universitarios (variable estudios_3) tienen menor índice de masa corporal que las que tienen estudios primarios: $0.93 \ kg/m^2$ menos. La variación al azar está siempre en el lado de menor índice: puede estar entre $1.71 \ kg/m^2$ menos y $0.15 \ kg/m^2$ menos que los de estudios primarios.

Solución con calculadora

El modelo que aparece en la tabla de enunciado se puede expresar con esta fórmula:

$$IMC = 15.21 + 0.21 \times edad + 1.37 \times estudios_1 - 0.22 \times estudios_2 - 0.93 \times estudios_3$$

Aplicado a la persona **A**, sabemos que edad = 33, estudios_1=0, estudios_2=0 y estudios_3=1. Por lo tanto:

$$IMC = 15.21 + 0.21 \times 33 + 1.37 \times 0 - 0.22 \times 0 - 0.93 \times 1 = 21.21 \ kg/m^2$$

La persona **B** tiene 45 años y, como sus estudios son primarios, estudios_1 = estudios_2 = estudios_3 = 0. Por lo tanto:

$$IMC = 15.21 + 0.21 \times 45 + 1.37 \times 0 - 0.22 \times 0 - 0.93 \times 0 = 24.66 \ kg/m^2$$

Para C, tenemos 28 años, estudio_1=1, estudio_2=0 y estudio_3=0. Su IMC esperado será:

$$IMC = 15.21 + 0.21 \times 28 + 1.37 \times 1 - 0.22 \times 0 - 0.93 \times 0 = 22.46 \ kg/m^2$$

Por último, **D** tiene 70 años, estudio_1=0, estudio_2=1 y estudio_3=0. Esperamos que su IMC sea:

$$IMC = 15.21 + 0.21 \times 70 + 1.37 \times 0 - 0.22 \times 1 - 0.93 \times 0 = 29.69 \ kg/m^2$$

♣ Pregunta 12.14

Solución con calculadora

Las unidades de cada coeficiente son el resultado de dividir las unidades de la variable Y (mmHg) entre las unidades de la variable X. Por lo tanto:

Variable	Unidades de $\widehat{\beta}$
Edad Consumo de sal Edad x consumo de sal Constante	mmHg aos mmHg gramos mmHg aos×gramos mmHg

♣ Pregunta 12.15

Solución con calculadora

El modelo que indica el enunciado corresponde a esta fórmula:

$$TAS = 5.0 + 2.5 \times edad + 8.0 \times sal - 0.10 \times edad \times sal$$

Aplicaremos la fórmula a las preguntas 12.15 y 12.16.

Para la pregunta 12.15, encontraremos la solución de dos formas. Para la 12.16 nos limitaremos a la segunda forma.

■ Primera forma: El paciente 12.15 tiene 40 años y consumo 7 gramos. Su nivel esperado de TAS es:

$$TAS = 5.0 + 2.5 \times 40 + 8.0 \times 7 - 0.10 \times 40 \times 7 = 133 \ mmHg$$

Si baja su consumo de sal a 5 g, la nueva TAS que esperamos es:

$$TAS = 5.0 + 2.5 \times 40 + 8.0 \times 5 - 0.10 \times 40 \times 5 = 125 \ mmHg$$

Por lo tanto, el descenso es de 8 mmHg.

• Segunda forma:

Como el consumo de sal ha bajado en 2 g, pero la edad no cambia, el descenso de TAS será:

Cambio de TAS =
$$2.5 \times cambio$$
 en edad
+ $8.0 \times cambio$ en sal
- $0.10 \times edad \times cambio$ en sal
= $8.0 \times 2 - 0.10 \times 40 \times 2 = 8 \ mmHg$

♣ Pregunta 12.16

Solución con calculadora

Ahora tenemos un paciente con 70 años que baja su consumo de sal en 2 g. El cambio de TAS que esperamos es:

Cambio de TAS =
$$2.5 \times cambio$$
 en edad
+ $8.0 \times cambio$ en sal
- $0.10 \times edad \times cambio$ en sal
= $8.0 \times 2 - 0.10 \times 70 \times 2 = 2 \ mmHg$

♣ Pregunta 12.17

Solución con calculadora

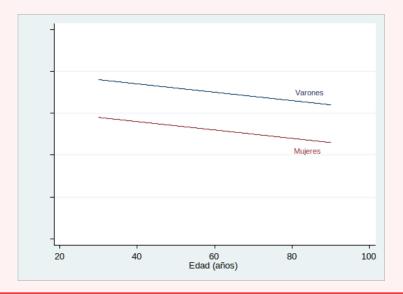
De acuerdo con las preguntas 12.15 y 12.16, la misma reducción en consumo de sal es más efectiva en personas más jóvenes. Por lo tanto, la recomendación preferente debería ir a los jóvenes.

♣ Pregunta 12.18

Solución con calculadora

Un modelo que tuviera solo la edad como variable X sería una recta. Al tener también el sexo, se obtienen dos rectas paralelas: una que muestra la relación entre edad y hemoglobina en mujeres y otra en varones. Las dos rectas descienden al aumentar la edad porque su coeficiente es negativo. Pero la recta de mujeres está por debajo de la de varones porque el coeficiente de sexo es también negativo.

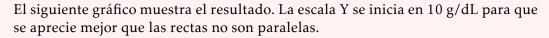
El siguiente gráfico muestra el resultado. La escala Y empieza en 10 g/dL para que se aprecie mejor que las líneas son paralelas.

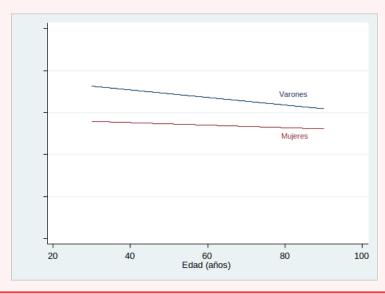


♣ Pregunta 12.19

Solución con calculadora

Siguen saliendo dos rectas, pero con el modelo 2 no son paralelas: el término de interacción edad x sexo hace que la recta de mujeres no descienda tan rápido con la edad. El modelo 2 es un ejemplo de interacción entre una variable continua (edad) y otra dicotómica (sexo). El efecto que tiene la edad sobre el nivel de hemoglobina es distinto en varones que en mujeres.





Solución con calculadora

En el modelo 1, un varón y una mujer de la misma edad tienen una diferencia de 0.90 g/dL (da igual qué edad tengan mientras sea la misma para los dos). Dos varones de distinta edad tienen una diferencia de 0.01xdiferencia de edad, y lo mismo ocurre con dos mujeres de la misma edad. Por lo tanto:

Paciente A	Paciente B	$Hemoglobina_A$ - $Hemoglobina_B$
Varón de 38 años	Mujer de 38 años	0.90 g/dL
Varón de 62 años	Mujer de 62 años	0.90 g/dL
Varón de 38 años	Varón de 62 años	$0.34 \mathrm{g/dL}$
Mujer de 38 años	Mujer de 62 años	0.34 g/dL

Solución con calculadora

En el modelo 2 hay una interacción entre edad y sexo. Esto quiere decir que la diferencia entre un varón y una mujer de la misma edad ya no será constante: depende de la edad concreta que tengan ambos. Y la diferencia entre dos varones de distinta edad ya no será la misma que entre dos mujeres de las mismas edades. Aplicando el modelo se obtiene:

Paciente A	Paciente B	$Hemoglobina_A$ - $Hemoglobina_B$
Varón de 38 años	Mujer de 38 años	0.904 g/dL
Varón de 62 años	Mujer de 62 años	$0.834\mathrm{g/dL}$
Varón de 38 años	Varón de 62 años	0.216 g/dL
Mujer de 38 años	Mujer de 62 años	0.144 g/dL

♣ Pregunta 12.22

Solución con calculadora

En una mujer premenopáusica sin enfermedad crónica, la media esperada de hemoglobina es 11.5g/dL (es decir, de todo el modelo solo interviene la constante: la variable posmenopausia vale 0, la variable enfermedad crónica también vale 0 y su interacción posmenopausia x enf. crónica también es 0).

En cambio, en una mujer premenopáusica con enfermedad crónica, la variable enfermedad crónica vale 1; por lo tanto, la media de hemoglobina será 11.5 - 0.5 = 11.0 g/dL.

¿Cuánto baja la hemoglobina si una mujer premenopáusica tiene enfermedad crónica? 0.5g/dL.

♣ Pregunta 12.23

Solución con calculadora

En una mujer posmenopáusica sin enfermedad crónica, la media esperada de hemoglobina es 11.5 + 0.8 = 12.3g/dL (es decir, de todo el modelo solo intervienen la constante y la variable posmenopausia: la variable enfermedad crónica vale 0 y su interacción posmenopausia x enf. crónica también es 0).

En cambio, en una mujer posmenopáusica con enfermedad crónica, la variable enfermedad crónica vale 1 y la interacción posmenopausia x enf. crónica también vale 1. Por lo tanto, para conocer la media de hemoglobina hay que sumar todos los coeficientes: 11.5 + 0.8 - 0.5 + 0.2 = 12.0g/dL.

¿Cuánto baja la hemoglobina si una mujer premenopáusica tiene enfermedad crónica? 12.3 - 12.0 = 0.3g/dL.

Este es un ejemplo de interacción entre dos variables dicotómicas. El efecto que tiene la enfermedad crónica sobre el nivel de hemoglobina es distinto en mujeres premenopáusicas que en mujeres posmenopáusicas.

Septiembre, 2021

ay muchos buenos libros de bioestadística. La mayoría de ellos desarrollan los mismos conceptos con enfoques ligeramente distintos. Lo que les diferencia fundamentalmente es el estilo. Algunos son más teóricos que otros, algunos hacen más hincapié en la realización de problemas o en el uso de paquetes estadísticos. Lo que no se encuentra con facilidad es un libro dedicado exclusivamente a hacer problemas. Eso es lo que presentamos aquí.

El libro es repetitivo. En algunos capítulos se propone una y otra vez el mismo tipo de problema con diferentes datos. Puede que la primera vez un alumno quiera ir directamente a la solución, pero hacer lo mismo en los siguientes problemas no le aportará nada: tiene que enfrentarse al papel en blanco para intentar encontrar la solución por sí mismo.

Nuestro enfoque es que saberse los comandos de un paquete estadístico no es lo mismo que saber estadística por el mismo motivo que aprender el funcionamiento de un ecocardiógrafo no le convierte a uno en cardiólogo. Por eso creemos que los problemas hay que hacerlos al menos una vez con calculadora para comprender bien qué es lo que uno se trae entre manos. Pero a lo largo del libro aportamos también soluciones con Excel o con Stata. La mayor parte de los capítulos parten de una base de datos en Excel accesible mediante los enlaces indicados en el texto. En algunos problemas, el primer paso es usar esa base de datos para generar una tabla a partir de la cual se puede realizar el resto del problema con calculadora. El alumno que no esté interesado en el manejo de Excel o Stata, puede saltarse ese paso, consultar directamente la tabla en las soluciones y seguir con el problema «a mano».

No queremos que nadie se llame a engaño: este no es un libro sobre cómo resolver problemas de bioestadística con Excel o con Stata. El eje del libro es la solución con calculadora. Las soluciones con Excel y Stata se aportan como complemento. El mensaje es: peléese usted con las fórmulas hasta que las entienda. Solo después de eso busque un programa con el que hacer las cuentas.

