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FUNDACIÓN DE LA UNIVERSIDAD DE CANTABRIA PARA EL 
ESTUDIO Y LA INVESTIGACIÓN DEL SECTOR FINANCIERO 
(UCEIF)

La Fundación de la Universidad de Cantabria para el Estudio y la In-
vestigación del Sector Financiero (UCEIF) se constituye en 2006, bajo el 
patronazgo de la Universidad de Cantabria y el Santander, con el pro-
pósito de convertirse en una institución de referencia en la generación, 
difusión y transferencia del conocimiento sobre el sector financiero en 
todas sus facetas. Mediante la identificación, desarrollo y promoción del 
talento y la innovación, apoya el liderazgo sostenible y socialmente res-
ponsable de las instituciones que la patrocinan y de aquellas con las que 
establece alianzas, como contribución al bienestar, desarrollo y progreso 
de los pueblos.

En el ámbito de la investigación trabaja en diferentes líneas estratégicas:

•	 Atracción del Talento Internacional con programas de Becas y 
Ayudas para fomentar la realización de proyectos de investiga-
ción, especialmente de Jóvenes Investigadores, que fomenten 
el conocimiento de las metodologías y técnicas aplicables en el 
ejercicio de la actividad financiera, con especial interés en las 
realizadas por entidades bancarias, para favorecer al crecimien-
to y desarrollo económico de los países y al bienestar social.

•	 Premios Tesis Doctorales, cuyo fin es promover y reconocer la 
generación de conocimientos a través de actuaciones en el ám-
bito del doctorado que impulsen el estudio y la investigación en 
el sector financiero.

•	 Por último, la línea editorial en la que se enmarcan estos Cua-
dernos de Investigación, con el objetivo de poner a disposición 
de la sociedad el conocimiento generado en torno al sector fi-
nanciero fruto de todas las acciones desarrolladas en el ámbito 
de SANFI y, especialmente, de los resultados de las Becas, Ayu-
das y Tesis Doctorales.
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SANTANDER FINANCIAL INSTITUTO (SANFI)

SANFI es un Instituto Universitario de Investigación en Banca y Finan-
zas de carácter Mixto, fruto de la colaboración entre la Universidad de 
Cantabria y la Fundación UCEIF. 

Las tres divisiones de Investigación en las que se articula el Instituto son 
las siguientes, fruto de la unión de diferentes grupos de investigación 
que venían realizando una intensa actividad en temas relacionados con 
el ámbito financiero, desde diferentes perspectivas: 

•	 División de Banca y Finanzas, incluyendo la Historia Bancaria.

•	 División de Entorno Económico y Métodos Cuantitativos.

•	 División de Marco Jurídico.

SANFI tiene como misión promover la excelencia científica y su transfe-
rencia con un enfoque multidisciplinar y colaborativo, para impulsar la 
innovación que contribuya a acelerar la consecución de los Objetivos de 
Desarrollo Sostenible (ODS) y el logro de una sociedad justa, inclusiva, 
responsable y resiliente.
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SUMMARY

This book adds to the resolution of two problems in finance and econom-
ics: i) what is macro-financial uncertainty? : How to measure it? How 
is it different from risk? How important is it for the financial markets? 
And ii) what sort of asymmetries underlie financial risk and uncertainty 
propagation across the global financial markets? That is, how risk and 
uncertainty change according to factors such as market states or market 
participants. In Chapter 2, which is entitled “Momentum Uncertainties”, 
the relationship between macroeconomic uncertainty and the abnormal 
returns of a momentum trading strategy in the stock market is studies. 
We show that high levels of uncertainty in the economy impact nega-
tively and significantly the returns of a portfolio of stocks that consist 
of buying past winners and selling past losers. High uncertainty reduces 
below zero the abnormal returns of momentum, extinguishes the Sharpe 
ratio of the momentum strategy, while increases the probability of mo-
mentum crashes both by increasing the skewness and the kurtosis of 
the momentum return distribution. Uncertainty acts as an economic re-
gime that underlies abrupt changes over time of the returns generated 
by momentum strategies. In Chapter 3, “Measuring Uncertainty in the 
Stock Market”, a new index for measuring stock market uncertainty 
on a daily basis is proposed. The index considers the inherent differ-
entiation between uncertainty and the common variations between the 
series. The second contribution of chapter 3 is to show how this finan-
cial uncertainty index can also serve as an indicator of macroeconomic 
uncertainty. Finally, the dynamic relationship between uncertainty and 
the series of consumption, interest rates, production and stock market 
prices, among others, is analized. In chapter 4: “Uncertainty, Systemic 
Shocks and the Global Banking Sector: Has the Crisis Modified their 
Relationship?” we explore the stability of systemic risk and uncertainty 
propagation among financial institutions in the global economy, and 
show that it has remained stable over the last decade. Additionally, a 
new simple tool for measuring the resilience of financial institutions to 
these systemic shocks is provided. We examine the characteristics and 
stability of systemic risk and uncertainty, in relation to the dynamics 
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of the banking sector stock returns. This sort of evidence is supportive of 
past claims, made in the field of macroeconomics, which hold that 
during the global financial crisis the financial system may have faced 
stronger versions of traditional shocks rather than a new type of shock. 
In chapter 5, “Currency downside risk, liquidity, and financial stability”, 
downside risk propagation across global currency markets and the ways 
in which it is related to liquidity is analyzed. Two primary contributions 
to the literature follow. First, tail-spillovers between currencies in the 
global FX market are estimated. This index is easy to build and does 
not require intraday data, which constitutes an important advantage. 
Second, we show that turnover is related to risk spillovers in global cur-
rency markets. Chapter 6 is entitled “Spillovers from the United States to 
Latin American and G7 Stock Markets: A VAR-Quantile Analysis”. This 
chapter contributes to the studies of contagion, market integration and 
cross-border spillovers during both regular and crisis episodes by car-
rying out a multivariate quantile analysis. It focuses on Latin American 
stock markets, which have been characterized by a highly positive dy-
namic in recent decades, in terms of market capitalization and liquidity 
ratios, after a far-reaching process of market liberalization and reforms 
to pension funds across the continent during the 80s and 90s. We doc-
ument smaller dependences between the LA markets and the US market 
than those between the US and the developed economies, especially in 
the highest and lowest quantiles.
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CHAPTER 1: INTRODUCTION

Uncertainty and risk have been fundamental concepts since the birth 
of modern science. Indeed various authors, including Bernstein (1998), 
claim that the interest in measuring and mastering the two phenomena is 
a threshold that separates modern times from the previous thousands of 
years of the history of humanity. In economics, Frank Knight was the first 
to postulate a distinction between uncertainty and risk, basically stating 
that the former could not be described by means of a probability measure 
while the latter could. According to both Knight (1921) and Keynes (1921, 
1939), economic agents inhabit an environment of pervasive uncertainty 
and, therefore, there can be little hope of quantifying or forecasting eco-
nomic variables, or even taking informed decisions that rely on quanti-
tative measures of economic dynamics (in other words, for those authors, 
probabilities are incommensurable). 

Today, the distinction between risk and uncertainty remains a lively topic 
for debate on the academic agenda. Indeed, several recent studies have 
attempted to explain decision-making under uncertainty, albeit oriented 
more towards the social conventions than towards the development of 
rational calculations. Accordingly, in this branch of the literature, there is 
a clear need to distinguish between the concepts, while measuring what 
can be measured and not losing sight of what cannot be quantified in 
probabilistic terms. Although of obvious importance in its own right, this 
extreme Knightian differentiation between risk and uncertainty leads to 
the impossibility of defining a probability space and prevents us from 
using any variation of the Ergodic Theorem in empirical studies. In turn, 
this leads to the impossibility of conducting any science at all (Hendry, 
1980; Petersen, 1996). 

Confronted by this panorama, the profession has moved from this 
Knightian extreme (fundamental) view of uncertainty and adopted a 
more promising approach to the concept. Today, it is widely accepted 
that uncertainty can (and indeed must) be measured, because it is inti-
mately related to many economic phenomena. It is related for example 
to decisions on current and expected consumption, real and financial 
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investment, business cycles dynamics, saving decisions, price formation, 
and to the possibility of consumption risk sharing (domestic and inter-
nationally). In short, it is at the core of the study of human wellbeing. 
Consistent with the discussion above, in the modern economic literature, 
uncertainty has generally been assimilated to a time-varying conditional 
second moment of the series under study, closely linked to underlying 
time-varying structural shocks such as terrorist attacks, political events, 
economic crises, bubble collapses, systemic risk materialization episodes, 
wars and credit crunches. 

This book contributes to a better understanding of risk and uncertainty in 
the economics discipline. This overall objective implies the development 
of new tools to properly measuring, differentiating and managing risky 
and uncertain situations, the study of traditional investment strategies 
under uncertainty scenarios, and the quantification and analysis of the 
propagation of risk and uncertainty shocks to the international financial 
markets (stocks, banking and foreign exchange). Two main avenues are 
explored to understand uncertainty, which reflect the current views in the 
profession regarding the topic. The first one consists on identifying un-
certainty episodes based on a direct counting of economic and policy 
uncertainty-related keywords in the media. This approach has been pi-
oneered by the work of Baker et al. (2016), which proposes an index of 
Economic Policy Uncertainty based on intensive text analysis and which 
can be used to gauge the level of macroeconomic uncertainty in a given 
period. The second view approaches the issue of measuring uncertainty 
from a residual perspective, which involves calculating the volatility of 
the series under study, only after their forecastable component has been 
removed (Jurado et al., 2015). 

Uncertainty, Trading, and Systemic risk

In Chapter 2, which is entitled “Momentum Uncertainties”, we study the 
relationship between macroeconomic uncertainty and the abnormal re-
turns of a momentum trading strategy in the stock market. We show 
that high levels of uncertainty in the economy impact negatively and 
significantly the returns of a portfolio of stocks that consist of buying 
past winners and selling past losers. High uncertainty reduces below zero 
the abnormal returns of momentum, extinguishes the Sharpe ratio of the 
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momentum strategy, while increases the probability of momentum crash-
es both by increasing the skewness and the kurtosis of the momentum 
return distribution. Uncertainty acts as an economic regime that underlies 
abrupt changes over time of the returns generated by momentum strat-
egies. In this way, we revisit a long-standing controversy in economics 
and finance, regarding the different nature of risk and uncertainty. We 
show that investment strategies such as momentum trading, which are 
precisely based on extrapolating immediate market past performance, 
seeking to predict future market trends, would likely fail when macroe-
conomic uncertainty is ‘high’. On the contrary, when uncertainty is ‘low’, 
the usual assumption of treating uncertainty episodes as if they were 
risky situations works better, and extrapolation of current market trends 
may produce consistently significant abnormal returns. One pragmatic 
recommendation that follows from results in this respect is not to trade 
momentum when uncertainty is above a certain threshold. Nevertheless, 
beyond this direct implication for trading, the study of momentum strat-
egies, which are precisely based on extrapolating the immediate past in 
order to predict the immediate future, offers a unique opportunity to ana-
lyze the differences between risky and uncertain situations, both funda-
mental for economics and finance.

In Chapter 3, “Measuring Uncertainty in the Stock Market”, we seek to 
make three contributions to the study of uncertainty. First, we propose 
a new index for measuring stock market uncertainty on a daily basis 
(or what we refer to as financial uncertainty)1. The index considers the 
inherent differentiation between uncertainty and the common variations 
between the series (which we identify as risk). Recent contributions in the 
field have given rise to the methodological tools for performing the task 
using factor models (Jurado, Ludvigson and Ng, 2015). These propos-
als, however, have focused their attention on the use of macroeconomic 
variables to construct their indexes, as opposed to financial variables. 
Therefore, because of the low frequency of macroeconomic series, the 
proposals lack a desirable property of traditional proxies of uncertainty 
based on financial returns (such as VXO, VIX or credit-spreads): name-
ly, practitioners and policy makers cannot trace their dynamics in real 
time. The second contribution of chapter 3 is to show how this finan-
cial uncertainty index can also serve as an indicator of macroeconomic 

1.  This index is updated regularly and is publicly available at http://www.ub.edu/rfa/uncertainty-index/
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uncertainty. We examine the circumstances under which such an index 
might be thought to capture all the relevant information in the economy 
as a whole. We exploit the fact that information contained in hundreds, or 
even thousands, of economic indicators can be encapsulated by just a few 
prices of several stock market portfolios. Finally, we analyze the dynamic 
relationship between uncertainty and the series of consumption, interest 
rates, production and stock market prices, among others. This allows me 
to further our understanding of the role of (financial or macroeconomic) 
uncertainty, and to determine the dynamics of the economy as a whole. 

Chapter 4 is enttlited “Uncertainty, Systemic Shocks and the Global 
Banking Sector: Has the Crisis Modified their Relationship?” There, we 
explore the stability of systemic risk and uncertainty propagation among 
financial institutions in the global economy, and show that it has re-
mained stable over the last decade. Additionally, we provide a new simple 
tool for measuring the resilience of financial institutions to these system-
ic shocks. We provide evidence regarding the stability of the relationship 
between systemic shocks and the banks’ responses over the last decade. 
This sort of evidence is new to the literature and is supportive of past 
claims, made in the field of macroeconomics (Stock and Watson, 2012), 
which hold that during the global financial crisis the financial system 
may have faced stronger versions of traditional shocks rather than a new 
type of shock. In this chapter, we also undertake an empirical study of 
the role of equity market uncertainty, as measured by Baker et al. (2016), 
as a systemic risk factor for the banking industry. Uncertainty is known 
to play a critical role in determining economic dynamics during episodes 
of crisis and, in recent years, its study has attracted much attention in 
the literature to account for the nonlinear negative dynamics that arise 
during episodes of economic distress (Bloom, 2009; Jurado et al., 2015). 
The inclusion of uncertainty as an observable factor enhances our under-
standing of the banking sector behavior during episodes of systemic stress 
in the financial markets. We report that for most of the banks analyzed, 
especially over the last decade, uncertainty is indeed a relevant consider-
ation. As expected, more uncertainty leads to a reduction in equity prices 
in the banking industry, and this behavior has become more pronounced 
in the last few years, especially when compared to the situation 15 years 
ago. Finally, we emphasize the vulnerability of each institution to sys-
temic shocks rather than the vulnerability of the system as a whole to the 
failure of one specific, perhaps important, financial institution. Thus, we 
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identify systemically vulnerable financial institutions under scenarios of 
financial distress and provide a ranking of financial vulnerability that 
complements those already developed by the extant literature.

International propagation of risk

The last two chapters of the book explore the international propagation 
of financial risk, which is crucial to assess financial stability and capital 
market integration in the global capital markets. In chapter 5, “Currency 
downside risk, liquidity, and financial stability”, we analyze downside 
risk propagation across global currency markets and the ways in which it 
is related to liquidity. The traditional study of return and volatility spill-
overs in currency markets imposes its own symmetry on the analysis, by 
implicitly assuming that for any given country the situation is roughly 
the equivalent of facing depreciation or appreciation pressures. This as-
sumption is at the very least controversial. In the worst-case scenario, 
central banks may lean against the wind when appreciation pressures 
emerge on the horizon, to the degree that they are willing (or politically 
allowed) to do so. On the other hand, their response is much more re-
stricted when faced by an episode of depreciation. Here, in the worst case 
they are bound by the (frighteningly) lower limit of the FX reserves. Thus, 
we make two primary contributions to the literature. First, we estimate 
tail-spillovers between currencies in the global FX market. We do so by 
closely adhering to what we consider a key element in the definition of a 
currency crisis proposed by Paul Krugman: “[it] is a sort of circular log-
ic, in which investors flee a currency because they fear that it might be 
devalued, and in which much (though not necessarily all) of the pressure 
for such a devaluation comes precisely from that capital flight”. Notice 
that by definition currency crises are related to periods of depreciation 
(or devaluation), and not to episodes of appreciation (or revaluation). 
Thus, in terms of financial stability, episodes of depreciation are more 
significant than those of appreciation. The tail-spillover estimates can 
be used to construct a new financial stability index for the FX market. 
This index is easy to build and does not require intraday data, which 
constitutes an important advantage. The second contributionof Chapter 5 
is that we explore whether turnover is related to risk spillovers in global 
currency markets. World currencies can be expected to behave differently 
depending on how much investors trade them and, in turn, commonality 
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may become evident by examining the dynamic spillovers in worldwide 
FX markets.

Chapter 6 is entitled “Spillovers from the United States to Latin American 
and G7 Stock Markets: A VAR-Quantile Analysis”. This essay contrib-
utes to the studies of contagion, market integration and cross-border 
spillovers during both regular and crisis episodes by carrying out a 
multivariate quantile analysis. Most of the studies in this branch of the 
financial literature do not consider specific quantiles of the distributions 
and, therefore, they do not condition their results to specific market situ-
ations. Instead, they focus on the mean of the distributions, which could 
underestimate the real effects of an international shock. Even traditional 
quantile studies do not make any attempt to identify structural shocks 
by recourse to theory, nor are they able to analyze certain features of the 
shocks, such as their persistence, during different market scenarios. We 
focus the analysis carried out in this chapter on Latin American stock 
markets, which have been characterized by a highly positive dynamic in 
recent decades, in terms of market capitalization and liquidity ratios, after 
a far-reaching process of market liberalization and reforms to pension 
funds across the continent during the 80s and 90s. Moreover, the global 
financial crisis between 2007 and 2010 appears to have fostered financial 
flows into Latin American (LA) markets, as capital investors looked for 
diversification opportunities outside the mature markets, and as liquidity 
began to flourish around the globe, following persistently low market 
interest rates in the major economies. In general we document small-
er dependences between the LA markets and the US market than those 
between the US and the developed economies, especially in the highest 
and lowest quantiles. Nevertheless, we found an asymmetrical response 
to the shocks originating in the US market, depending on the condition-
ing quantile analyzed. This result holds regardless of whether the market 
under consideration is mature or emerging, an outcome that can be at-
tributed to the phenomenon of flight-to-quality operating in the lowest 
quantiles, and a situation of liquidity spillovers between the markets in 
the highest quantiles. These results have obvious implications in terms of 
the optimal implementation of hedging strategies, portfolio diversifica-
tion, and risk management, but also with regards to the optimal design of 
monetary and macroprudential policies.
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CHAPTER 2: MOMENTUM UNCERTAINTIES

2.1.	Introduction

We study the relationship between macroeconomic uncertainty and mo-
mentum abnormal returns and show that high levels of economic uncer-
tainty significantly and negatively impact the returns of a portfolio of 
previous winners minus previous losers in the stock market. Uncertainty 
reduces the abnormal returns of momentum below zero, causes the 
Sharpe ratio of the momentum strategy to collapse, and raises the proba-
bility of momentum crashes by increasing the skewness and the kurtosis 
of the momentum return distribution. We also document a change in the 
momentum beta, which measures the exposure of excess equity returns 
to the momentum factor. Indeed, this exposure is significantly reduced 
for most of the portfolios analyzed during high uncertainty episodes. All 
these factors emphasize the importance of considering the level of eco-
nomic uncertainty when deciding whether to trade momentum or not. 
Uncertainty acts as an economic regime that underlies abrupt changes 
in the abnormal returns generated by momentum strategies, which have 
been extensively documented in the literature (see, for example, Cooper 
et al., 2004, and Daniel and Moskowitz, 2016). The main pragmatic rec-
ommendation to be derived from our results is not to trade momentum 
when uncertainty is above a certain threshold.

Uncertainty in its original formulation (Knight, 1921; Keynes, 1921, 
1939) implies that constructing a probability measure (for instance, 
seeking to build an accurate future forecast of a given event based on 
past realizations) is not feasible. As such, investment strategies such 
as momentum trading, which are based precisely on extrapolating the 
immediate past performance of winners and losers portfolios in order 
to predict future market trends, are likely to fail when macroeconomic 
uncertainty is ‘high’ enough. In contrast, when uncertainty is ‘low’, the 
usual assumption of treating uncertainty episodes as if they were risky 
situations works better, and the future extrapolation of market trends 
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may produce consistently significant abnormal returns, as is the case 
with momentum portfolios. 

We explore this hypothesis here by analyzing the monthly abnormal 
returns of a momentum portfolio (winners minus losers over the previ-
ous 2-12 months, WML hereinafter) from January 1927 to June 2017, 
almost a hundred years of data comprising NYSE, AMEX, and NASDAQ 
stocks2. We examine whether macroeconomic uncertainty (proxied by 
the Economic Policy Uncertainty index proposed by Baker et al., 2016) 
or economic activity (as measured by the dates of recession and expan-
sion provided by the NBER over the last century) is the economic state 
that underlies abrupt changes in the abnormal returns of momentum 
strategies. In this respect, we adopt an approach that differs from that 
taken in the previous literature, which analyzes the dependence of mo-
mentum performance on a generic market state, presumably related to 
economic conditions (Gervais et al., 2001; Cooper et al., 2004; Daniel 
and Moskowitz, 2016; Ali et al., 2017). By so doing, it is our contention 
that we gain a better understanding of the nature of momentum trading 
and of the boundaries to its good performance, which are imposed by 
the economic uncertainty regime operating in the economy. We also 
discuss how, for the purposes of ‘uncertainty management’, to take ad-
vantage of recently developed proxies for measuring uncertainty in the 
macroeconomy, including the index developed by Baker et al. (2016). 

This contribution is relevant because momentum continues to be a per-
vasive anomaly both in the cross-section (Asness et al., 2013) and over 
time (Moskowitz et al., 2012). Since Jegadeesh and Titman (1993) re-
ported that previous winners in the stock market significantly outper-
form previous losers, thus making it possible to attain Sharpe ratios 
that exceed those of the market itself, momentum trading has remained 
a popular strategy among practitioners and of great interest to aca-
demics. However, this popularity seems to have weakened slightly due 
to the astonishing higher-order risks that momentum trading imposes 
on investors, including an extremely fat-tailed and negatively-skewed 

2.  To construct the momentum portfolios, all stocks in the NYSE, Amex, and Nasdaq markets were ranked 
according to their returns from month to . They were then classified into deciles according to NYSE thresholds. 
The WML strategy consists of shorting the lowest decile and taking a long position on the highest decile. The 
portfolios are value-weighted. The formation period for month excludes the returns in the preceding month 
to avoid the short-term reversals documented by the literature. See Kenneth French’s webpage for further 
details: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Benchmarks.
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distribution of gains (Daniel and Moskowitz, 2016). The initial method 
of basically buying past winners and selling past losers has made room 
for more sophisticated strategies that use time-varying hedging mech-
anisms aimed at reducing frightening momentum crashes (Blitz et al., 
2011; Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016). Yet 
momentum trading continues to be practiced today. 

If we turn our attention to asset pricing, it is not surprising that momen-
tum remains something of a puzzle in explanations of excess returns. 
Countless factors have been proposed for analyzing this premium and 
its related anomalies (Campbell et al., 2016). However, the ever-growing 
set of factors explored to date does not yet provide a reliable substitute 
for momentum when it comes to explaining excess returns. One pop-
ular model –proposed recently by Fama and French (2015) includes, 
in addition to the three traditional factors of market, size and book-
to-market, two factors related to investment strategies (conservative or 
aggressive) and a firm’s profitability (robust or weak). Yet, in their new 
version of the classical three-factor model, Fama and French (2016) ac-
knowledge the importance of including momentum within the set of 
regressors. In short, they claim that portfolios sorted according to win-
ners and losers in the prior 2-12 months elude the explanation provided 
by the five-factor model, unless the momentum factor is included in the 
set of right-hand-side (RHS) variables. 

On this playing field, it is quite natural that both rational (Johnson, 
2002; Frazzini, 2006; Sagi and Seasholes, 2007; Liu et al., 2008) and 
behavioral explanations (Daniel et al., 1998; Hong and Stein, 1999; 
Cooper et al., 2004) have been offered to provide a definitive under-
standing of the momentum anomaly. The former seek to identify some 
kind of market friction, heterogeneous information, or firm-specific 
characteristics to account for momentum; while the latter resort to bi-
ases in the investors’ perceptions to explain momentum profits. In these 
more behavioral models, the general reasoning embraces overconfident 
(Daniel et al., 1998; Chui et al., 2010) or over-reacting (Hong and Stein, 
1999) investors who generate the momentum conundrum as new waves 
of information reach the market3. 

3.  See Barberis et al. (2015) and references therein for recent examples of extrapolative investors used 
to generate momentum. Hiller et al. (2014) also identify over-reacting and overconfident biases that are 
reinforced by media coverage.
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All in all, there is no completely satisfactory narrative as to what drives 
momentum. Doubts even exist as to whether momentum is really momen-
tum or rather whether immediate past performance is actually a proxy for 
medium-horizon past performance (Novy-Marx, 2012). It seems that macro-
economic factors are unable to capture momentum profits after considering 
market microstructure concerns (Cooper et al., 2004), and that other sorts of 
explanation, such as the famous disposition effect, have been discarded as 
well (Birru, 2015). Clearly, momentum requires further exploration. 

If the elusive nature of momentum were not enough, its relationship with 
excess returns and systematic risk factors is also known to be non-linear. 
In other words, as momentum has time-varying market betas (Kothari 
and Shanken, 1992; Grundy and Martin, 2001), hedging using these betas 
does not work in real time. As Barroso and Santa-Clara (2015) document 
this occurs because the main source of predictability (and variability) of 
the risk implied by momentum strategies are not the betas, but the idio-
syncratic conditional volatility. Put briefly, momentum does not appear to 
share with other more theoretically grounded factors the comfortable lin-
earity ubiquitous in traditional equivalences with stochastic discount fac-
tor representations of market prices4. For this reason, its treatment means 
making room for time-varying risk prices, as functions of state variables5. 

This study contributes to the literature by identifying macroeconomic 
uncertainty as a major economic state underlying the performance of 
momentum strategies. Such an approach certainly provides more infor-
mation and, hence, a better understanding of the nature and boundaries 
of the momentum strategy than when simply linking it to a market state. 
This study can be seen as a further step in the direction taken previously 
by Gervais et al. (2001), Grundy and Martin (2001), Cooper et al. (2004), 
Daniel and Moskowitz (2016) and Ali et al. (2017). Here, we estimate the 
abnormal returns, and other moments of the momentum return distribu-
tion, conditioning them on a state variable that measures macroeconomic 
uncertainty. In this way, we also add to a nascent strand in the financial 
literature that analyzes the impact of uncertainty on stock prices (Brogaard 
and Detzel, 2015; Segal et al., 2015; Bali and Zhou, 2016; Bali et al., 2017). 

4.  See Cochrane (2005), Chapters 1-3.
5.  That is, for conditional pricing in which nonlinear effects arise in the form of additional terms that 
appear in the pricing equation. This is described for example by Jagannathan and Wang (1996); Lettau and 
Ludvigson (2001); Cochrane (2005: Chapter 8), and Maio and Santa-Clara (2012: Footnote 3). 
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Unlike these studies, we do not treat uncertainty as a risk factor in the set 
of RHS variables used to explain excess returns, but as a market state or 
regime that conditions both the abnormal returns of momentum above 
systematic risk factors, and the exposure of excess returns to it. 

This study is possible thanks to recent advances in macroeconomics that 
have seen the construction of more appropriate measures of uncertainty, 
which can take into account its different nature with respect to risk or risk 
aversion. Some measures are a direct estimation of unexpected variations 
within a given system (Jurado et al., 2015; Chuliá et al., 2017), while 
others resort to a less probabilistic approach, based on a direct search for 
uncertainty-related keywords in the media (Baker et al., 2016). The latter 
approach is more compatible with the original Knightian or fundamental 
view of uncertainty (Knight, 1921), since it does not rely directly on a 
probabilistic estimation for constructing the measure. For this and other 
reasons explained below, here we opt for the index developed by Baker et 
al. (2016) to conduct our analysis. 

The modeling set up employed in all sections of this study considers two 
extreme states: one of low uncertainty and one of high uncertainty. We 
model endogenously the probability of transition between the two states 
in a smooth fashion. The same econometric machinery is used to esti-
mate both the changing abnormal returns of momentum over time, and 
the changing exposure to momentum by excess returns, according to the 
uncertainty states. As highlighted above, and as expected, we document 
that momentum not only lacks relevance as a risk factor in regimes of 
high uncertainty for most of the portfolios analyzed, but it also becomes 
an extremely risky and unprofitable strategy. We advise against trading 
momentum when uncertainty is high (i.e. above a certain threshold of the 
lagged uncertainty index, namely the 90th percentile). Finally, it is worth 
noticing that our results hold after controlling for several proxies tradi-
tionally related to the time-varying returns of momentum, in particular, 
for the market state (for instance, a down market and the market volatili-
ty), and also after controlling for aggregate liquidity. Indeed, the inclusion 
of high uncertainty states in the explanation of momentum impacts the 
relationship between market liquidity and momentum returns, to the point 
of extinguishing it. This helps to explain the seemly contradictory find-
ing recently reported by Avramov et al. (2016) regarding a positive and 
significant correlation between momentum profits and market liquidity.
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2.2. Data

We analyze the returns of a portfolio of winners minus losers in the previ-
ous 2-12 months, taking the difference between the returns in the highest 
and lowest deciles of the portfolios, sorted according to prior perfor-
mance (as in Barroso and Santa-Clara, 2015 and Daniel and Moskowitz, 
2016). The portfolios, constructed each month, include NYSE, AMEX, and 
NASDAQ stocks. We condition the abnormal returns of momentum on a 
traditional Fama-French three-factor model, which allows us to explore 
a long time span covering almost a century of data (1,086 monthly ob-
servations). We also analyze the momentum betas of 25 value-weighted 
portfolios, sorted according to momentum and size, in the same period. 

Most of the data used in this study were retrieved from Kenneth French’s 
webpage6. The uncertainty index was taken from Baker et al. (2016) and 
is available online at http://www.policyuncertainty.com/. We used the 
historical Economic Policy Uncertainty (EPU) Index from January 1927 
to February 2014 and chained it with the EPU index from March 2014 to 
June 2017. This is the longest span available for the momentum port-
folios in French’s data-library. We also used the monthly returns of 25 
Value-Weighted (VW) portfolios sorted according to size and momen-
tum, likewise from French’s library. We do not provide summary statistics 
of the factor-portfolios, the portfolios returns, or the uncertainty index, 
since they are well known in the literature and have been extensively 
documented elsewhere (see, for example, Fama and French, 2015 and 
2016, Daniel and Moskowitz, 2016 and Baker et al., 2016). The stock level 
data used to estimate the turnover of the momentum strategy come from 
Wharton’s CRSP database and consist of the universe of NYSE, AMEX, 
and NASDAQ stocks, with share codes 10 or 11, from December 1925 to 
December 2016. The stock level illiquidity index, employed in the esti-
mations of section V, developed by Abdi and Ranaldo (forthcoming) is 
available online at: https://sbf.unisg.ch/en/lehrstuehle/lehrstuhl_ranaldo/
homepage_ranaldo/research-material. The monthly uncertainty index by 
Chuliá et al. (2017) used in section II is available online at: http://www.
ub.edu/rfa/uncertainty-index/. Finally, the series of industrial production, 
employed in section II, comes from the FRED-database developed and 
maintained by the Federal Reserve of St. Louis: https://fred.stlouisfed.org/

6.  Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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2.3.	Risk, Uncertainty and Economic States

Uncertainty and risk have been fundamental concepts in economics and 
finance since the birth of modern science. Indeed various authors, in-
cluding Bernstein (1998), claim that the interest in measuring and mas-
tering the two phenomena constitutes a threshold that separates modern 
times from the previous thousands of years of the history of humanity. 
In economics, Frank Knight was the first to postulate a distinction be-
tween uncertainty and risk, basically stating that the former could not 
be described by means of a probability measure while the latter could. 
Following Knight (1921) and Keynes (1921, 1939), economic agents in-
habit an environment of prevalent uncertainty and, therefore, there can 
be little hope of quantifying or forecasting economic or financial vari-
ables. In other words, they considered the probabilities associated with 
the occurrence of economic events as incommensurable objects. 

This approach to understanding uncertainty –known, today, as the fun-
damental view of uncertainty or Knightian uncertainty– while of obvious 
importance, makes it impossible to define a probability space and, there-
fore, to use any variation of the Ergodic Theorem to build the bases of em-
pirical studies. It is for this reason that the profession has adopted a more 
flexible definition of uncertainty, particularly as regards macroeconomic 
uncertainty. Thus, uncertainty has come to be thought of as a time-var-
ying conditional second moment, linked to underlying structural shocks, 
such as terrorist attacks, significant political events, economic crises, wars 
or credit crunches (Bernanke, 1983; Bertola and Caballero, 1994; Abel 
and Eberly, 1996; Leahy and Whited, 1996; Caballero and Pindyck, 1996; 
Bloom et al., 2007; Bloom, 2009; Bloom et al., 2013; etc.). Traditional 
proxies of uncertainty include stock returns or their implied/realized vol-
atility (i.e., VIX or VXO), the cross-sectional dispersion of firms’ profits 
(Bloom, 2009), estimated time-varying productivity (Bloom et al., 2013), 
the cross-sectional dispersion of survey-based forecasts (Dick et al., 2013; 
Bachmann et al., 2013), and credit spreads (Fendoǧlu, 2014). 

Although it indisputable that these uncertainty proxies have provided 
considerable insights, which, in turn, have allowed a better understand-
ing of economic and financial decisions made under uncertainty, most of 
them have recently been criticized. The main criticisms concern the fact 

w
w

w
.e

di
to

ria
l.u

ni
ca

n.
es



Jorge M. Uribe Gil

26

that these traditional proxies blend uncertainty with other notions (such 
as, risk and risk-aversion) and, in the case of analysts’ forecasts, that they 
are only available for a limited number of series and so might reflect dif-
ferences of opinion rather than uncertainty per se (Diether et al., 2002). In 
an effort to overcome these shortcomings, a new branch of the literature 
proposes measuring uncertainty either by directly counting economic and 
policy uncertainty-related keywords in the media (Baker et al., 2016) or by 
approaching the issue from a residual point of view, which involves cal-
culating the volatility of the series under study, only after their forecasta-
ble component has been removed (Jurado et al., 2015; Chuliá et al., 2017). 

Counting keywords is more compatible with the original Knightian view 
of uncertainty, as it does not rely directly on a probabilistic estimation for 
constructing the measure and, therefore, it may identify the fundamental 
difference between risk and uncertainty: under risk, a probability distri-
bution based on past realizations seems natural and appropriate, under 
uncertainty, this situation does not hold. Moreover, the index proposed 
by Baker et al. (2016) is not specifically related to bad economic or market 
states, which are generally assimilated with economic recessions and mar-
ket crashes, as we shall see. On the contrary, it may refer to both good and 
bad episodes of uncertainty. This point is crucial in what follows, because 
we know from the extant literature that recessions and bad market states 
negatively impact the performance of momentum strategies (Gervais et 
al., 2001; Cooper et al., 2004; Daniel and Moskowitz, 2016). Unlike the 
previous studies, here the interest lies in measuring the effects of general-
ized uncertainty, both good and bad, on momentum abnormal returns, on 
other moments of the conditional distribution of momentum portfolio re-
turns, and on the exposure to momentum factors by excess equity returns. 

Hence, the selection of the uncertainty proxy is essential in demonstrating 
that economic uncertainty, rather than economic activity (expansions and 
recessions), is the fundamental economic state underlying a significant 
deterioration in the performance of momentum strategies. As emphasized 
in the introduction, the intuition underpinning this reasoning is simple: 
momentum strategies resort directly to the extrapolation of past perfor-
mance to predict the immediate future and such strategies are likely to 
fail under uncertain environments that are characterized precisely by the 
difficulty of defining a probability space based, for instance, on past re-
alizations. 
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Table 2.1 shows the correlation between the EPU Index (Baker et al., 
2016) –the main proxy for macroeconomic uncertainty used herein– 
and other variables frequently employed to account for uncertainty, in-
cluding, the volatility of economic activity, market volatility and resid-
ual-based indexes of uncertainty. In examining these relations, we have 
focused on a set of measures that can be traced from the beginning of 
the estimation sample (January 1927) to the end (June 2017). In this 
way, we seek to preserve the internal coherence of the calculations re-
ported across all the sections of this study. 

Table 2.1.  Correlation between Macro-Uncertainty and Macroeconomic/Market 
Variables

The table shows the correlation between the EPU index (Baker et al., 2016), used here 
as a proxy for macroeconomic uncertainty, and macroeconomic activity, macroeco-
nomic volatility, total market volatility, ‘good’ and ‘bad’ volatility measures, and fi-
nancial uncertainty. IP is the linearly de-trended index of industrial production for the 
US economy, IP Vol is the square of the monthly growth rate of IP, Market RV is the 
monthly realized volatility of the market portfolio using daily excess returns, Bad RV 
is the lower semivariance of the market portfolio using daily excess returns, Bad RV is 
the upper semivariance of the market portfolio using daily excess returns, and F. Unc. 
is a proxy for financial uncertainty constructed as in Chuliá et al. (2017), that is, using 
the residuals of an unobservable factor model of the excess equity returns. Semivari-
ances were constructed following Barndorff-Nielsen et al. (2010). All the correlations 
reported are statistically significant at the 99.9% level of confidence. The sample pe-
riod spans January 1927-June 2017 for a total of 1,086 observations. All the corre-
lations are expressed in percentage points. Correlations between EPU and the other 
variables are highlighted in bold.

EPU IP IP Vol Market 
RV Bad RV Good RV F.Unc.

EPU - 24.68 11.58 24.95 21.94 24.66 28.03

IP - - 8.59 22.58 20.16 21.95 54.04

IP Vol - - - 25.22 20.06 27.52 32.87

Market RV - - - - 94.18 91.25 51.32

Bad RV - - - - - 72.18 44.52

Good RV - - - - - - 51.48

F. Unc. - - - - - - -
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As can be observed, the EPU Index is positively related to economic 
activity and its volatility; to market volatility (measured as the month-
ly realized variance of the market factor); to both good and bad market 
volatility measures (measured as positive and negative semivariances, 
as proposed by Barndorff-Nielsen et al., 2010); and, also, to other un-
certainty indexes based on the estimation of a residual volatility, cal-
culated after controlling for the forecastable component of the system 
volatility. 

However, the main point to notice here is that none of these correla-
tions exceeds 30%. That is, uncertainty, as it is proxied here, is not the 
same as economic activity, its volatility, or different market volatility 
measures. Interestingly, the index of financial uncertainty developed by 
Chuliá et al. (2017)7, which generates nearly identical macroeconomic 
dynamics to that of the macro-uncertainty index proposed by Jurado et 
al. (2015) and available from July 1967 (see Chuliá et al., 2017), presents 
a stronger correlation with economic activity, as measured by industrial 
production and the other selected market volatility proxies, than that 
presented by the EPU Index (Baker et al., 2016).

Figure 2.1 shows the dynamics of the uncertainty index between 
January 1927 and June 2017, highlighting periods of high uncertainty 
(Panel A) and economic recessions (Panel B). High uncertainty episodes 
correspond in the plot to 20% of the sample associated with the high-
est uncertainty indicator values (217 observations), while economic 
recessions correspond to the months between a peak and a trough as 
dated by the NBER (211 observations). A visual inspection indicates 
that the two phenomena do not necessarily match. Indeed, in line with 
Harding and Pagan (2006), it is possible to calculate a synchronization 
statistic using two dummy variables: one indicating high uncertainty, 
the other indicating periods of recession. This statistic lies between 0 
and 1, where 0 indicates that the two phenomena are perfectly dis-
cordant (i.e. when there is recession, there is never high uncertainty), 
and 1 indicates that they are perfectly concordant (i.e. when there is 
recession, there is always high uncertainty alike). A value close to 
0.5 indicates that the two phenomena are largely independent. Here, 
the concordance statistic between recessions and high uncertainty is 

7.  Publicly available at http://www.ub.edu/rfa/uncertainty-index/



Essays on Risk and Uncertainty in Economics and Finance

29

0.48, indicating that the two phenomena are largely independent. This 
confirms our analysis (see correlations in Table 2.1) of the nature of 
uncertainty: while uncertainty may be present at the same time as an 
economic recession, it is not only present during such bad economic 
states. Thus, there are also many episodes of recession during which 
uncertainty is not particularly high. 

As can be seen, the grey areas in Panel A match documented histori-
cal episodes, including economic recessions (1929, 1933, 1937, 1945), 
bubble inflation and subsequent bursts and market crashes (1987, 2000-
2002, 2007-2008), and episodes of financial and economic turmoil 
(2009-2011). We also see episodes of high uncertainty that are unrelated 
to ‘bad’ economic conditions. Consider for instance the high-tech rev-
olution of the early-mid 1990s, which is identified as a state of high 
uncertainty. According to Segal et al. (2015, p. 117) “with the introduc-
tion of the world-wide-web, a common view was that this technology 
would provide many positive growth opportunities that would enhance 
the economy, yet it was unknown by how much”. They refer to such 
situations as ‘good’ uncertainty. 

Figure 2.1. High uncertainty vs recessionary states

Panel A plots the index developed by Baker et al. (2016) and highlights the months 
with the highest levels of uncertainty (above the series 80th percentile). Panel B plots 
the same index and highlights recessions in the US economy as dated by the NBER. 
The sample period runs from January 1927 to June 2017. The concordance statistic 
between the highest uncertainty indicator (217 obs.) and the recession dummy variable 
(211 obs.) is 48.65%. Figure 2.1
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2.4.	Abnormal Returns of Momentum Strategies

A.	 High Economic Uncertainty and Abnormal Returns

One of the main contributions of this study derives from the estimation 
of equation 2.1:
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recession dummy variable (211 obs.) is 48.65%.  

 

2.4. Abnormal Returns of Momentum Strategies 

A. High Economic Uncertainty and Abnormal Returns. 

One of the main contributions of this study derives from the estimation of 
equation 2.1: 

&'() = 	±- ± ./0/12'23 ± .4056'7) ± .809:'() … 

±.8.=>?.:. @AB) ± ./C?2DB) ± E!ℎGH + JEKLG), (2.1) 
which shows the regression of the monthly returns of a portfolio of WML on 
market (RMRF), small minus big (SMB) and high minus low (HML) factors. 
Depending on the specification, it also includes a dummy variable for high 
economic uncertainty (H.UNC); a dummy variable indicating macroeconomic 
contractions (REC), including the great depression and the great recession; 
other variables that account for ‘good’ and ‘bad’ economic uncertainty; and 
some interaction effects. The expected sign of the intercept in this regression 
is positive, which means that, after controlling for traditional risk factors, 
momentum is expected to offer statistically and economically significant 
abnormal returns. The expected signs of the loadings on the risk factors are 
negative, which implies that momentum is expected to diversify risk through 
the sample.  
Following the working hypothesis forwarded in the introduction, the expected 
sign of the indicator variable of high uncertainty is also negative, because 
during episodes of high uncertainty investors may find it more difficult to 
construct accurate expectations about future winners and losers based on past 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 

50 

100 

150 

200 

250 

300 

27 37 47 57 67 77 87 97 07 17 
0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 

50 

100 

150 

200 

250 

300 

27 37 47 57 67 77 87 97 07 17 

     (2.1)

which shows the regression of the monthly returns of a portfolio of WML 
on market (RMRF), small minus big (SMB) and high minus low (HML) 
factors. Depending on the specification, it also includes a dummy varia-
ble for high economic uncertainty (H.UNC); a dummy variable indicating 
macroeconomic contractions (REC), including the great depression and 
the great recession; other variables that account for ‘good’ and ‘bad’ eco-
nomic uncertainty; and some interaction effects. The expected sign of the 
intercept in this regression is positive, which means that, after controlling 
for traditional risk factors, momentum is expected to offer statistically 
and economically significant abnormal returns. The expected signs of the 
loadings on the risk factors are negative, which implies that momentum 
is expected to diversify risk through the sample. 

Following the working hypothesis forwarded in the introduction, the ex-
pected sign of the indicator variable of high uncertainty is also negative, 
because during episodes of high uncertainty investors may find it more 
difficult to construct accurate expectations about future winners and los-
ers based on past performance –as momentum strategies seek to do– which 
in turn may reduce average abnormal returns of momentum. In line with 
the literature that identifies a negative relationship between economic 
states and momentum performance, the expected sign of the recession 
indicator is negative. Finally, we also analyze the effects of the interaction 
between periods of high economic uncertainty and recessions, which ba-
sically means ‘bad news’, as investors face both bad economic states and 
high uncertainty (H. BAD UNC); between high economic uncertainty and 
periods of economic expansion, which are naturally related to episodes of 
‘good’ uncertainty (H. GOOD UNC); and, finally, the interaction between 
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bad economic states and low economic uncertainty, which is mostly a 
situation of low bad uncertainty (L. BAD UNC).

The estimates corresponding to the different equation 2.1 specifica-
tions, and the associated t-statistics are presented in Table 2.2. These 
regressions were estimated using different thresholds to determine 
whether a situation might be considered to be of high uncertainty. 
Specifically, in Panels A, B and C, high uncertainty corresponds to the 
months in which the uncertainty index was above the 70th, 80th and 
90th percentiles, respectively. 

Table 2.2.  Momentum Abnormal Returns and Macroeconomic Uncertainty

The table shows the results of a regression of WML returns on market, size and val-
ue factors. It also shows estimates that include, on top of the three aforementioned 
factors, an indicator variable for high economic uncertainty regimes, H. UNC (that is, 
above the 70th, 80th, and 90th percentiles in the EPU index); an indicator variable for 
recessionary periods (REC), an indicator variable of whether the economy is in a high 
uncertainty regime and an expansion period, referred to as high good uncertainty (H. 
GOOD UNC); and, an indicator of whether the economy is in a recession and a high 
uncertainty regime, referred to as high bad uncertainty (H. BAD UNC). Finally, the 
table also shows the estimated slopes of an indicator that identifies episodes of reces-
sion and low uncertainty regimes (below the respective thresholds), labeled as low bad 
uncertainty (L. BAD UNC). The impact of high uncertainty on the abnormal returns of 
momentum across different uncertainty thresholds is in bold. 

Panel A. 70th Percentile 

b t(b) b t(b) b t(b) b t(b) b t(b)

ALPHA 1.76 8.43 2.17 8.78 2.35 8.83 2.18 8.84 1.96 8.44

RMRF -0.38 -9.19 -0.39 -9.33 -0.39 -9.47 -0.39 -9.46 -0.39 -9.46

SMB -0.20 -2.92 -0.19 -2.75 -0.19 -2.77 -0.19 -2.86 -0.20 -2.94

HML -0.74 -12.14 -0.73 -12.14 -0.73 -12.15 -0.73 -12.14 -0.73 -12.15

H.UNC -1.38 -3.78 -1.34 -3.00

REC -0.93 -1.79

H. GOOD 
UNC -1.00 -2.32

H. BAD 
UNC -2.74 -3.25 -2.49 -3.70

L. BAD 
UNC -0.23 -0.38
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Panel B. 80th Percentile 

b t(b) b t(b) b t(b) b t(b) b t(b)

ALPHA 1.76 8.43 2.16 9.33 2.34 9.29 2.17 9.39 1.97 8.49

RMRF -0.38 -9.19 -0.39 -9.36 -0.39 -9.52 -0.39 -9.56 -0.40 -9.55

SMB -0.20 -2.92 -0.19 -2.89 -0.20 -2.98 -0.20 -2.93 -0.20 -2.97

HML -0.74 -12.14 -0.74 -12.24 -0.74 -12.25 -0.74 -12.36 -0.75 -12.35

H.UNC -2.00 -3.90 -1.97 -3.84

REC -0.95 -1.82

H. GOOD 
UNC -1.37 -2.42

H. BAD 
UNC -4.22 -4.29 -4.31 -4.24

L. BAD 
UNC -0.14 -0.24

Panel C. 90th Percentile 

ALPHA 1.76 8.43 1.95 8.90 2.15 8.87 1.96 8.98 1.97 8.57

RMRF -0.38 -9.19 -0.39 -9.36 -0.39 -9.46 -0.39 -9.52 -0.40 -9.53

SMB -0.20 -2.92 -0.20 -2.91 -0.20 -2.93 -0.20 -2.92 -0.20 -2.93

HML -0.74 -12.14 -0.74 -12.28 -0.74 -12.30 -0.76 -12.53 -0.76 -12.49

H.UNC -1.95 -2.78 -1.88 -2.75

REC -0.99 -1.89

H. GOOD 
UNC -0.97 -1.19

H. BAD 
UNC -5.57 -3.91 -5.52 -3.92

L. BAD 
UNC                 -0.45 -0.82

The first two columns of each panel show the estimated slopes and 
t-statistics, without including any additional variable on top of the tra-
ditional risk factors. As such, the values in these three columns are 
invariable across the three specifications. As expected, in the three 
panels, the abnormal returns of momentum (ALPHA) are positive, after 
controlling for the risk factors, and account for an abnormal return of 
1.76% per month, which corresponds to 21.12% per year. This represents 
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an impressive level of abnormal returns as emphasized by Barroso and 
Santa-Clara (2015), who report very similar results in this regard (1.75% 
per month, and 21% per year). Exposure to the risk factors is also nega-
tive, and statistically significant in these regressions.

Interestingly, columns 3 and 4 of the table document that abnormal 
returns of momentum disappear during episodes of high uncertainty. 
For instance, when defining high uncertainty as the 20% (Panel B) of 
months with the highest values on the EPU index, the abnormal returns 
of momentum are 2.16% per month during low uncertainty regimes, 
and 0.16% during high uncertainty regimes (that is 2.16 minus 2.00%). 
The situation is similar if we focus on Panel A (from 2.17 to 0.79%, i.e. 
2.17-2.00%) and on Panel C (from 1.95% to 0.00%, i.e. 1.95-1.95%). It 
seems that the more extreme the uncertainty, the greater the reduction 
in the abnormal returns of momentum (for example, when we go from 
the 70th to the 80th percentile), but this relationship is not linear. Rather 
it appears to be better described by an uncertainty threshold (because 
when we go from the 80th to the 90th percentile, the amount of abnormal 
returns does fall, but not as much as when we go from the 70th to the 
80th percentile). 

Columns 5 and 6 of Table 2.1 specifically test whether the reduction in 
the abnormal returns of momentum might be attributed to the underlying 
economic state (i.e. recessions), as opposed to the level of uncertainty. 
Here, we included a dummy variable indicating recessionary periods as 
dated by the NBER. The results are conclusive in all three cases. The effect 
of uncertainty on abnormal returns of momentum (that is, the coefficient of 
the uncertainty dummy variable) remains unaltered when we include the 
recession dummy variable. Moreover, while the high uncertainty indica-
tor remains significant in all three panels, the recession variable presents 
the expected sign (negative), but does not present a t-statistic above 2.0 
in any of the three specifications (although it is very close to doing so, 
especially, in Panel C). This provides solid evidence in support of the hy-
pothesis that uncertainty is the main driver of the reduction in momentum 
profits, as opposed to bad economic states.

Columns 7 and 8 decompose the effect of uncertainty into ‘bad’ uncer-
tainty situations, that is, when episodes of high uncertainty coincide 
with an economic recession, and ‘good’ uncertainty situations, in which 
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uncertainty is high but there is an underlying economic expansion. 
Noticeably, a negative sign accompanies both sorts of uncertainty. That 
is, high uncertainty impacts negatively and significantly the perfor-
mance of momentum portfolios, regardless of whether it is good or bad. 

Columns 9 and 10 show an alternative decomposition, namely, esti-
mates of recessions divided between those with high and those with 
low economic uncertainty. Here again the effect of recessionary states 
is always negative on WML performance, regardless of the level of un-
certainty. However, in the three threshold specifications considered, the 
negative effects of recessions with low economic uncertainty are not 
statistically different from zero. Moreover, the magnitude of the effect 
is also considerably smaller compared to that estimated in the case of 
an economic recession coinciding with high uncertainty, which is by far 
the most damaging state for momentum returns. During such periods, 
the average monthly abnormal returns of the momentum strategies fall, 
approximately, to within a range of between -2.00 and -2.34% (with 
an uncertainty threshold of 80% when considering columns 7 and 9, 
respectively). 

B.	 Estimation of High Economic Uncertainty States

The estimates in Table 2.2 suffer the drawback of being subject to the 
exogenous, and perhaps arbitrary, selection of the threshold above 
which uncertainty is considered high. However, this does not affect the 
main result, i.e. that high economic uncertainty reduces (to the point of 
collapse) abnormal returns of momentum strategies, because the sign 
and the magnitude of the effect do not vary greatly with the threshold 
specification. Nevertheless, it is preferable to offer estimates that are not 
open to this criticism and which can provide a more accurate measure 
of the changes in the abnormal returns of momentum with the level of 
economic uncertainty. 

For this reason, in Table 2.3 we show the estimates of a model in which 
the threshold signaling when economic uncertainty is above its ordi-
nary levels has been estimated endogenously. To this end, we estimated 
a Smooth Transition Regression Model (STR) in line with McAleer and 
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Medeiros (2008)8 and Hillebrand et al. (2013)9. This framework is par-
ticularly suited to this purpose as it allows us to condition abnormal 
returns of momentum on the level of uncertainty in an endogenous 
fashion. The model assumes that the transition from states of low to 
high uncertainty is smooth and includes abrupt switches between the 
states as a special case. 

Below, we describe a specialization of the general model that transits 
between two extreme regimes associated with low and high uncertainty 
in the economy. We estimated the following equation:
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i.e. 1.95 - 1.95%). It seems that the more extreme the uncertainty, the greater 
the reduction in the abnormal returns of momentum (for example, when we 
go from the 70th to the 80th percentile), but this relationship is not linear. 
Rather it appears to be better described by an uncertainty threshold (because 
when we go from the 80th to the 90th percentile, the amount of abnormal 
returns does fall, but not as much as when we go from the 70th to the 80th 
percentile).  
Columns 5 and 6 of Table 2.1 specifically test whether the reduction in the 
abnormal returns of momentum might be attributed to the underlying 
economic state (i.e. recessions), as opposed to the level of uncertainty. Here, 
we included a dummy variable indicating recessionary periods as dated by the 
NBER. The results are conclusive in all three cases. The effect of uncertainty 
on abnormal returns of momentum (that is, the coefficient of the uncertainty 
dummy variable) remains unaltered when we include the recession dummy 
variable. Moreover, while the high uncertainty indicator remains significant in 
all three panels, the recession variable presents the expected sign (negative), 
but does not present a t-statistic above 2.0 in any of the three specifications 
(although it is very close to doing so, especially, in Panel C). This provides 
solid evidence in support of the hypothesis that uncertainty is the main driver 
of the reduction in momentum profits, as opposed to bad economic states. 
Columns 7 and 8 decompose the effect of uncertainty into ‘bad’ uncertainty 
situations, that is, when episodes of high uncertainty coincide with an 
economic recession, and ‘good’ uncertainty situations, in which uncertainty is 
high but there is an underlying economic expansion. Noticeably, a negative 
sign accompanies both sorts of uncertainty. That is, high uncertainty impacts 
negatively and significantly the performance of momentum portfolios, 
regardless of whether it is good or bad.  
Columns 9 and 10 show an alternative decomposition, namely, estimates of 
recessions divided between those with high and those with low economic 
uncertainty. Here again the effect of recessionary states is always negative on 
WML performance, regardless of the level of uncertainty. However, in the 
three threshold specifications considered, the negative effects of recessions 
with low economic uncertainty are not statistically different from zero. 
Moreover, the magnitude of the effect is also considerably smaller compared 
to that estimated in the case of an economic recession coinciding with high 
uncertainty, which is by far the most damaging state for momentum returns. 
During such periods, the average monthly abnormal returns of the momentum 
strategies fall, approximately, to within a range of between -2.00 and -2.34% 
(with an uncertainty threshold of 80% when considering columns 7 and 9, 
respectively).  
B. Estimation of High Economic Uncertainty States 
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The estimates in Table 2.2  suffer the drawback of being subject to the 
exogenous, and perhaps arbitrary, selection of the threshold above which 
uncertainty is considered high. However, this does not affect the main result, 
i.e. that high economic uncertainty reduces (to the point of collapse) abnormal 
returns of momentum strategies, because the sign and the magnitude of the 
effect do not vary greatly with the threshold specification. Nevertheless, it is 
preferable to offer estimates that are not open to this criticism and which can 
provide a more accurate measure of the changes in the abnormal returns of 
momentum with the level of economic uncertainty.  
For this reason, in Table 2.3  we show the estimates of a model in which the 
threshold signaling when economic uncertainty is above its ordinary levels has 
been estimated endogenously. To this end, we estimated a Smooth Transition 
Regression Model (STR) in line with McAleer and Medeiros (2008) 8  and 
Hillebrand et al. (2013)9. This framework is particularly suited to this purpose 
as it allows us to condition abnormal returns of momentum on the level of 
uncertainty in an endogenous fashion. The model assumes that the transition 
from states of low to high uncertainty is smooth and includes abrupt switches 
between the states as a special case.  
Below, we describe a specialization of the general model that transits between 
two extreme regimes associated with low and high uncertainty in the economy. 
We estimated the following equation: 

&'() = MNOPQ, S); UV +WQ
XYZ + G̃),   (2.2) 

 

where &'()are the series of monthly returns of the winners minus losers 
strategy. MNOPQ, S); UV	 is a nonlinear function of the switching variables 
depending on 	OPQ , which in this case consists of a constant (i.e. 	OPQ = \) 
employed to estimate the abnormal returns of momentum (- in equation 2.1), 
and S), which is the transition variable that governs the switching between the 
two regimes (namely the uncertainty index). It also depends on 	U , which 
groups the parameters associated to M . WQ  is a ] × 3 matrix containing the 
risk factors with linear (non-switching) loads and their associated coefficients 
YZ , namely WQ = [2'23), 6'7), :'()]. Finally, G̃)	is a vector of random 
noise residuals. This model can be further specialized as follows: 

	
8 In this case, known as HARST, a multiple-regime smooth transition of the heterogeneous 
autoregressive model. We did not, however, consider autoregressive terms because no 
theoretical insights are to be gained from their inclusion in the model. Moreover, in contrast 
to our study, the authors of the original model use the model to estimate conditional 
volatilities of several returns of stock market indices in the global economy, using lagged 
variables to condition the transition. 
9 Variations of this model have been used in Hillebrand and Medeiros (2016) and Fernandes 
et al. (2014). 
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(although it is very close to doing so, especially, in Panel C). This provides 
solid evidence in support of the hypothesis that uncertainty is the main driver 
of the reduction in momentum profits, as opposed to bad economic states. 
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situations, that is, when episodes of high uncertainty coincide with an 
economic recession, and ‘good’ uncertainty situations, in which uncertainty is 
high but there is an underlying economic expansion. Noticeably, a negative 
sign accompanies both sorts of uncertainty. That is, high uncertainty impacts 
negatively and significantly the performance of momentum portfolios, 
regardless of whether it is good or bad.  
Columns 9 and 10 show an alternative decomposition, namely, estimates of 
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WML performance, regardless of the level of uncertainty. However, in the 
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The estimates in Table 2.2  suffer the drawback of being subject to the 
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For this reason, in Table 2.3  we show the estimates of a model in which the 
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been estimated endogenously. To this end, we estimated a Smooth Transition 
Regression Model (STR) in line with McAleer and Medeiros (2008) 8  and 
Hillebrand et al. (2013)9. This framework is particularly suited to this purpose 
as it allows us to condition abnormal returns of momentum on the level of 
uncertainty in an endogenous fashion. The model assumes that the transition 
from states of low to high uncertainty is smooth and includes abrupt switches 
between the states as a special case.  
Below, we describe a specialization of the general model that transits between 
two extreme regimes associated with low and high uncertainty in the economy. 
We estimated the following equation: 
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where &'()are the series of monthly returns of the winners minus losers 
strategy. MNOPQ, S); UV	 is a nonlinear function of the switching variables 
depending on 	OPQ , which in this case consists of a constant (i.e. 	OPQ = \) 
employed to estimate the abnormal returns of momentum (- in equation 2.1), 
and S), which is the transition variable that governs the switching between the 
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groups the parameters associated to M . WQ  is a ] × 3 matrix containing the 
risk factors with linear (non-switching) loads and their associated coefficients 
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8 In this case, known as HARST, a multiple-regime smooth transition of the heterogeneous 
autoregressive model. We did not, however, consider autoregressive terms because no 
theoretical insights are to be gained from their inclusion in the model. Moreover, in contrast 
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vector of random noise residuals. This model can be further specialized 
as follows:
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&'() = Yb + Y\c(S); e, f
∗) +WQ

XYZ + G̃),       (2.3) 

where	c(S); e, f∗)	is the logistic function given by: 

c(S); e, f
∗) =

i

ijklm(nolp
∗) ,   (2.4) 

where e is the slope parameter and f∗ can be understood as a threshold value 
that also needs to be estimated. This threshold separates low from high 
uncertainty regimes and is instrumental. Notice that c(S); 	e, f∗)  is 
monotonically increasing in S)  and, therefore, c(S); 	e, f∗) → 1  as S) → ∞ 
and c(S); 	e, f∗) → 0 as S) → −∞. For this reason Yb should be thought of 
as containing the abnormal returns of the momentum portfolio during a low 
uncertainty regime, while Yb + Y\ are the abnormal returns of the momentum 
strategy in a high uncertainty regime. Hence, the level of uncertainty determines 
the abnormal returns provided by the momentum portfolio.  
Two interpretations of the STR model are possible. On the one hand, the 
model can be considered as a regime-switching model allowing for two 
regimes associated with the extreme values of the transition function 
c(S); 	e, f

∗) = 0	and c(S); 	e, f∗) = 1, where the transition from one regime 
to another is smooth. On the other hand, the STR model can be considered as 
allowing a continuum of regimes, each associated with a different value of 
c(S); 	e, f

∗). Here, we adopt the first interpretation. 

In our calculations, f∗ = 121.55  with a standard error of 12.75. This 
corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
 

Table 2.3 
Abnormal Returns of Momentum and Macroeconomic Uncertainty with an 

Estimated Endogenous Threshold 
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The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal to 
121.55); an indicator variable for recessionary periods (REC); an indicator variable of 
whether the economy is in a high uncertainty regime and an expansion period, referred to as 
high good uncertainty (H. GOOD UNC); and, an indicator of whether the economy is in a 
recession and a high uncertainty regime, referred to as high bad uncertainty (H. BAD UNC). 
Finally, the table also shows the estimated slopes of an indicator that identifies episodes of 
recession and low uncertainty regimes (below the endogenous threshold), labeled as low bad 
uncertainty (L. BAD UNC). The endogenous threshold was estimated using a Smooth 
Transition Regression model that consists of two extreme regimes, one of low uncertainty 
and one of high uncertainty. The transition variable in this model is the EPU index and the 
switching coefficient between the two regimes is the intercept, which measures the abnormal 
returns of momentum. The impact of high uncertainty on the abnormal returns of 
momentum is in bold. 

 Endogenous Threshold (Percentile 80.15) 

 b t(b) b t(b) b t(b) b t(b) b t(b) 

ALPHA 1.76 8.43 2.16 9.35 2.35 9.36 2.17 9.41 1.97 8.53 
RMRF -0.38 -9.19 -0.39 -9.38 -0.39 -9.53 -0.40 -9.70 -0.40 -9.61 
SMB -0.20 -2.92 -0.19 -2.88 -0.19 -2.89 -0.19 -2.90 -0.20 -2.93 
HML -0.74 -12.14 -0.74 -12.24 -0.74 -12.25 -0.74 -12.37 -0.75 -12.36 
H.UNC  -2.20 -3.93 -1.99 -3.89     
REC     -0.95 -1.83     
H. GOOD 
UNC       -1.37 -2.42   
H. BAD UNC       -4.35 -4.29 -4.15 -4.81 

L. BAD UNC                 -0.13 -0.22 

 
C. Momentum Moments under High and Low Economic Uncertainty  
To gain further insights into the evolving nature of momentum under 
different regimes of uncertainty, we estimated sample statistics of the 
momentum portfolio for the full sample and for two subsamples based on the 
above estimates of low and high uncertainty states (below and above the value 
of 121.55 on the EPU index). To construct comparable measures of skewness, 
variance, and kurtosis across the sub-samples, we decomposed the traditional 
formula for the kth central moment as follows.  
Thus,  

uvw =
i >∑ (yz{y|)
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where uvw	, is the kth standardized central moment and A is the sample size. 
Then we have that: 

  (2.3)

whereis the logistic function given by:
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The table shows the results of a regression of WML returns on market, size and value 
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Finally, the table also shows the estimated slopes of an indicator that identifies episodes of 
recession and low uncertainty regimes (below the endogenous threshold), labeled as low bad 
uncertainty (L. BAD UNC). The endogenous threshold was estimated using a Smooth 
Transition Regression model that consists of two extreme regimes, one of low uncertainty 
and one of high uncertainty. The transition variable in this model is the EPU index and the 
switching coefficient between the two regimes is the intercept, which measures the abnormal 
returns of momentum. The impact of high uncertainty on the abnormal returns of 
momentum is in bold. 
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momentum portfolio for the full sample and for two subsamples based on the 
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8.  In this case, known as HARST, a multiple-regime smooth transition of the heterogeneous autoregressive 
model. We did not, however, consider autoregressive terms because no theoretical insights are to be gained 
from their inclusion in the model. Moreover, in contrast to our study, the authors of the original model 
use the model to estimate conditional volatilities of several returns of stock market indices in the global 
economy, using lagged variables to condition the transition.
9.  Variations of this model have been used in Hillebrand and Medeiros (2016) and Fernandes et al. (2014).
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where γ is the slope parameter and c* can be understood as a threshold 
value that also needs to be estimated. This threshold separates low from 
high uncertainty regimes and is instrumental. Notice that 
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In our calculations, f∗ = 121.55  with a standard error of 12.75. This 
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As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
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other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
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recession and low uncertainty regimes (below the endogenous threshold), labeled as low bad 
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corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
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to another is smooth. On the other hand, the STR model can be considered as 
allowing a continuum of regimes, each associated with a different value of 
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In our calculations, f∗ = 121.55  with a standard error of 12.75. This 
corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
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estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
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The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal to 
121.55); an indicator variable for recessionary periods (REC); an indicator variable of 
whether the economy is in a high uncertainty regime and an expansion period, referred to as 
high good uncertainty (H. GOOD UNC); and, an indicator of whether the economy is in a 
recession and a high uncertainty regime, referred to as high bad uncertainty (H. BAD UNC). 
Finally, the table also shows the estimated slopes of an indicator that identifies episodes of 
recession and low uncertainty regimes (below the endogenous threshold), labeled as low bad 
uncertainty (L. BAD UNC). The endogenous threshold was estimated using a Smooth 
Transition Regression model that consists of two extreme regimes, one of low uncertainty 
and one of high uncertainty. The transition variable in this model is the EPU index and the 
switching coefficient between the two regimes is the intercept, which measures the abnormal 
returns of momentum. The impact of high uncertainty on the abnormal returns of 
momentum is in bold. 

 Endogenous Threshold (Percentile 80.15) 
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To gain further insights into the evolving nature of momentum under 
different regimes of uncertainty, we estimated sample statistics of the 
momentum portfolio for the full sample and for two subsamples based on the 
above estimates of low and high uncertainty states (below and above the value 
of 121.55 on the EPU index). To construct comparable measures of skewness, 
variance, and kurtosis across the sub-samples, we decomposed the traditional 
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∗). Here, we adopt the first interpretation. 

In our calculations, f∗ = 121.55  with a standard error of 12.75. This 
corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
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corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
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other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
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2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
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recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
 

Table 2.3 
Abnormal Returns of Momentum and Macroeconomic Uncertainty with an 

Estimated Endogenous Threshold 

	 24	

The table shows the results of a regression of WML returns on market, size and value 
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strategy in a high uncertainty regime. Hence, the level of uncertainty determines 
the abnormal returns provided by the momentum portfolio.  
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regimes associated with the extreme values of the transition function 
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to another is smooth. On the other hand, the STR model can be considered as 
allowing a continuum of regimes, each associated with a different value of 
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∗). Here, we adopt the first interpretation. 

In our calculations, f∗ = 121.55  with a standard error of 12.75. This 
corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
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The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal to 
121.55); an indicator variable for recessionary periods (REC); an indicator variable of 
whether the economy is in a high uncertainty regime and an expansion period, referred to as 
high good uncertainty (H. GOOD UNC); and, an indicator of whether the economy is in a 
recession and a high uncertainty regime, referred to as high bad uncertainty (H. BAD UNC). 
Finally, the table also shows the estimated slopes of an indicator that identifies episodes of 
recession and low uncertainty regimes (below the endogenous threshold), labeled as low bad 
uncertainty (L. BAD UNC). The endogenous threshold was estimated using a Smooth 
Transition Regression model that consists of two extreme regimes, one of low uncertainty 
and one of high uncertainty. The transition variable in this model is the EPU index and the 
switching coefficient between the two regimes is the intercept, which measures the abnormal 
returns of momentum. The impact of high uncertainty on the abnormal returns of 
momentum is in bold. 

 Endogenous Threshold (Percentile 80.15) 

 b t(b) b t(b) b t(b) b t(b) b t(b) 

ALPHA 1.76 8.43 2.16 9.35 2.35 9.36 2.17 9.41 1.97 8.53 
RMRF -0.38 -9.19 -0.39 -9.38 -0.39 -9.53 -0.40 -9.70 -0.40 -9.61 
SMB -0.20 -2.92 -0.19 -2.88 -0.19 -2.89 -0.19 -2.90 -0.20 -2.93 
HML -0.74 -12.14 -0.74 -12.24 -0.74 -12.25 -0.74 -12.37 -0.75 -12.36 
H.UNC  -2.20 -3.93 -1.99 -3.89     
REC     -0.95 -1.83     
H. GOOD 
UNC       -1.37 -2.42   
H. BAD UNC       -4.35 -4.29 -4.15 -4.81 

L. BAD UNC                 -0.13 -0.22 

 
C. Momentum Moments under High and Low Economic Uncertainty  
To gain further insights into the evolving nature of momentum under 
different regimes of uncertainty, we estimated sample statistics of the 
momentum portfolio for the full sample and for two subsamples based on the 
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∗). Here, we adopt the first interpretation. 

In our calculations, f∗ = 121.55  with a standard error of 12.75. This 
corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
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The table shows the results of a regression of WML returns on market, size and value 
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returns of momentum. The impact of high uncertainty on the abnormal returns of 
momentum is in bold. 

 Endogenous Threshold (Percentile 80.15) 

 b t(b) b t(b) b t(b) b t(b) b t(b) 

ALPHA 1.76 8.43 2.16 9.35 2.35 9.36 2.17 9.41 1.97 8.53 
RMRF -0.38 -9.19 -0.39 -9.38 -0.39 -9.53 -0.40 -9.70 -0.40 -9.61 
SMB -0.20 -2.92 -0.19 -2.88 -0.19 -2.89 -0.19 -2.90 -0.20 -2.93 
HML -0.74 -12.14 -0.74 -12.24 -0.74 -12.25 -0.74 -12.37 -0.75 -12.36 
H.UNC  -2.20 -3.93 -1.99 -3.89     
REC     -0.95 -1.83     
H. GOOD 
UNC       -1.37 -2.42   
H. BAD UNC       -4.35 -4.29 -4.15 -4.81 

L. BAD UNC                 -0.13 -0.22 

 
C. Momentum Moments under High and Low Economic Uncertainty  
To gain further insights into the evolving nature of momentum under 
different regimes of uncertainty, we estimated sample statistics of the 
momentum portfolio for the full sample and for two subsamples based on the 
above estimates of low and high uncertainty states (below and above the value 
of 121.55 on the EPU index). To construct comparable measures of skewness, 
variance, and kurtosis across the sub-samples, we decomposed the traditional 
formula for the kth central moment as follows.  
Thus,  

uvw =
i >∑ (yz{y|)

}~
�⁄

ÅÇi >∑ (yz{y|)É
~
�⁄ Ñ

} =
i >∑ (yz{y|)

}~
�⁄

Ö}
,   (2.5) 

where uvw	, is the kth standardized central moment and A is the sample size. 
Then we have that: 

 and 

	 23	

&'() = Yb + Y\c(S); e, f
∗) +WQ

XYZ + G̃),       (2.3) 

where	c(S); e, f∗)	is the logistic function given by: 

c(S); e, f
∗) =

i

ijklm(nolp
∗) ,   (2.4) 

where e is the slope parameter and f∗ can be understood as a threshold value 
that also needs to be estimated. This threshold separates low from high 
uncertainty regimes and is instrumental. Notice that c(S); 	e, f∗)  is 
monotonically increasing in S)  and, therefore, c(S); 	e, f∗) → 1  as S) → ∞ 
and c(S); 	e, f∗) → 0 as S) → −∞. For this reason Yb should be thought of 
as containing the abnormal returns of the momentum portfolio during a low 
uncertainty regime, while Yb + Y\ are the abnormal returns of the momentum 
strategy in a high uncertainty regime. Hence, the level of uncertainty determines 
the abnormal returns provided by the momentum portfolio.  
Two interpretations of the STR model are possible. On the one hand, the 
model can be considered as a regime-switching model allowing for two 
regimes associated with the extreme values of the transition function 
c(S); 	e, f

∗) = 0	and c(S); 	e, f∗) = 1, where the transition from one regime 
to another is smooth. On the other hand, the STR model can be considered as 
allowing a continuum of regimes, each associated with a different value of 
c(S); 	e, f

∗). Here, we adopt the first interpretation. 

In our calculations, f∗ = 121.55  with a standard error of 12.75. This 
corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
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recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
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The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal to 
121.55); an indicator variable for recessionary periods (REC); an indicator variable of 
whether the economy is in a high uncertainty regime and an expansion period, referred to as 
high good uncertainty (H. GOOD UNC); and, an indicator of whether the economy is in a 
recession and a high uncertainty regime, referred to as high bad uncertainty (H. BAD UNC). 
Finally, the table also shows the estimated slopes of an indicator that identifies episodes of 
recession and low uncertainty regimes (below the endogenous threshold), labeled as low bad 
uncertainty (L. BAD UNC). The endogenous threshold was estimated using a Smooth 
Transition Regression model that consists of two extreme regimes, one of low uncertainty 
and one of high uncertainty. The transition variable in this model is the EPU index and the 
switching coefficient between the two regimes is the intercept, which measures the abnormal 
returns of momentum. The impact of high uncertainty on the abnormal returns of 
momentum is in bold. 
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where e is the slope parameter and f∗ can be understood as a threshold value 
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to another is smooth. On the other hand, the STR model can be considered as 
allowing a continuum of regimes, each associated with a different value of 
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∗). Here, we adopt the first interpretation. 

In our calculations, f∗ = 121.55  with a standard error of 12.75. This 
corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
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corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
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indicates that uncertainty appears to be the economic state that underlies 
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The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal to 
121.55); an indicator variable for recessionary periods (REC); an indicator variable of 
whether the economy is in a high uncertainty regime and an expansion period, referred to as 
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uncertainty (L. BAD UNC). The endogenous threshold was estimated using a Smooth 
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and one of high uncertainty. The transition variable in this model is the EPU index and the 
switching coefficient between the two regimes is the intercept, which measures the abnormal 
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the estimates of the regression of WML returns on the risk factors and 
on the other covariates, as explained above. As can be seen, these es-
timates are largely similar to those for the 80th percentile in Table 2.2 
(Panel B). But in this case they arise endogenously from the observed 
abnormal returns and the given model specification, since the uncer-
tainty threshold was also estimated.

As expected, columns 7-10 indicate that a combination of high uncer-
tainty regimes and recessions has the greatest impact on the performance 
of momentum strategies. Columns 7 and 9 show that abnormal returns 
fall to -2.18 (2.17 minus 4.35) per month, corresponding basically to a 
momentum crash. In contrast, and consistent with the analysis reported 
above, recessionary states unaccompanied by high uncertainty regimes 
do not present statistically significant effects on abnormal returns of 
momentum. This indicates that uncertainty appears to be the economic 
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state that underlies momentum performance deterioration as opposed to 
contractions in economic activity. 

Table 2.3. Abnormal Returns of Momentum and Macroeconomic Uncertainty 
with an Estimated Endogenous Threshold

The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal 
to 121.55); an indicator variable for recessionary periods (REC); an indicator variable 
of whether the economy is in a high uncertainty regime and an expansion period, 
referred to as high good uncertainty (H. GOOD UNC); and, an indicator of whether 
the economy is in a recession and a high uncertainty regime, referred to as high bad 
uncertainty (H. BAD UNC). Finally, the table also shows the estimated slopes of an 
indicator that identifies episodes of recession and low uncertainty regimes (below the 
endogenous threshold), labeled as low bad uncertainty (L. BAD UNC). The endogenous 
threshold was estimated using a Smooth Transition Regression model that consists of 
two extreme regimes, one of low uncertainty and one of high uncertainty. The transi-
tion variable in this model is the EPU index and the switching coefficient between the 
two regimes is the intercept, which measures the abnormal returns of momentum. The 
impact of high uncertainty on the abnormal returns of momentum is in bold.

Endogenous Threshold (Percentile 80.15)

b t(b) b t(b) b t(b) b t(b) b t(b)

ALPHA 1.76 8.43 2.16 9.35 2.35 9.36 2.17 9.41 1.97 8.53

RMRF -0.38 -9.19 -0.39 -9.38 -0.39 -9.53 -0.40 -9.70 -0.40 -9.61

SMB -0.20 -2.92 -0.19 -2.88 -0.19 -2.89 -0.19 -2.90 -0.20 -2.93

HML -0.74 -12.14 -0.74 -12.24 -0.74 -12.25 -0.74 -12.37 -0.75 -12.36

H.UNC -2.20 -3.93 -1.99 -3.89

REC -0.95 -1.83

H. GOOD 
UNC -1.37 -2.42

H. BAD 
UNC -4.35 -4.29 -4.15 -4.81

L. BAD 
UNC                 -0.13 -0.22
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C.	 Momentum Moments under High and Low Economic Uncertainty 

To gain further insights into the evolving nature of momentum under 
different regimes of uncertainty, we estimated sample statistics of the 
momentum portfolio for the full sample and for two subsamples based 
on the above estimates of low and high uncertainty states (below and 
above the value of 121.55 on the EPU index). To construct comparable 
measures of skewness, variance, and kurtosis across the sub-samples, 
we decomposed the traditional formula for the kth central moment as 
follows. 

Thus, 
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where e is the slope parameter and f∗ can be understood as a threshold value 
that also needs to be estimated. This threshold separates low from high 
uncertainty regimes and is instrumental. Notice that c(S); 	e, f∗)  is 
monotonically increasing in S)  and, therefore, c(S); 	e, f∗) → 1  as S) → ∞ 
and c(S); 	e, f∗) → 0 as S) → −∞. For this reason Yb should be thought of 
as containing the abnormal returns of the momentum portfolio during a low 
uncertainty regime, while Yb + Y\ are the abnormal returns of the momentum 
strategy in a high uncertainty regime. Hence, the level of uncertainty determines 
the abnormal returns provided by the momentum portfolio.  
Two interpretations of the STR model are possible. On the one hand, the 
model can be considered as a regime-switching model allowing for two 
regimes associated with the extreme values of the transition function 
c(S); 	e, f

∗) = 0	and c(S); 	e, f∗) = 1, where the transition from one regime 
to another is smooth. On the other hand, the STR model can be considered as 
allowing a continuum of regimes, each associated with a different value of 
c(S); 	e, f

∗). Here, we adopt the first interpretation. 

In our calculations, f∗ = 121.55  with a standard error of 12.75. This 
corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
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The table shows the results of a regression of WML returns on market, size and value 
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uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal to 
121.55); an indicator variable for recessionary periods (REC); an indicator variable of 
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switching coefficient between the two regimes is the intercept, which measures the abnormal 
returns of momentum. The impact of high uncertainty on the abnormal returns of 
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corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 
As expected, columns 7-10 indicate that a combination of high uncertainty 
regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  
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The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal to 
121.55); an indicator variable for recessionary periods (REC); an indicator variable of 
whether the economy is in a high uncertainty regime and an expansion period, referred to as 
high good uncertainty (H. GOOD UNC); and, an indicator of whether the economy is in a 
recession and a high uncertainty regime, referred to as high bad uncertainty (H. BAD UNC). 
Finally, the table also shows the estimated slopes of an indicator that identifies episodes of 
recession and low uncertainty regimes (below the endogenous threshold), labeled as low bad 
uncertainty (L. BAD UNC). The endogenous threshold was estimated using a Smooth 
Transition Regression model that consists of two extreme regimes, one of low uncertainty 
and one of high uncertainty. The transition variable in this model is the EPU index and the 
switching coefficient between the two regimes is the intercept, which measures the abnormal 
returns of momentum. The impact of high uncertainty on the abnormal returns of 
momentum is in bold. 

 Endogenous Threshold (Percentile 80.15) 

 b t(b) b t(b) b t(b) b t(b) b t(b) 

ALPHA 1.76 8.43 2.16 9.35 2.35 9.36 2.17 9.41 1.97 8.53 
RMRF -0.38 -9.19 -0.39 -9.38 -0.39 -9.53 -0.40 -9.70 -0.40 -9.61 
SMB -0.20 -2.92 -0.19 -2.88 -0.19 -2.89 -0.19 -2.90 -0.20 -2.93 
HML -0.74 -12.14 -0.74 -12.24 -0.74 -12.25 -0.74 -12.37 -0.75 -12.36 
H.UNC  -2.20 -3.93 -1.99 -3.89     
REC     -0.95 -1.83     
H. GOOD 
UNC       -1.37 -2.42   
H. BAD UNC       -4.35 -4.29 -4.15 -4.81 

L. BAD UNC                 -0.13 -0.22 
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This is a weighted average of the sub-sample kth central moment, 
∑ (áà − á|)w Aèå
>ç

i , standardized using the total-sample central moment ìw , 
which in turn sums to the respective full-sample standardized moment, uvw. 
The weights are the share of each uncertainty regime in the total sample.  
These and other sample statistics, together with the traditional Sharpe ratio 
across and within subsamples, are reported in Table 2.4. Differences across 
the uncertainty regimes are notorious. While the Sharpe ratio for the WML 
strategy in the total sample is 0.52 (independent of the uncertainty level), it 
increases to 0.75 during the low uncertainty regime, and virtually collapses 
during episodes of high uncertainty (-0.09). Moreover, the average return of 
the momentum strategies when uncertainty is low stands at 14.14, but it 
becomes negative and falls to -3.07 when uncertainty is high. Skewness ranges 
from -2.01 in states of low uncertainty to -3.66 under high uncertainty. 
Likewise, standard deviation also increases by a factor of two, from 0.83 to 
1.70. Finally, the (excess) kurtosis increases considerably from 16.60 to 20.77. 
If we consider the changes in the mean together with the other moments of 
the momentum distribution, we document a dramatic increase in the 
likelihood of momentum crashes during periods of high uncertainty (which, 
when using the selected threshold, naturally account for approximately 20% of 
the sample,	>É

>
= 19.98%). 
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Maximum 26.16 26.16 24.99 
Minimum -77.02 -77.02 -45.16 
Mean 14.14 18.39 -3.07 
Standard Deviation* 1.00 0.83 1.70 
Skewness* -2.34 -2.01 -3.66 
Kurtosis* 17.42 16.60 20.77 
Sharpe ratio 0.52 0.75 -0.09 

Num. Obs.  N=1086 N1 =871 N2 =215 

 
The rise in the Sharpe ratio following the abandonment of momentum trading 
when uncertainty is high is quite remarkable. For instance, if we compare the 
results in Table 2.4 with those reported by Barroso and Santa-Clara (2015), we 
see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 
economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 
The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
total sample and the low uncertainty states, respectively. 

	
10 Due to data restrictions in our subscription to CRSP, for the estimation of the turnover we 
had to exclude the last six months of our observations, namely, from January to June 2017.  
11 We calculate the turnover of momentum as in Barroso and Santa-Clara (2015), and as 
explained Appendix A. 
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The rise in the Sharpe ratio following the abandonment of momentum trading 
when uncertainty is high is quite remarkable. For instance, if we compare the 
results in Table 2.4 with those reported by Barroso and Santa-Clara (2015), we 
see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 
economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 
The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
total sample and the low uncertainty states, respectively. 

	
10 Due to data restrictions in our subscription to CRSP, for the estimation of the turnover we 
had to exclude the last six months of our observations, namely, from January to June 2017.  
11 We calculate the turnover of momentum as in Barroso and Santa-Clara (2015), and as 
explained Appendix A. 
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becomes negative and falls to -3.07 when uncertainty is high. Skewness ranges 
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If we consider the changes in the mean together with the other moments of 
the momentum distribution, we document a dramatic increase in the 
likelihood of momentum crashes during periods of high uncertainty (which, 
when using the selected threshold, naturally account for approximately 20% of 
the sample,	>É

>
= 19.98%). 

Table 2.4     
 Momentum Moments under High and Low Uncertainty Regimes 

 
Total  Low Uncertainty High 

Uncertainty 

	 26	

Maximum 26.16 26.16 24.99 
Minimum -77.02 -77.02 -45.16 
Mean 14.14 18.39 -3.07 
Standard Deviation* 1.00 0.83 1.70 
Skewness* -2.34 -2.01 -3.66 
Kurtosis* 17.42 16.60 20.77 
Sharpe ratio 0.52 0.75 -0.09 

Num. Obs.  N=1086 N1 =871 N2 =215 
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when uncertainty is high is quite remarkable. For instance, if we compare the 
results in Table 2.4 with those reported by Barroso and Santa-Clara (2015), we 
see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 
economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 
The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
total sample and the low uncertainty states, respectively. 
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The rise in the Sharpe ratio following the abandonment of momentum trading 
when uncertainty is high is quite remarkable. For instance, if we compare the 
results in Table 2.4 with those reported by Barroso and Santa-Clara (2015), we 
see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 
economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 
The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
total sample and the low uncertainty states, respectively. 
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across and within subsamples, are reported in Table 2.4. Differences across 
the uncertainty regimes are notorious. While the Sharpe ratio for the WML 
strategy in the total sample is 0.52 (independent of the uncertainty level), it 
increases to 0.75 during the low uncertainty regime, and virtually collapses 
during episodes of high uncertainty (-0.09). Moreover, the average return of 
the momentum strategies when uncertainty is low stands at 14.14, but it 
becomes negative and falls to -3.07 when uncertainty is high. Skewness ranges 
from -2.01 in states of low uncertainty to -3.66 under high uncertainty. 
Likewise, standard deviation also increases by a factor of two, from 0.83 to 
1.70. Finally, the (excess) kurtosis increases considerably from 16.60 to 20.77. 
If we consider the changes in the mean together with the other moments of 
the momentum distribution, we document a dramatic increase in the 
likelihood of momentum crashes during periods of high uncertainty (which, 
when using the selected threshold, naturally account for approximately 20% of 
the sample,	>É
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= 19.98%). 
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The rise in the Sharpe ratio following the abandonment of momentum trading 
when uncertainty is high is quite remarkable. For instance, if we compare the 
results in Table 2.4 with those reported by Barroso and Santa-Clara (2015), we 
see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 
economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 
The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
total sample and the low uncertainty states, respectively. 

	
10 Due to data restrictions in our subscription to CRSP, for the estimation of the turnover we 
had to exclude the last six months of our observations, namely, from January to June 2017.  
11 We calculate the turnover of momentum as in Barroso and Santa-Clara (2015), and as 
explained Appendix A. 
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The rise in the Sharpe ratio following the abandonment of momentum trading 
when uncertainty is high is quite remarkable. For instance, if we compare the 
results in Table 2.4 with those reported by Barroso and Santa-Clara (2015), we 
see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 
economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 
The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
total sample and the low uncertainty states, respectively. 

	
10 Due to data restrictions in our subscription to CRSP, for the estimation of the turnover we 
had to exclude the last six months of our observations, namely, from January to June 2017.  
11 We calculate the turnover of momentum as in Barroso and Santa-Clara (2015), and as 
explained Appendix A. 
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from -2.01 in states of low uncertainty to -3.66 under high uncertainty. 
Likewise, standard deviation also increases by a factor of two, from 0.83 to 
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The rise in the Sharpe ratio following the abandonment of momentum trading 
when uncertainty is high is quite remarkable. For instance, if we compare the 
results in Table 2.4 with those reported by Barroso and Santa-Clara (2015), we 
see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 
economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 
The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
total sample and the low uncertainty states, respectively. 

	
10 Due to data restrictions in our subscription to CRSP, for the estimation of the turnover we 
had to exclude the last six months of our observations, namely, from January to June 2017.  
11 We calculate the turnover of momentum as in Barroso and Santa-Clara (2015), and as 
explained Appendix A. 
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The rise in the Sharpe ratio following the abandonment of momentum trading 
when uncertainty is high is quite remarkable. For instance, if we compare the 
results in Table 2.4 with those reported by Barroso and Santa-Clara (2015), we 
see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 
economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 
The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
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see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 
economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 
The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
total sample and the low uncertainty states, respectively. 

	
10 Due to data restrictions in our subscription to CRSP, for the estimation of the turnover we 
had to exclude the last six months of our observations, namely, from January to June 2017.  
11 We calculate the turnover of momentum as in Barroso and Santa-Clara (2015), and as 
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Table 2.4.  Momentum Moments under High and Low Uncertainty Regimes

Total Low Uncertainty High Uncertainty

Maximum 26.16 26.16 24.99

Minimum -77.02 -77.02 -45.16

Mean 14.14 18.39 -3.07

Standard Deviation* 1.00 0.83 1.70

Skewness* -2.34 -2.01 -3.66

Kurtosis* 17.42 16.60 20.77

Sharpe ratio 0.52 0.75 -0.09

Num. Obs. N=1086 N1 =871 N2 =215

The rise in the Sharpe ratio following the abandonment of momentum 
trading when uncertainty is high is quite remarkable. For instance, if 
we compare the results in Table 2.4 with those reported by Barroso and 
Santa-Clara (2015), we see that while their volatility-managed strategy 
achieves an increase in the Sharpe ratio by an order of 1.83 (from 0.53 
in the unmanaged version to 0.97 in the managed version), here there 
is an increase by an order of 1.44 (from 0.52 to 0.75) from a position 
of permanent momentum trading to one that excludes episodes of high 
uncertainty. Note that this result does not employ any time-varying 
scaling device, which would improve the Sharpe ratio even more, al-
though this would imply higher transaction costs because of the portfo-
lio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 
201610 we calculate the turnover of the WML strategy as 80.62% per 
month, and the turnover of a strategy consisting of abandoning the mo-
mentum position when uncertainty is high, as 74.20% monthly, which 
implies a reduction of the turnover of 6.42% in average, per month11. 
All in all, excluding high uncertainty episodes from our momentum po-
sition represents an economically significant improvement in terms of 

10.  Due to data restrictions in our subscription to CRSP, for the estimation of the turnover we had to 
exclude the last six months of our observations, namely, from January to June 2017. 
11.  We calculate the turnover of momentum as in Barroso and Santa-Clara (2015), and as explained 
Appendix A.
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profitability, reduction of the transaction costs, and of the risk implied 
by the momentum strategy, which could be exploited by investors, in 
addition to other risk-management devices such as volatility scaling or 
other dynamic leveraging strategies.

The inspection of the kernel densities of the three cases (i.e. total sam-
ple, low and high uncertainties) complements the above analysis (see 
Figure 2.2). As can be seen, excluding high uncertainty episodes not 
only switches the returns distribution to the right, but also brings about 
a reduction in the losses tail. This is evident if we compare the solid 
black line, corresponding to high uncertainty states, with the red- and 
blue-dotted lines, corresponding to the total sample and the low uncer-

tainty states, respectively.

Figure 2.2. Densities of WML monthly returns under high and low uncertainty

The kernel densities were estimated with the observations for the total sample (black 
solid line), the low uncertainty regime (blue-dotted line) and the high uncertainty re-
gime (red-dotted line). 
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D. Predictability of High Economic Uncertainty and Momentum Trading

A strategy like the one outlined above, which basically involves a cur-
tailment of momentum trading when uncertainty is high, is feasible if 
we can predict with some accuracy the state of macroeconomic uncer-
tainty in the following month. Thus, investors would be able to decide 
in real time whether to continue their allocation based on momentum 
(if uncertainty were low enough) or whether to curtail their momentum 
exposure (if uncertainty were high). In this section, we analyze this pos-
sibility by assessing the persistence and predictability of the EPU index 
developed by Baker et al. (2016) and by examining the variability of the 
high uncertainty threshold estimated around the 80th percentile. We also 
propose a strategy that can be implemented in real time.

In a preliminary analysis an augmented Dickey-Fuller test was con-
ducted and the null of a unit root was rejected at the 99% level of con-
fidence. In Table 2.5, we report the results of three regressions of the 
EPU index: on its first lag (first column); on two lagged months (third 
column); and, finally, on its third lag (sixth column). Besides the inter-
cept of each regression (Alpha), and the autoregressive coefficient (Rho), 
the table also reports the out-of-sample R2 (OOR2) statistic proposed by 
Campbell and Thompson (2008). We drew on a sample of 240 months 
to run initial regressions and then used the estimated coefficients and 
the last available observation from the EPU index, to forecast one-step 
ahead (one, two or three months ahead for each model, respectively). 
Then, each month we used an expanding window of one observation to 
produce out-of-sample forecasts and compared these with the accuracy 
of the historical mean 
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coefficients and the last available observation from the EPU index, to forecast 
one-step ahead (one, two or three months ahead for each model, respectively). 
Then, each month we used an expanding window of one observation to 
produce out-of-sample forecasts and compared these with the accuracy of the 
historical mean Dó@||||||

), as in equation 2.10: 
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where ]∗  is the initial training sample. -†) , °†)  and Dó@||||||
)  are estimated with 

information available only up to time t, to ensure that the forecast is feasible in 
real time.  
As can be observed in Table 2.5, the EPU index is highly persistent. The one-
lag autoregressive coefficient is around 0.81 (while the two-lag and three-lag 
coefficients are 0.72 and 0.67, respectively). Moreover, the OOR2 reaches 
68% in the first case, and never falls below 47%, even when using three-
month lagged information for the EPU index. This means that the level of 
future economic uncertainty can be predicted with relative accuracy, and that 
by looking only at the current level of economic uncertainty, decisions can be 
taken about the momentum exposure of a given portfolio allocation. 
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coefficients and the last available observation from the EPU index, to forecast 
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coefficients and the last available observation from the EPU index, to forecast 
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Then, each month we used an expanding window of one observation to 
produce out-of-sample forecasts and compared these with the accuracy of the 
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coefficients and the last available observation from the EPU index, to forecast 
one-step ahead (one, two or three months ahead for each model, respectively). 
Then, each month we used an expanding window of one observation to 
produce out-of-sample forecasts and compared these with the accuracy of the 
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coefficients and the last available observation from the EPU index, to forecast 
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Then, each month we used an expanding window of one observation to 
produce out-of-sample forecasts and compared these with the accuracy of the 
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and three-lag coefficients are 0.72 and 0.67, respectively). Moreover, the 
OOR2 reaches 68% in the first case, and never falls below 47%, even 
when using three-month lagged information for the EPU index. This 
means that the level of future economic uncertainty can be predicted 
with relative accuracy, and that by looking only at the current level of 
economic uncertainty, decisions can be taken about the momentum ex-
posure of a given portfolio allocation.

Table 2.5. Predictive Power of Lags on Current Uncertainty

The table shows the monthly estimates and t-statistics of a regression of current uncer-
tainty on its own lags – that is,  one month - L(1), two months - L(2) and three months 
- L(3). It also shows the in-sample R-squared – R2, of the predictive regressions, and the 
out-of-sample R-squared, OOR2, constructed as in Campbell and Thompson (2008). To 
estimate the OOR2, we used a training sample of 240 months to run the initial models. 
Then the estimated coefficients and the last sample observation of the EPU index were 
used to forecast uncertainty in the following month. Then, each subsequent month was 
included in an expanding window of observations to produce out-of-sample forecasts 
and compared with the accuracy of the historical mean. 

L(1) t-stat L(2) t-stat L(3) t-stat

Alpha 17.74 9.82 26.31 12.29 30.38 13.37

Pho 0.81 45.13 0.72 33.70 0.67 29.80

OOR2 0.68   0.54   0.47  

Even if uncertainty is a persistent state, the estimation of the high un-
certainty threshold may affect our decision as to whether to quit the 
momentum strategy in a given month – for example, if the uncertainty 
indicator is above a certain threshold. This threshold was estimated here 
at 121.55, which corresponds to the 80.15th percentile. If the uncertainty 
threshold (compared to the EPU index) is relatively stable over time, we 
can be confident about using it to inform our decision each month. In 
Figure 2.3 we show the time-varying 80.15th percentile of the EPU index 
from April 1972 (first half of the sample) to the end. We estimated the 
empirical percentile each month using the information up to this point, 
so as to ensure that this estimation was feasible in real time. 

As can be observed, the uncertainty percentile is relatively stable. In-
deed, the 80.15th percentile remained close to its sample mean (115.57) 
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during the sample period, with a standard deviation of 2.03, which is 
17.80 times lower than the standard deviation of the EPU index (36.17). 
This constancy allows us to rely on the estimated percentile when fixing 
a future threshold of high uncertainty.

Figure 2.3. Time-varying high uncertainty percentile and EPU index

The figure shows the 80.15th percentile (red line) of the EPU index (black line) from 
April 1972 to the end of the sample.

Figure 2.3

0

50

100

150

200

250

300

72 77 82 87 92 97 02 07 12 17

E. Designing the Strategy

A simple portfolio strategy that consists on closing our exposure to mo-
mentum (both short and long positions) when we expect uncertainty to 
be high, leads to significant increments of the momentum profitability, 
and to an even more considerable reduction of the risks implied by the 
original momentum strategy. The threshold estimation at 121.55 pre-
sented before, was carried out using current uncertainty and, given that 
the one-lag autocorrelation coefficient of uncertainty is smaller than 
one (see table 2.5), we need a new (larger) threshold to implement our 
strategy in real time. We estimate this threshold at 145.02, using again 
our STR specification, but this time, employing lagged uncertainty as 
our state variable. Consistently, our proposed strategy consists of cur-
tailing our exposure to momentum once we observed that last month 
uncertainty equals or is above 145.02. This number corresponds to the 
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90th percentile of the EPU index (see Table 2.2, panel C). In the second 
column of Table 2.6 we present the Sharpe ratio of this strategy along-
side other moments of the return distribution of momentum, under low 
and high uncertainty states, while in Figure 2.4 we show the densities 
of the low and high expected uncertainty states, compared to the total 
sample density. Notice that this strategy leads to economic gains in 
terms of risk and return, even above those reported in Table 2.5 and 
Figure 2.3, and more importantly it is feasible in real time.

Table 2.6. Momentum Moments under High and Low Expected Uncertainty Regimes

Total Low Uncertainty High Uncertainty
Maximum 26.16 26.16 24.99
Minimum -77.02 -77.02 -60.17
Mean 14.12 17.90 -19.74
Standard Deviation* 1.00 0.81 2.67
Skewness* -2.34 -1.49 -9.90
Kurtosis* 7.81 7.05 12.77
Sharpe Ratio 0.52 0.73 -0.45
Num. Obs. 1085 976 109

Figure 2.4. Densities of WML monthly returns under high and low expected 
uncertainty

The kernel densities were estimated with the observations for the total sample (black 
solid line), the low expected uncertainty regime (blue-dotted line) and the high-ex-
pected uncertainty regime (red-dotted line). 
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2.5. Excess Return Exposure to Momentum under Changing Economic 
Uncertainty

A.	 Uncertainty as an Economic State in the Pricing Equation

In this section, we show the results of the conditional three-factor 
model (Fama and French, 1993) augmented with a momentum factor 
(i.e. Cahart’s (1997) model), following the same STR methodology as 
outlined above in equations 2.2-2.4. This allows us to condition the es-
timates of the momentum effects on the excess equity returns (momen-
tum betas), and the intercept of the regression on the current economic 
uncertainty level. In so doing, we add to a nascent strand in the finan-
cial literature that analyzes the impact of uncertainty on stock prices 
(Brogaard and Detzel, 2015; Segal et al., 2015; Bali and Zhou, 2016). Un-
like these authors, we describe a model that does not treat uncertainty as 
a risk factor common to all the analyzed portfolios in the RHS variables 
of the pricing equation, but as an economic regime, which has specific 
effects on each of the stock portfolios. 

The reason for undertaking this exercise is the same as that outlined in 
section I. We expect uncertainty to impact investors’ ability to construct 
an accurate probability distribution that can describe future winners 
and losers in the market and, as a result, during episodes of high un-
certainty the momentum factor should lose relevance as an explanatory 
variable of excess returns. In other words, when uncertainty is high 
previous winners and losers do not provide a good forecasting ground 
of future winners and losers. Thus, momentum should not be priced in 
the cross-section of excess returns, or at least it should be priced to a 
lesser extent. In the same vein, a less relevant momentum factor should 
be associated with a lower adjustment of the four-factor model to the 
data and, therefore, with higher pricing errors, when uncertainty is high. 
Below, we present evidence to support these claims.

To this end, we estimated the following equation for each series of returns 
in 25 value-weighted portfolios sorted according to size and momentum:
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 

Dóà) = .¢à
ô + .¢à
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where Dó = 2 − 21  are the excess returns, Yb• = [.¢à
ô , .¢à

0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
  

  

				  

	 31	

Table 2.6 
 Momentum Moments under High and Low Expected Uncertainty Regimes 
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Uncertainty 
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Minimum -77.02 -77.02 -60.17 
Mean 14.12 17.90 -19.74 
Standard Deviation* 1.00 0.81 2.67 
Skewness* -2.34 -1.49 -9.90 
Kurtosis* 7.81 7.05 12.77 
Sharpe Ratio 0.52 0.73 -0.45 
Num. Obs. 1085 976 109 
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 

Dóà) = .¢à
ô + .¢à
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where Dó = 2 − 21  are the excess returns, Yb• = [.¢à
ô , .¢à

0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
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Table 2.6 
 Momentum Moments under High and Low Expected Uncertainty Regimes 
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Figure 2.4. Densities of WML monthly returns under high and low expected 
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 
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where Dó = 2 − 21  are the excess returns, Yb• = [.¢à
ô , .¢à

0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
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Figure 2.4. Densities of WML monthly returns under high and low expected 
uncertainty. The kernel densities were estimated with the observations for the total sample 
(black solid line), the low expected uncertainty regime (blue-dotted line) and the high-
expected uncertainty regime (red-dotted line).  
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 
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ô + .¢à
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ô + §ià
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where Dó = 2 − 21  are the excess returns, Yb• = [.¢à
ô , .¢à

0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
  

are the excess returns, 
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Figure 2.4. Densities of WML monthly returns under high and low expected 
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 
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where Dó = 2 − 21  are the excess returns, Yb• = [.¢à
ô , .¢à

0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
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Figure 2.4. Densities of WML monthly returns under high and low expected 
uncertainty. The kernel densities were estimated with the observations for the total sample 
(black solid line), the low expected uncertainty regime (blue-dotted line) and the high-
expected uncertainty regime (red-dotted line).  
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 
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where Dó = 2 − 21  are the excess returns, Yb• = [.¢à
ô , .¢à

0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
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Figure 2.4. Densities of WML monthly returns under high and low expected 
uncertainty. The kernel densities were estimated with the observations for the total sample 
(black solid line), the low expected uncertainty regime (blue-dotted line) and the high-
expected uncertainty regime (red-dotted line).  
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 
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where Dó = 2 − 21  are the excess returns, Yb• = [.¢à
ô , .¢à

0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià
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£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
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Figure 2.4. Densities of WML monthly returns under high and low expected 
uncertainty. The kernel densities were estimated with the observations for the total sample 
(black solid line), the low expected uncertainty regime (blue-dotted line) and the high-
expected uncertainty regime (red-dotted line).  
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 

Dóà) = .¢à
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where Dó = 2 − 21  are the excess returns, Yb• = [.¢à
ô , .¢à

0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
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Table 2.6 
 Momentum Moments under High and Low Expected Uncertainty Regimes 

 
Total  Low Uncertainty High 

Uncertainty 

Maximum 26.16 26.16 24.99 
Minimum -77.02 -77.02 -60.17 
Mean 14.12 17.90 -19.74 
Standard Deviation* 1.00 0.81 2.67 
Skewness* -2.34 -1.49 -9.90 
Kurtosis* 7.81 7.05 12.77 
Sharpe Ratio 0.52 0.73 -0.45 
Num. Obs. 1085 976 109 

 
 

 
Figure 2.4. Densities of WML monthly returns under high and low expected 
uncertainty. The kernel densities were estimated with the observations for the total sample 
(black solid line), the low expected uncertainty regime (blue-dotted line) and the high-
expected uncertainty regime (red-dotted line).  
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 
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where Dó = 2 − 21  are the excess returns, Yb• = [.¢à
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0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 
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thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  
The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 
To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 
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0ò0]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 
Yb• + ß\•  , where ß\• = [§ià

ô + §ià
£09] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, WQ =
[2'23), 6'7), :'()] is a ] × 3 matrix containing the factors with linear 
(non-switching) exposure and their associated coefficients, such that  YZ• =
®./0/1,à, .405,à, .809,à©. 
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Table 2.7. Non-Linear Three-Factor Model Conditioned on the Level of Economic 
Uncertainty 

The first five columns of the table show the estimates corresponding to the non-lin-
ear parameters in the smooth transition model. 
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Table 2.7 
Non-Linear Three-Factor Model Conditioned on the Level of Economic Uncertainty  

The first five columns of the table show the estimates corresponding to the non-linear 
parameters in the smooth transition model. .™ô and .™0ò0are the estimates of the intercept 
and the momentum factor, respectively, in the low-uncertainty regime. §iô	and §i0ò0	 are the 
estimates of the changes in these parameters from low to high uncertainty states, 
respectively. The last five columns show the associated t-statistics for each parameter 
(against the null of non-significance). One model was estimated for each portfolio of 25 
value-weighted portfolios sorted according to size and momentum. The variable that 
governs the transition between the two regimes was the economic policy uncertainty index. 
The estimation sample runs from January 1927 to June 2017, for a total of 1,086 
observations.  

                      

Mom  Low 2 3 4 High Low 2 3 4 High 

     .¢à
ô      t(.¢à

ô ) 
Small -0.15 0.03 0.40 0.20 0.44 -1.28 0.32 3.69 1.76 2.53 

2 -0.14 -0.08 0.10 0.10 0.08 -1.61 -1.12 1.46 1.36 1.16 
3 -0.66 0.09 0.12 0.08 0.09 -2.78 1.44 1.38 0.89 1.33 
4 0.14 0.07 0.15 -0.02 0.08 1.30 0.80 1.59 -0.35 1.28 
Big -0.14 0.15 0.10 -0.03 0.10 -0.59 2.13 1.44 -0.42 0.65 

           
 .¢à

£09 t(.¢à
£09) 

Small -0.34 -0.17 -0.15 0.00 0.05 -20.69 -11.04 -8.98 -0.25 1.87 
2 -0.40 -0.13 -0.05 0.05 0.23 -31.62 -11.42 -4.82 4.10 21.67 

3 -0.32 -0.18 -0.12 0.00 0.26 -5.27 -20.01 -8.83 -0.24 28.01 

4 -0.51 -0.25 -0.12 0.08 0.28 -30.89 -18.17 -7.41 9.17 30.48 

Big -0.50 -0.25 -0.13 0.06 0.33 -14.02 -25.01 -11.82 4.85 9.40 

           
 §ià

ô  t(§ià
ô ) 

Small 0.18 0.56 -0.01 0.35 -0.21 0.58 2.67 -0.03 1.03 -0.93 
2 -0.21 0.45 -0.09 0.24 0.07 -1.17 3.48 -0.51 1.53 0.34 
3 0.63 0.11 -0.07 -0.07 0.00 2.53 0.61 -0.61 -0.60 -0.01 
4 -0.31 0.02 -0.04 0.40 -0.05 -1.55 0.18 -0.38 2.44 -0.25 
Big -0.10 0.13 -0.10 0.12 -0.25 -0.16 0.69 -0.99 1.21 -1.55 

           
 §ià

£09 t(§ià
£09) 

Small -0.16 0.06 0.16 0.18 0.16 -4.96 2.49 6.83 5.07 5.20 

2 0.07 -0.06 0.07 0.05 -0.07 3.61 -4.06 3.68 2.67 -3.40 

3 -0.12 0.09 0.08 0.11 -0.07 -1.91 4.58 5.06 6.06 -3.28 

4 0.10 0.09 0.08 -0.05 -0.05 4.43 5.56 4.29 -3.40 -2.50 

Big 0.13 0.09 0.08 0.03 -0.06 1.96 4.54 6.08 2.22 -1.75 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
[§ià

ô + §ià
£09] , that is, the estimates of the changes in the non-linear 

parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 

 are the estimates of 
the intercept and the momentum factor, respectively, in the low-uncertainty regime. 
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The first five columns of the table show the estimates corresponding to the non-linear 
parameters in the smooth transition model. .™ô and .™0ò0are the estimates of the intercept 
and the momentum factor, respectively, in the low-uncertainty regime. §iô	and §i0ò0	 are the 
estimates of the changes in these parameters from low to high uncertainty states, 
respectively. The last five columns show the associated t-statistics for each parameter 
(against the null of non-significance). One model was estimated for each portfolio of 25 
value-weighted portfolios sorted according to size and momentum. The variable that 
governs the transition between the two regimes was the economic policy uncertainty index. 
The estimation sample runs from January 1927 to June 2017, for a total of 1,086 
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Mom  Low 2 3 4 High Low 2 3 4 High 

     .¢à
ô      t(.¢à

ô ) 
Small -0.15 0.03 0.40 0.20 0.44 -1.28 0.32 3.69 1.76 2.53 

2 -0.14 -0.08 0.10 0.10 0.08 -1.61 -1.12 1.46 1.36 1.16 
3 -0.66 0.09 0.12 0.08 0.09 -2.78 1.44 1.38 0.89 1.33 
4 0.14 0.07 0.15 -0.02 0.08 1.30 0.80 1.59 -0.35 1.28 
Big -0.14 0.15 0.10 -0.03 0.10 -0.59 2.13 1.44 -0.42 0.65 

           
 .¢à

£09 t(.¢à
£09) 

Small -0.34 -0.17 -0.15 0.00 0.05 -20.69 -11.04 -8.98 -0.25 1.87 
2 -0.40 -0.13 -0.05 0.05 0.23 -31.62 -11.42 -4.82 4.10 21.67 

3 -0.32 -0.18 -0.12 0.00 0.26 -5.27 -20.01 -8.83 -0.24 28.01 

4 -0.51 -0.25 -0.12 0.08 0.28 -30.89 -18.17 -7.41 9.17 30.48 

Big -0.50 -0.25 -0.13 0.06 0.33 -14.02 -25.01 -11.82 4.85 9.40 

           
 §ià

ô  t(§ià
ô ) 

Small 0.18 0.56 -0.01 0.35 -0.21 0.58 2.67 -0.03 1.03 -0.93 
2 -0.21 0.45 -0.09 0.24 0.07 -1.17 3.48 -0.51 1.53 0.34 
3 0.63 0.11 -0.07 -0.07 0.00 2.53 0.61 -0.61 -0.60 -0.01 
4 -0.31 0.02 -0.04 0.40 -0.05 -1.55 0.18 -0.38 2.44 -0.25 
Big -0.10 0.13 -0.10 0.12 -0.25 -0.16 0.69 -0.99 1.21 -1.55 

           
 §ià

£09 t(§ià
£09) 

Small -0.16 0.06 0.16 0.18 0.16 -4.96 2.49 6.83 5.07 5.20 

2 0.07 -0.06 0.07 0.05 -0.07 3.61 -4.06 3.68 2.67 -3.40 

3 -0.12 0.09 0.08 0.11 -0.07 -1.91 4.58 5.06 6.06 -3.28 

4 0.10 0.09 0.08 -0.05 -0.05 4.43 5.56 4.29 -3.40 -2.50 

Big 0.13 0.09 0.08 0.03 -0.06 1.96 4.54 6.08 2.22 -1.75 

 

	 34	

The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
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parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 

 are the estimates of the changes in these parameters from low to high 
uncertainty states, respectively. The last five columns show the associated t-statistics 
for each parameter (against the null of non-significance). One model was estimated 
for each portfolio of 25 value-weighted portfolios sorted according to size and mo-
mentum. The variable that governs the transition between the two regimes was the 
economic policy uncertainty index. The estimation sample runs from January 1927 to 
June 2017, for a total of 1,086 observations. 
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Table 2.7 
Non-Linear Three-Factor Model Conditioned on the Level of Economic Uncertainty  

The first five columns of the table show the estimates corresponding to the non-linear 
parameters in the smooth transition model. .™ô and .™0ò0are the estimates of the intercept 
and the momentum factor, respectively, in the low-uncertainty regime. §iô	and §i0ò0	 are the 
estimates of the changes in these parameters from low to high uncertainty states, 
respectively. The last five columns show the associated t-statistics for each parameter 
(against the null of non-significance). One model was estimated for each portfolio of 25 
value-weighted portfolios sorted according to size and momentum. The variable that 
governs the transition between the two regimes was the economic policy uncertainty index. 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
[§ià

ô + §ià
£09] , that is, the estimates of the changes in the non-linear 

parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
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number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
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as opposed to the equations’ intercepts (pricing errors). 
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to momentum under a regime of high uncertainty (that is, .™0ò0 + §i
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
[§ià

ô + §ià
£09] , that is, the estimates of the changes in the non-linear 

parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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respectively. The last five columns show the associated t-statistics for each parameter 
(against the null of non-significance). One model was estimated for each portfolio of 25 
value-weighted portfolios sorted according to size and momentum. The variable that 
governs the transition between the two regimes was the economic policy uncertainty index. 
The estimation sample runs from January 1927 to June 2017, for a total of 1,086 
observations.  
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4 0.10 0.09 0.08 -0.05 -0.05 4.43 5.56 4.29 -3.40 -2.50 

Big 0.13 0.09 0.08 0.03 -0.06 1.96 4.54 6.08 2.22 -1.75 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
[§ià

ô + §ià
£09] , that is, the estimates of the changes in the non-linear 

parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
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parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
[§ià

ô + §ià
£09] , that is, the estimates of the changes in the non-linear 

parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
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cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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The non-linear estimates of the momentum factor exposures and the 
pricing errors (the intercepts) are presented in columns 1 to 5 of Table 
2.7, together with their t-statistics in columns 6 to 10. In the first 5 
rows, we report the estimates of the intercepts, corresponding to the 
low uncertainty regime, for each of the momentum (columns) and 
size (rows) portfolio quintiles. That is, the estimates of parameter 
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4 0.10 0.09 0.08 -0.05 -0.05 4.43 5.56 4.29 -3.40 -2.50 

Big 0.13 0.09 0.08 0.03 -0.06 1.96 4.54 6.08 2.22 -1.75 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
[§ià

ô + §ià
£09] , that is, the estimates of the changes in the non-linear 

parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
[§ià

ô + §ià
£09] , that is, the estimates of the changes in the non-linear 

parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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In the second set of estimates, we report the estimates corresponding to the 
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shown under low and high uncertainty regimes. That is, for each port-
folio, we plotted the coefficient 
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Table 2.7 
Non-Linear Three-Factor Model Conditioned on the Level of Economic Uncertainty  

The first five columns of the table show the estimates corresponding to the non-linear 
parameters in the smooth transition model. .™ô and .™0ò0are the estimates of the intercept 
and the momentum factor, respectively, in the low-uncertainty regime. §iô	and §i0ò0	 are the 
estimates of the changes in these parameters from low to high uncertainty states, 
respectively. The last five columns show the associated t-statistics for each parameter 
(against the null of non-significance). One model was estimated for each portfolio of 25 
value-weighted portfolios sorted according to size and momentum. The variable that 
governs the transition between the two regimes was the economic policy uncertainty index. 
The estimation sample runs from January 1927 to June 2017, for a total of 1,086 
observations.  

                      

Mom  Low 2 3 4 High Low 2 3 4 High 

     .¢à
ô      t(.¢à

ô ) 
Small -0.15 0.03 0.40 0.20 0.44 -1.28 0.32 3.69 1.76 2.53 

2 -0.14 -0.08 0.10 0.10 0.08 -1.61 -1.12 1.46 1.36 1.16 
3 -0.66 0.09 0.12 0.08 0.09 -2.78 1.44 1.38 0.89 1.33 
4 0.14 0.07 0.15 -0.02 0.08 1.30 0.80 1.59 -0.35 1.28 
Big -0.14 0.15 0.10 -0.03 0.10 -0.59 2.13 1.44 -0.42 0.65 

           
 .¢à

£09 t(.¢à
£09) 

Small -0.34 -0.17 -0.15 0.00 0.05 -20.69 -11.04 -8.98 -0.25 1.87 
2 -0.40 -0.13 -0.05 0.05 0.23 -31.62 -11.42 -4.82 4.10 21.67 

3 -0.32 -0.18 -0.12 0.00 0.26 -5.27 -20.01 -8.83 -0.24 28.01 

4 -0.51 -0.25 -0.12 0.08 0.28 -30.89 -18.17 -7.41 9.17 30.48 

Big -0.50 -0.25 -0.13 0.06 0.33 -14.02 -25.01 -11.82 4.85 9.40 

           
 §ià

ô  t(§ià
ô ) 

Small 0.18 0.56 -0.01 0.35 -0.21 0.58 2.67 -0.03 1.03 -0.93 
2 -0.21 0.45 -0.09 0.24 0.07 -1.17 3.48 -0.51 1.53 0.34 
3 0.63 0.11 -0.07 -0.07 0.00 2.53 0.61 -0.61 -0.60 -0.01 
4 -0.31 0.02 -0.04 0.40 -0.05 -1.55 0.18 -0.38 2.44 -0.25 
Big -0.10 0.13 -0.10 0.12 -0.25 -0.16 0.69 -0.99 1.21 -1.55 

           
 §ià

£09 t(§ià
£09) 

Small -0.16 0.06 0.16 0.18 0.16 -4.96 2.49 6.83 5.07 5.20 

2 0.07 -0.06 0.07 0.05 -0.07 3.61 -4.06 3.68 2.67 -3.40 

3 -0.12 0.09 0.08 0.11 -0.07 -1.91 4.58 5.06 6.06 -3.28 

4 0.10 0.09 0.08 -0.05 -0.05 4.43 5.56 4.29 -3.40 -2.50 

Big 0.13 0.09 0.08 0.03 -0.06 1.96 4.54 6.08 2.22 -1.75 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
the estimates of parameter .™ô  in equation 2.11. As is evident, only in four 
cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 
momentum exposures (rows 11 to 15, parameter .™0ò0 ). In this case, the 
number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of ß\• =
[§ià

ô + §ià
£09] , that is, the estimates of the changes in the non-linear 

parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 
the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 
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in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 
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the coefficient .™0ò0  (in black) that measures the effect of momentum on 
excess returns, when uncertainty is low, and alongside it (in red) the exposure 
to momentum under a regime of high uncertainty (that is, .™0ò0 + §i

0ò0). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 

). In Panel B, the model’s estimated intercepts 
in both low uncertainty regimes (blue bars on the left) and high uncer-
tainty regimes (grey bars on the right) are shown. The figure also dis-
plays 1.96 standard errors calculated as in the first regime. As expected, 
the portfolios most exposed to momentum are those in the first and the 
fifth quintiles of the momentum sort: the former in a negative sense, the 
latter positively. Between the two extreme quintiles, momentum expo-
sure increases from losers to winners monotonically. Fama and French 
(2016) document the same pattern, which is to be expected given the 
way in which the WML portfolios are constructed.

Nevertheless, by visual inspection of the figure, we can confirm our 
main conclusion from Table 2.7: that is, exposure to momentum by the 
excess equity returns changes considerably depending on the regime of 
economic uncertainty. Indeed, if we divide the momentum portfolios 
into three groups: a) those that show an increase in their exposure to 
momentum when uncertainty is high, preserving the same sign in both 
low and high uncertainty states; b) those that undergo a change in the 
sign of their exposure during high uncertainty states, compared to that 
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Figure 2.5. Changes in the effect of momentum on excess returns and pricing errors

Panel A shows the coefficients associated with momentum in the “low uncertainty” 
(black bars on the left) and “high uncertainty” (red bars on the right) regimes. Panel 
B shows the absolute value of the model’s intercepts in the “low uncertainty” (grey 
bars on the left) and “high uncertainty” (blue bars on the right) regimes. The dotted 
line corresponds to 1.96 times the standard error of the coefficient in the linear part 
of the model. These estimates were obtained using 25 value-weighted portfolios sorted 
according to size and momentum. The estimation sample runs from January 1927 to 
June 2017, for a total of 1,086 observations.
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presented in low uncertainty; and c) those that show a decrease in their 
exposure to momentum as they move from episodes of low to high un-
certainty, preserving the same sign in both cases, then we find that a 
generalized reduction in exposure to momentum (that is group c) is the 
most likely case (15 out of 25). The remaining portfolios either present 
a change in the sign of their exposure to momentum (four cases), or 
strengthen their low uncertainty exposure to it (six cases). 

To sum up, momentum betas become extremely volatile in regimes of 
high uncertainty, with just 24% of portfolios displaying a stronger ex-
posure to the momentum factor, in the same direction as that shown du-
ring regimes of low uncertainty. These cases are mainly located in small 
firms (first and second quantiles in the size sorting account for four out 
of the six cases). All in all, during regimes of high economic uncertain-
ty, momentum relevance as a risk factor disappears in relation to most 
portfolios, while it only keeps relevance for a few small firm portfolios.

These results can be attributed to the fact that during episodes of high 
uncertainty, exposure of excess returns to the momentum factor falls, 
because investors lack the information required to construct an accurate 
probability of the expected future distribution of winners and losers, 
having to rely on the last information available before the current pe-
riod, and moreover they are aware of this. This situation occurs precisely 
because uncertainty is related to the changing economic environment, 
in which it is more difficult to forecast than it is in a regular market. In 
short, investors are aware of possible changes in the market fundamen-
tals that might affect the future performance of firms and portfolios. 

These results are also consistent with the hypothesis that the cognitive 
or behavioral biases, which are generally used to explain momentum 
(see, for example, Daniel et al., 1998, and Hong and Stein, 1999), tend to 
operate under low uncertainty regimes. Under such circumstances, they 
reinforce market trends, which means momentum profits depend on the 
market state (Gervais et al., 2001; Cooper et al., 2004), but they tend 
not to operate, at least with the same magnitude, under high uncertain-
ty regimes. During episodes of high uncertainty, either the number of 
‘momentum traders’ falls or the ‘reinforcing’ and ‘self-attribution’ biases 
disappear, depending on the narrative. 
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This mechanism suggests a differentiated way in which investors form 
their expectations, according to the level of generalized uncertainty in 
the economy. While under more regular risky circumstances, when un-
certainty is low, they are more prone to the traditional biases documen-
ted by the literature (and which may explain the momentum anomaly), 
under more extreme uncertainty (which they do not assimilate as risk), 
the investors resort to a more cognitive approach to investment, and 
therefore the momentum conundrum disappears.  

B. 	 Pricing Errors of the Three-Factor Model under High and Low 
Uncertainty

The discussion above is confirmed by decomposing the pricing errors of 
the Fama-French three-factor model augmented with the WML factor 
during episodes of low and high uncertainty. Table 2.8 exhibits 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() …   

+≥à≥à)
¥µ∂ + Kà≥à)

¥µ∂ ∗ &'() +	Gà), (2.12) 

where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() + ≥à≥à)
¥µ∂ + Kà≥à)

¥µ∂ ∗
&'() +	Gà),  

where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

, 
which is the average of the absolute values of the intercepts in each 
regime and in the linear specification. The second set of estimates in 
the table shows 
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some superior qualities of the linear model, but rather that the value of the 

	 38	

intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

, which was calculated as the average of the 
absolute values of the intercepts in each regime divided by the average 
of the absolute values of 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
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5X5 size-momentum portfolios 
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Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à
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ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  
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 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 
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  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
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. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
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0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() …   
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

. Finally, Table 2.7 also 
reports 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

 corrected for the sampling error in the nu-
merator and denominator. We calculated  
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() …   
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à
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ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à
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Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() …   

+≥à≥à)
¥µ∂ + Kà≥à)
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

 in the following equation:
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() + ≥à≥à)
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

 indicates whether the probability of the high uncertainty 
regime is higher than 0.5. We also constructed separate series of 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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Pricing Errors in High and Low Uncertainty Regimes 
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intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() + ≥à≥à)
¥µ∂ + Kà≥à)

¥µ∂ ∗
&'() +	Gà),  

where ≥à)
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0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() …   

+≥à≥à)
¥µ∂ + Kà≥à)
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
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2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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+≥à≥à)
¥µ∂ + Kà≥à)

¥µ∂ ∗ &'() +	Gà), (2.12) 

where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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The table shows the statistic ∑|∏z|
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intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

, we classified the observation in a month belonging 
to a low uncertainty regime. 

Comparing the linear model with the non-linear estimates, we found that 
the linear model always houses smaller pricing errors on average than the 
low or high uncertainty regimes separately. Although this might at first 
glance appear surprising, as one would naively expect this intercept to 
lie in-between the intercepts of the two uncertainty states, this is not in 
fact the case. It is perfectly feasible for the linear model to exhibit an 
average intercept below that of both the low and the high uncertainty 
regime. This does not point to some superior qualities of the linear mod-
el, but rather that the value of the intercepts in the linear specification, 
on average, conceals temporal pricing errors that are actually larger, 
but with different signs, in each of the two uncertainty states. On occa-
sions the linear model overprices and on others it underprices the LHS 
portfolios and, as a result, part of the errors is cancelled out when the 
full-sample intercept is estimated (because of time-averaging, as opposed 
to cross-sectional averaging, which is taken into account using the ab-
solute value operator as was explained above).

In short, Table 2.7 shows that the pricing errors are consistently higher 
during episodes of high uncertainty, even after controlling for the ex-
cess return variance in each regime. The reduction in exposure to the 
momentum factor caused by the change in the level of economic uncer-
tainty leads to a reduction in the model adjustment, which is consistent 
with our previous discussion.
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Table 2.8. Pricing Errors in High and Low Uncertainty Regimes
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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The table shows the statistic ∑|∏z|
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dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
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ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
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0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
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2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

  is the average of the absolute values of 

	 37	

While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

 is the 

dispersion of the equity premium means over time around their cross-sectional mean. 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() …   
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() + ≥à≥à)
¥µ∂ + Kà≥à)

¥µ∂ ∗
&'() +	Gà),  

where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
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intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
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Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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We estimated a nesting model as: 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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5X5 size-momentum portfolios 
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Linear Model 0.11 0.36 0.12 
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In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

indicates whether the probability of the high uncertainty regime is higher 
than 0.5. We calculated 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à
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Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 
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where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
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The table shows the statistic ∑|∏z|
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intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
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ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   
B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 
episodes of low and high uncertainty. Table 2.8 exhibits	´|≠à|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 
specification. The second set of estimates in the table shows 	´|≠à| ´|H̃à|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 
each regime divided by the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 
as	H̅à = ∑ GØà) ]⁄∞ . Here, T varies according to the number of observations in 
each regime and in the total sample. Then, we subtracted from each H̅à		the 
cross-sectional mean: H̿ = ∑ H̅à A⁄> , such that H̃à = H̅à − H̿. Finally, Table 2.7 
also reports ´(≠àã)/´(H̃àã) , this is the average squared intercept over the 
average squared value of H̃à	corrected for the sampling error in the numerator 
and denominator. We calculated ´|≠à| in the low uncertainty regime, as the 
average absolute value of the intercepts in this regression, and ´|≠à| in the 
high uncertainty regime, as the average absolute value of the same intercepts 
plus ≥à in the following equation: 

2à) − 23) = ≠à + .à2'23) + Là6'7) + ℎà:'() + uà&'() …   

+≥à≥à)
¥µ∂ + Kà≥à)

¥µ∂ ∗ &'() +	Gà), (2.12) 

where ≥à)¥µ∂		indicates whether the probability of the high uncertainty regime is 
higher than 0.5. We also constructed separate series of H̃à  for high and low 
uncertainty regimes, according to the probability c(S); e, f) . When 
c(S); e, f) > 0.5,	we classified the observation in a month belonging to a 
high uncertainty regime. In contrast, when c(S); e, f) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  
Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 
In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 
 

Table 2.8        
Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic ∑|∏z|
∑|π̃z|

. ´|≠à|  is the average of the absolute values of the 

intercepts in each regime. ´|H̃à|   is the average of the absolute values of H̃à . H̃à  is the 
dispersion of the equity premium means over time around their cross-sectional mean. ´N≠à

ãV/
´NH̃à

ãV is the average squared intercept over the average squared value of H̃à	. We estimated a 
nesting model as:  
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¥µ∂ + Kà≥à)

¥µ∂ ∗
&'() +	Gà),  

where ≥à)
¥µ∂		indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated ´|≠à| in the low uncertainty regime as the average absolute value of ≠à 
and ´|≠à| in the high uncertainty regime, as the average absolute value of ≠à + ≥à.  

5X5 size-momentum portfolios 
 ´|≠à| ´|≠à| ´|H̃à|⁄  ´N≠à

ãV/´NH̃à
ãV 

Linear Model 0.11 0.36 0.12 
  Low Uncertainty 0.15 0.40 0.21 
  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 

Linear Model 0.11 0.36 0.12

  Low Uncertainty 0.15 0.40 0.21

  High Uncertainty 0.20 0.60 0.40

2.6. Uncertainty, Liquidity and Market States 

In this section we examine whether our findings regarding the sig-
nificant impact of high uncertainty states on momentum abnormal 
returns hold, after controlling for several proxies for the market state 
(different from economic activity, as measured by the NBER reces-
sion series) and, in particular, for market liquidity. Recently, Avramov 
et al. (2016) documented that momentum profits are markedly lar-
ger in liquid market states. Their finding is not explained by variation 
in liquidity risk, exposure to traditional risk factors, or changes in ma-
croeconomic condition, etc. As explained by these authors, this fact 
contradicts a basic intuition in finance, namely, that arbitrage is easier 
when markets are most liquid, and therefore momentum profits should 
be lower in more liquid markets. We show in Table 2.9 that this is not 
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longer the case, once you account for high uncertainty states (both, 
above the 80th percentile of current uncertainty –actual uncertainty–, 
or above the 90th percentile of lagged uncertainty –expected uncer-
tainty–). Hence, the reason for the counter intuitive finding is that 
market liquidity is positively correlated with economic uncertainty, in 
particular with high uncertainty episodes.

We used as a proxy for aggregate market liquidity the average of the 
stock liquidity measure recently proposed by Abdi and Ranaldo (for-
thcoming). This measure has several advantages over the competing 
alternatives. For example, compared to other low-frequency estima-
tes, this method utilizes wider information (i.e. close, high, and low 
prices); it also provides the highest cross-sectional and average time-
series correlations with the TAQ effective spread; and it delivers the 
most accurate estimates for less liquid stocks. Nevertheless, the results 
reported in Table 2.9 remain unaltered if we employ instead other 
measures of market liquidity such as the ones developed by Pastor and 
Stambaugh (2003) or Corwin and Schultz (2012). We also consider the 
effects of market volatility and bad market states, which are known 
to have a significant effect on the time-varying momentum profits 
(see for instance, Cooper et al., 2004; Wang and Xu, 2015; and Daniel 
and Moskowitz,  2016). As can be observed in Table 2.n one of these 
factors reduces the economically and statistically significant impact 
of high uncertainty on momentum abnormal returns (see columns 
11-14). Moreover, although such factors are statistically significant 
when they are included individually in the RHS of the explanatory 
regressions of the WML returns (columns 3-8), only high uncertainty 
remains significant when all the factors are included simultaneously  
(columns 13-14). 

In this table, unlike most of the tables in this manuscript, the repor-
ted t-statistics were constructed using Newey-West’s robust standard 
errors, but the conclusions above remain unaltered if instead we had 
reported regular standard errors (as is frequently done in the literatu-
re). As so, this constitutes and additional robustness exercise. 
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Table 2.9. Actual and Expected Uncertainty, Market States and Liquidity

The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal 
to 121.55, roughly equivalent to the 80th percentile); for high economic expected un-
certainty one month ahead, EXP. H. UNC. (above 145.02, equivalent to the 90th percen-
tile); an indicator variable for bad market states, DOWN (which is a dummy variable 
that takes the value of 1 if the return on the value-weighted market index during the 
past 24 months (t − 24 to t − 1) is negative, and 0 otherwise, following in Cooper et 
al. (2004) and Avramov et al. (2016)); an indicator variable of market illiquidity, ILIQ-
UID, proxied by the average of stock level illiquidity developed by Abdi and Ranaldo 
(forthcoming); and Market RV, which is the monthly realized volatility of the market 
portfolio using daily excess returns. The sample for the reported regressions runs from 
January 1929 to December 2016. The endogenous thresholds were estimated using a 
Smooth Transition Regression model that consists of two extreme regimes, one of low 
uncertainty and one of high uncertainty. The transition variable in each model were 
the EPU index and the EPU index lagged one month, for current and expected uncer-
tainty, respectively. The switching coefficient between the two regimes is the intercept, 
which measures the abnormal returns of momentum. The impact of high uncertainty 
on the abnormal returns of momentum is in bold. In this table Newey–West (1987) 
adjusted standard errors were used to construct the reported t –statistics, t(b)*.

Robustness checks

b t(b)* b t(b)* b t(b)* b t(b)* b t(b)* b t(b)* b t(b)*

ALPHA 1.7 9.0 2.0 9.2 3.3 4.6 2.0 9.0 2.9 4.7 2.8 4.5 2.8 4.7

RMRF -0.4 -4.4 -0.4 -4.3 -0.4 -4.3 -0.4 -4.4 -0.4 -4.3 -0.4 -4.4 -0.4 -4.3

SMB -0.2 -1.3 -0.2 -1.2 -0.2 -1.2 -0.2 -1.3 -0.2 -1.2 -0.2 -1.2 -0.2 -1.2

HML -0.7 -4.3 -0.7 -4.4 -0.7 -4.3 -0.7 -4.3 -0.7 -4.4 -0.7 -4.4 -0.7 -4.5

DOWN 0.0 -1.2 -1.9 -0.8 -1.4 -0.7 -1.2 -0.7 -1.3

ILIQUID 
t-1 -1.0 -2.1 -0.6 -1.3 -0.3 -0.8 -0.4 -1.0

MVOL 
t-1 -1.3 -1.9 -0.8 -1.3 -0.7 -1.3 -0.6 -1.2

HIGH 
UNCER-
TAINTY -1.5 -2.5

EXP. 
HIGH 
UN-
CERT.

                        -2.1 -2.5
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We carried out additional robustness exercises, which are reported in the 
Appendix. For example, in Appendix B we show that uncertainty does 
not have a smoothed impact on momentum returns. That is, that the im-
pact of uncertainty (as a continuous variable) on WML abnormal returns 
changes radically after uncertainty has overpassed the high uncertainty 
threshold estimated herein. Indeed, this relation is positive and insigni-
ficant when uncertainty is low, while it is negative and significant when 
uncertainty is high. This supports our methodological choice of threa-
ting uncertainty as a state, and therefore as a binary variable, instead 
of approaching it as a continuous-risk factor. In Appendix C, we show 
that the results discussed above hold, not only for the WML portfolio, 
but also for its two legs. In other words, the impacts of uncertainty are 
largely the same on both winners and losers in the momentum portfo-
lio. Finally, in Appendix D we report the estimates corresponding to a 
shorter sample from June 1992 to June 2017, (the last 300 observations 
in our sample). Remarkably, even tough momentum abnormal returns 
decrease in the more recent sample, as has been documented elsewhere, 
our results regarding the relationship between uncertainty and momen-
tum profits reamin unaltered.

2.7. Conclusion

We document a non-linear behavior of momentum abnormal returns 
and other moments of the momentum return distribution, conditioning 
on the level of economic policy uncertainty, which we employed here-
in as a proxy for generalized macroeconomic uncertainty. Our results 
emphasize the role played by uncertainty to explain the abrupt chan-
ges in momentum profitability, which have been extensively documen-
ted in the literature. By examining the role of uncertainty in momentum 
strategies, we are able to provide a better understanding of the nature 
of momentum and of the natural boundaries imposed by the level of 
economic uncertainty on momentum trading and profits.

These findings have obvious implications for asset pricing and portfolio 
allocation. Specifically, we have explored momentum moments under 
two regimes of uncertainty. Thus, we have found that the abnormal 
returns produced by momentum disappear during regimes of high un-
certainty, their Sharpe ratio collapses, the kurtosis of the momentum 
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strategy increases and their skewness becomes more pronounced, incre-
asing the likelihood of momentum crashes.

A simple recommendation that can be derived from these main results 
is not to trade momentum when uncertainty is expected to be high. 
This decision can be based on forecasts of economic uncertainty (which 
tends to be a highly persistent process), and the use of the threshold 
separating the expected uncertainty regimes (estimated here at the 90th 

percentile of the EPU index), to determine whether to curtail our mo-
mentum exposure. This strategy has the additional advantage of redu-
cing transaction costs, via the direct reduction in the turnover of the 
momentum portfolios.

Nevertheless, beyond this direct implication for trading, the study of 
momentum strategies, which are precisely based on extrapolating the 
immediate past in order to predict the immediate future, offers a uni-
que opportunity to analyze the fundamental differences between risky 
and uncertain situations. Both of which are fundamental for econo-
mics and finance. 

Our results and conclusions hold after controlling for traditional pro-
xies for the market state, such as economic activity, down markets and 
market volatility. They are relevant for the two legs of the momentum 
portfolio (winners and losers), and describe equally well a long time 
series sample spanning January 1927-June 2017, and more recent ones. 
High uncertainty regimes are able to explain, as well, most of the appa-
rently puzzling positive relationship between momentum profits and 
market aggregate liquidity, which has been recently documented in the 
literature.

Appendices to Chapter 2

A. Turnover calculation

Following Barroso and Santa-Clara (2015), the monthly turnover, 
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risk factor. In Appendix C, we show that the results discussed above hold, not 
only for the WML portfolio, but also for its two legs. In other words, the 
impacts of uncertainty are largely the same on both winners and losers in the 
momentum portfolio. Finally, in Appendix D we report the estimates 
corresponding to a shorter sample from June 1992 to June 2017, (the last 300 
observations in our sample). Remarkably, even tough momentum abnormal 
returns decrease in the more recent sample, as has been documented 
elsewhere, our results regarding the relationship between uncertainty and 
momentum profits reamin unaltered. 
2.7. Conclusion 

We document a non-linear behavior of momentum abnormal returns and 
other moments of the momentum return distribution, conditioning on the 
level of economic policy uncertainty, which we employed herein as a proxy for 
generalized macroeconomic uncertainty. Our results emphasize the role played 
by uncertainty to explain the abrupt changes in momentum profitability, which 
have been extensively documented in the literature. By examining the role of 
uncertainty in momentum strategies, we are able to provide a better 
understanding of the nature of momentum and of the natural boundaries 
imposed by the level of economic uncertainty on momentum trading and 
profits. 
These findings have obvious implications for asset pricing and portfolio 
allocation. Specifically, we have explored momentum moments under two regimes 
of uncertainty. Thus, we have found that the abnormal returns produced by 
momentum disappear during regimes of high uncertainty, their Sharpe ratio 
collapses, the kurtosis of the momentum strategy increases and their skewness 
becomes more pronounced, increasing the likelihood of momentum crashes. 
A simple recommendation that can be derived from these main results is not 
to trade momentum when uncertainty is expected to be high. This decision 
can be based on forecasts of economic uncertainty (which tends to be a highly 
persistent process), and the use of the threshold separating the expected 
uncertainty regimes (estimated here at the 90th percentile of the EPU index), to 
determine whether to curtail our momentum exposure. This strategy has the 
additional advantage of reducing transaction costs, via the direct reduction in 
the turnover of the momentum portfolios. 
Nevertheless, beyond this direct implication for trading, the study of 
momentum strategies, which are precisely based on extrapolating the 
immediate past in order to predict the immediate future, offers a unique 
opportunity to analyze the fundamental differences between risky and 
uncertain situations. Both of which are fundamental for economics and 
finance.  
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Our results and conclusions hold after controlling for traditional proxies for 
the market state, such as economic activity, down markets and market 
volatility. They are relevant for the two legs of the momentum portfolio 
(winners and losers), and describe equally well a long time series sample 
spanning January 1927-June 2017, and more recent ones. High uncertainty 
regimes are able to explain, as well, most of the apparently puzzling positive 
relationship between momentum profits and market aggregate liquidity, which 
has been recently documented in the literature. 

Appendices to Chapter 2 

A. Turnover calculation 

Following Barroso and Santa-Clara (2015), the monthly turnover, ∫), of each 
leg of the momentum strategy is given by:  

∫) = 0.5 × ∑ ªºà,) − ºΩà,){iª
>o
à ,    (2.13) 

where, 

ºΩà,){i =
æz,ol�Nijπz,oV
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,     (2.14) 

 

w¿,¡ is the weight of the stock i in the leg of the portfolio at time t , N¡ is the 
number of stocks in the leg of the portfolio at time t, r¿,¡	is the return on asset 
i at time t,  and wΩ¿,¡{i is the weight of stock i the period right before trading. 
The turnover of the WML portfolio is the sum of the turnover of the short 
and the long legs. 
B. Continuous and discrete uncertainty 
  Table 2.10 

Continuous Uncertainty against Discrete Uncertainty 

The table shows the results of a regression of WML portfolios, on market, size and 
value factors. It also presents the slopes of the regression including a the continuous 
EPU index, CONT.U.,  and an interaction effect between the continuous EPU 
index and the high economic uncertainty indicator.  

 Continuous vs discrete uncertainty 

 b t(b) b t(b) 

ALPHA 2.81 5.55 1.25 1.80 
RMRF -0.39 -9.31 -0.39 -9.35 
SMB -0.19 -2.81 -0.20 -2.94 
HML -0.73 -12.14 -0.74 -12.31 
CONT.U. -0.01 -2.29 0.01 1.35 

CONT.U. * H. UNC     -0.02 -3.27 

 

 , of 
each leg of the momentum strategy is given by: 
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risk factor. In Appendix C, we show that the results discussed above hold, not 
only for the WML portfolio, but also for its two legs. In other words, the 
impacts of uncertainty are largely the same on both winners and losers in the 
momentum portfolio. Finally, in Appendix D we report the estimates 
corresponding to a shorter sample from June 1992 to June 2017, (the last 300 
observations in our sample). Remarkably, even tough momentum abnormal 
returns decrease in the more recent sample, as has been documented 
elsewhere, our results regarding the relationship between uncertainty and 
momentum profits reamin unaltered. 
2.7. Conclusion 

We document a non-linear behavior of momentum abnormal returns and 
other moments of the momentum return distribution, conditioning on the 
level of economic policy uncertainty, which we employed herein as a proxy for 
generalized macroeconomic uncertainty. Our results emphasize the role played 
by uncertainty to explain the abrupt changes in momentum profitability, which 
have been extensively documented in the literature. By examining the role of 
uncertainty in momentum strategies, we are able to provide a better 
understanding of the nature of momentum and of the natural boundaries 
imposed by the level of economic uncertainty on momentum trading and 
profits. 
These findings have obvious implications for asset pricing and portfolio 
allocation. Specifically, we have explored momentum moments under two regimes 
of uncertainty. Thus, we have found that the abnormal returns produced by 
momentum disappear during regimes of high uncertainty, their Sharpe ratio 
collapses, the kurtosis of the momentum strategy increases and their skewness 
becomes more pronounced, increasing the likelihood of momentum crashes. 
A simple recommendation that can be derived from these main results is not 
to trade momentum when uncertainty is expected to be high. This decision 
can be based on forecasts of economic uncertainty (which tends to be a highly 
persistent process), and the use of the threshold separating the expected 
uncertainty regimes (estimated here at the 90th percentile of the EPU index), to 
determine whether to curtail our momentum exposure. This strategy has the 
additional advantage of reducing transaction costs, via the direct reduction in 
the turnover of the momentum portfolios. 
Nevertheless, beyond this direct implication for trading, the study of 
momentum strategies, which are precisely based on extrapolating the 
immediate past in order to predict the immediate future, offers a unique 
opportunity to analyze the fundamental differences between risky and 
uncertain situations. Both of which are fundamental for economics and 
finance.  
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Our results and conclusions hold after controlling for traditional proxies for 
the market state, such as economic activity, down markets and market 
volatility. They are relevant for the two legs of the momentum portfolio 
(winners and losers), and describe equally well a long time series sample 
spanning January 1927-June 2017, and more recent ones. High uncertainty 
regimes are able to explain, as well, most of the apparently puzzling positive 
relationship between momentum profits and market aggregate liquidity, which 
has been recently documented in the literature. 

Appendices to Chapter 2 

A. Turnover calculation 

Following Barroso and Santa-Clara (2015), the monthly turnover, ∫), of each 
leg of the momentum strategy is given by:  
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w¿,¡ is the weight of the stock i in the leg of the portfolio at time t , N¡ is the 
number of stocks in the leg of the portfolio at time t, r¿,¡	is the return on asset 
i at time t,  and wΩ¿,¡{i is the weight of stock i the period right before trading. 
The turnover of the WML portfolio is the sum of the turnover of the short 
and the long legs. 
B. Continuous and discrete uncertainty 
  Table 2.10 

Continuous Uncertainty against Discrete Uncertainty 

The table shows the results of a regression of WML portfolios, on market, size and 
value factors. It also presents the slopes of the regression including a the continuous 
EPU index, CONT.U.,  and an interaction effect between the continuous EPU 
index and the high economic uncertainty indicator.  

 Continuous vs discrete uncertainty 

 b t(b) b t(b) 

ALPHA 2.81 5.55 1.25 1.80 
RMRF -0.39 -9.31 -0.39 -9.35 
SMB -0.19 -2.81 -0.20 -2.94 
HML -0.73 -12.14 -0.74 -12.31 
CONT.U. -0.01 -2.29 0.01 1.35 

CONT.U. * H. UNC     -0.02 -3.27 
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risk factor. In Appendix C, we show that the results discussed above hold, not 
only for the WML portfolio, but also for its two legs. In other words, the 
impacts of uncertainty are largely the same on both winners and losers in the 
momentum portfolio. Finally, in Appendix D we report the estimates 
corresponding to a shorter sample from June 1992 to June 2017, (the last 300 
observations in our sample). Remarkably, even tough momentum abnormal 
returns decrease in the more recent sample, as has been documented 
elsewhere, our results regarding the relationship between uncertainty and 
momentum profits reamin unaltered. 
2.7. Conclusion 

We document a non-linear behavior of momentum abnormal returns and 
other moments of the momentum return distribution, conditioning on the 
level of economic policy uncertainty, which we employed herein as a proxy for 
generalized macroeconomic uncertainty. Our results emphasize the role played 
by uncertainty to explain the abrupt changes in momentum profitability, which 
have been extensively documented in the literature. By examining the role of 
uncertainty in momentum strategies, we are able to provide a better 
understanding of the nature of momentum and of the natural boundaries 
imposed by the level of economic uncertainty on momentum trading and 
profits. 
These findings have obvious implications for asset pricing and portfolio 
allocation. Specifically, we have explored momentum moments under two regimes 
of uncertainty. Thus, we have found that the abnormal returns produced by 
momentum disappear during regimes of high uncertainty, their Sharpe ratio 
collapses, the kurtosis of the momentum strategy increases and their skewness 
becomes more pronounced, increasing the likelihood of momentum crashes. 
A simple recommendation that can be derived from these main results is not 
to trade momentum when uncertainty is expected to be high. This decision 
can be based on forecasts of economic uncertainty (which tends to be a highly 
persistent process), and the use of the threshold separating the expected 
uncertainty regimes (estimated here at the 90th percentile of the EPU index), to 
determine whether to curtail our momentum exposure. This strategy has the 
additional advantage of reducing transaction costs, via the direct reduction in 
the turnover of the momentum portfolios. 
Nevertheless, beyond this direct implication for trading, the study of 
momentum strategies, which are precisely based on extrapolating the 
immediate past in order to predict the immediate future, offers a unique 
opportunity to analyze the fundamental differences between risky and 
uncertain situations. Both of which are fundamental for economics and 
finance.  
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Our results and conclusions hold after controlling for traditional proxies for 
the market state, such as economic activity, down markets and market 
volatility. They are relevant for the two legs of the momentum portfolio 
(winners and losers), and describe equally well a long time series sample 
spanning January 1927-June 2017, and more recent ones. High uncertainty 
regimes are able to explain, as well, most of the apparently puzzling positive 
relationship between momentum profits and market aggregate liquidity, which 
has been recently documented in the literature. 
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A. Turnover calculation 

Following Barroso and Santa-Clara (2015), the monthly turnover, ∫), of each 
leg of the momentum strategy is given by:  
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The turnover of the WML portfolio is the sum of the turnover of the short 
and the long legs. 
B. Continuous and discrete uncertainty 
  Table 2.10 

Continuous Uncertainty against Discrete Uncertainty 

The table shows the results of a regression of WML portfolios, on market, size and 
value factors. It also presents the slopes of the regression including a the continuous 
EPU index, CONT.U.,  and an interaction effect between the continuous EPU 
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risk factor. In Appendix C, we show that the results discussed above hold, not 
only for the WML portfolio, but also for its two legs. In other words, the 
impacts of uncertainty are largely the same on both winners and losers in the 
momentum portfolio. Finally, in Appendix D we report the estimates 
corresponding to a shorter sample from June 1992 to June 2017, (the last 300 
observations in our sample). Remarkably, even tough momentum abnormal 
returns decrease in the more recent sample, as has been documented 
elsewhere, our results regarding the relationship between uncertainty and 
momentum profits reamin unaltered. 
2.7. Conclusion 

We document a non-linear behavior of momentum abnormal returns and 
other moments of the momentum return distribution, conditioning on the 
level of economic policy uncertainty, which we employed herein as a proxy for 
generalized macroeconomic uncertainty. Our results emphasize the role played 
by uncertainty to explain the abrupt changes in momentum profitability, which 
have been extensively documented in the literature. By examining the role of 
uncertainty in momentum strategies, we are able to provide a better 
understanding of the nature of momentum and of the natural boundaries 
imposed by the level of economic uncertainty on momentum trading and 
profits. 
These findings have obvious implications for asset pricing and portfolio 
allocation. Specifically, we have explored momentum moments under two regimes 
of uncertainty. Thus, we have found that the abnormal returns produced by 
momentum disappear during regimes of high uncertainty, their Sharpe ratio 
collapses, the kurtosis of the momentum strategy increases and their skewness 
becomes more pronounced, increasing the likelihood of momentum crashes. 
A simple recommendation that can be derived from these main results is not 
to trade momentum when uncertainty is expected to be high. This decision 
can be based on forecasts of economic uncertainty (which tends to be a highly 
persistent process), and the use of the threshold separating the expected 
uncertainty regimes (estimated here at the 90th percentile of the EPU index), to 
determine whether to curtail our momentum exposure. This strategy has the 
additional advantage of reducing transaction costs, via the direct reduction in 
the turnover of the momentum portfolios. 
Nevertheless, beyond this direct implication for trading, the study of 
momentum strategies, which are precisely based on extrapolating the 
immediate past in order to predict the immediate future, offers a unique 
opportunity to analyze the fundamental differences between risky and 
uncertain situations. Both of which are fundamental for economics and 
finance.  
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Our results and conclusions hold after controlling for traditional proxies for 
the market state, such as economic activity, down markets and market 
volatility. They are relevant for the two legs of the momentum portfolio 
(winners and losers), and describe equally well a long time series sample 
spanning January 1927-June 2017, and more recent ones. High uncertainty 
regimes are able to explain, as well, most of the apparently puzzling positive 
relationship between momentum profits and market aggregate liquidity, which 
has been recently documented in the literature. 

Appendices to Chapter 2 

A. Turnover calculation 

Following Barroso and Santa-Clara (2015), the monthly turnover, ∫), of each 
leg of the momentum strategy is given by:  
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The turnover of the WML portfolio is the sum of the turnover of the short 
and the long legs. 
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  Table 2.10 

Continuous Uncertainty against Discrete Uncertainty 

The table shows the results of a regression of WML portfolios, on market, size and 
value factors. It also presents the slopes of the regression including a the continuous 
EPU index, CONT.U.,  and an interaction effect between the continuous EPU 
index and the high economic uncertainty indicator.  

 Continuous vs discrete uncertainty 

 b t(b) b t(b) 

ALPHA 2.81 5.55 1.25 1.80 
RMRF -0.39 -9.31 -0.39 -9.35 
SMB -0.19 -2.81 -0.20 -2.94 
HML -0.73 -12.14 -0.74 -12.31 
CONT.U. -0.01 -2.29 0.01 1.35 

CONT.U. * H. UNC     -0.02 -3.27 

 

 is the weight of the stock i in the leg of the portfolio at time 

	 41	

risk factor. In Appendix C, we show that the results discussed above hold, not 
only for the WML portfolio, but also for its two legs. In other words, the 
impacts of uncertainty are largely the same on both winners and losers in the 
momentum portfolio. Finally, in Appendix D we report the estimates 
corresponding to a shorter sample from June 1992 to June 2017, (the last 300 
observations in our sample). Remarkably, even tough momentum abnormal 
returns decrease in the more recent sample, as has been documented 
elsewhere, our results regarding the relationship between uncertainty and 
momentum profits reamin unaltered. 
2.7. Conclusion 

We document a non-linear behavior of momentum abnormal returns and 
other moments of the momentum return distribution, conditioning on the 
level of economic policy uncertainty, which we employed herein as a proxy for 
generalized macroeconomic uncertainty. Our results emphasize the role played 
by uncertainty to explain the abrupt changes in momentum profitability, which 
have been extensively documented in the literature. By examining the role of 
uncertainty in momentum strategies, we are able to provide a better 
understanding of the nature of momentum and of the natural boundaries 
imposed by the level of economic uncertainty on momentum trading and 
profits. 
These findings have obvious implications for asset pricing and portfolio 
allocation. Specifically, we have explored momentum moments under two regimes 
of uncertainty. Thus, we have found that the abnormal returns produced by 
momentum disappear during regimes of high uncertainty, their Sharpe ratio 
collapses, the kurtosis of the momentum strategy increases and their skewness 
becomes more pronounced, increasing the likelihood of momentum crashes. 
A simple recommendation that can be derived from these main results is not 
to trade momentum when uncertainty is expected to be high. This decision 
can be based on forecasts of economic uncertainty (which tends to be a highly 
persistent process), and the use of the threshold separating the expected 
uncertainty regimes (estimated here at the 90th percentile of the EPU index), to 
determine whether to curtail our momentum exposure. This strategy has the 
additional advantage of reducing transaction costs, via the direct reduction in 
the turnover of the momentum portfolios. 
Nevertheless, beyond this direct implication for trading, the study of 
momentum strategies, which are precisely based on extrapolating the 
immediate past in order to predict the immediate future, offers a unique 
opportunity to analyze the fundamental differences between risky and 
uncertain situations. Both of which are fundamental for economics and 
finance.  
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Our results and conclusions hold after controlling for traditional proxies for 
the market state, such as economic activity, down markets and market 
volatility. They are relevant for the two legs of the momentum portfolio 
(winners and losers), and describe equally well a long time series sample 
spanning January 1927-June 2017, and more recent ones. High uncertainty 
regimes are able to explain, as well, most of the apparently puzzling positive 
relationship between momentum profits and market aggregate liquidity, which 
has been recently documented in the literature. 
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and the long legs. 
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value factors. It also presents the slopes of the regression including a the continuous 
EPU index, CONT.U.,  and an interaction effect between the continuous EPU 
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risk factor. In Appendix C, we show that the results discussed above hold, not 
only for the WML portfolio, but also for its two legs. In other words, the 
impacts of uncertainty are largely the same on both winners and losers in the 
momentum portfolio. Finally, in Appendix D we report the estimates 
corresponding to a shorter sample from June 1992 to June 2017, (the last 300 
observations in our sample). Remarkably, even tough momentum abnormal 
returns decrease in the more recent sample, as has been documented 
elsewhere, our results regarding the relationship between uncertainty and 
momentum profits reamin unaltered. 
2.7. Conclusion 

We document a non-linear behavior of momentum abnormal returns and 
other moments of the momentum return distribution, conditioning on the 
level of economic policy uncertainty, which we employed herein as a proxy for 
generalized macroeconomic uncertainty. Our results emphasize the role played 
by uncertainty to explain the abrupt changes in momentum profitability, which 
have been extensively documented in the literature. By examining the role of 
uncertainty in momentum strategies, we are able to provide a better 
understanding of the nature of momentum and of the natural boundaries 
imposed by the level of economic uncertainty on momentum trading and 
profits. 
These findings have obvious implications for asset pricing and portfolio 
allocation. Specifically, we have explored momentum moments under two regimes 
of uncertainty. Thus, we have found that the abnormal returns produced by 
momentum disappear during regimes of high uncertainty, their Sharpe ratio 
collapses, the kurtosis of the momentum strategy increases and their skewness 
becomes more pronounced, increasing the likelihood of momentum crashes. 
A simple recommendation that can be derived from these main results is not 
to trade momentum when uncertainty is expected to be high. This decision 
can be based on forecasts of economic uncertainty (which tends to be a highly 
persistent process), and the use of the threshold separating the expected 
uncertainty regimes (estimated here at the 90th percentile of the EPU index), to 
determine whether to curtail our momentum exposure. This strategy has the 
additional advantage of reducing transaction costs, via the direct reduction in 
the turnover of the momentum portfolios. 
Nevertheless, beyond this direct implication for trading, the study of 
momentum strategies, which are precisely based on extrapolating the 
immediate past in order to predict the immediate future, offers a unique 
opportunity to analyze the fundamental differences between risky and 
uncertain situations. Both of which are fundamental for economics and 
finance.  
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Our results and conclusions hold after controlling for traditional proxies for 
the market state, such as economic activity, down markets and market 
volatility. They are relevant for the two legs of the momentum portfolio 
(winners and losers), and describe equally well a long time series sample 
spanning January 1927-June 2017, and more recent ones. High uncertainty 
regimes are able to explain, as well, most of the apparently puzzling positive 
relationship between momentum profits and market aggregate liquidity, which 
has been recently documented in the literature. 
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and the long legs. 
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value factors. It also presents the slopes of the regression including a the continuous 
EPU index, CONT.U.,  and an interaction effect between the continuous EPU 
index and the high economic uncertainty indicator.  

 Continuous vs discrete uncertainty 

 b t(b) b t(b) 

ALPHA 2.81 5.55 1.25 1.80 
RMRF -0.39 -9.31 -0.39 -9.35 
SMB -0.19 -2.81 -0.20 -2.94 
HML -0.73 -12.14 -0.74 -12.31 
CONT.U. -0.01 -2.29 0.01 1.35 

CONT.U. * H. UNC     -0.02 -3.27 

 

 is the 
return on asset i at time t,  and 

	 41	

risk factor. In Appendix C, we show that the results discussed above hold, not 
only for the WML portfolio, but also for its two legs. In other words, the 
impacts of uncertainty are largely the same on both winners and losers in the 
momentum portfolio. Finally, in Appendix D we report the estimates 
corresponding to a shorter sample from June 1992 to June 2017, (the last 300 
observations in our sample). Remarkably, even tough momentum abnormal 
returns decrease in the more recent sample, as has been documented 
elsewhere, our results regarding the relationship between uncertainty and 
momentum profits reamin unaltered. 
2.7. Conclusion 

We document a non-linear behavior of momentum abnormal returns and 
other moments of the momentum return distribution, conditioning on the 
level of economic policy uncertainty, which we employed herein as a proxy for 
generalized macroeconomic uncertainty. Our results emphasize the role played 
by uncertainty to explain the abrupt changes in momentum profitability, which 
have been extensively documented in the literature. By examining the role of 
uncertainty in momentum strategies, we are able to provide a better 
understanding of the nature of momentum and of the natural boundaries 
imposed by the level of economic uncertainty on momentum trading and 
profits. 
These findings have obvious implications for asset pricing and portfolio 
allocation. Specifically, we have explored momentum moments under two regimes 
of uncertainty. Thus, we have found that the abnormal returns produced by 
momentum disappear during regimes of high uncertainty, their Sharpe ratio 
collapses, the kurtosis of the momentum strategy increases and their skewness 
becomes more pronounced, increasing the likelihood of momentum crashes. 
A simple recommendation that can be derived from these main results is not 
to trade momentum when uncertainty is expected to be high. This decision 
can be based on forecasts of economic uncertainty (which tends to be a highly 
persistent process), and the use of the threshold separating the expected 
uncertainty regimes (estimated here at the 90th percentile of the EPU index), to 
determine whether to curtail our momentum exposure. This strategy has the 
additional advantage of reducing transaction costs, via the direct reduction in 
the turnover of the momentum portfolios. 
Nevertheless, beyond this direct implication for trading, the study of 
momentum strategies, which are precisely based on extrapolating the 
immediate past in order to predict the immediate future, offers a unique 
opportunity to analyze the fundamental differences between risky and 
uncertain situations. Both of which are fundamental for economics and 
finance.  
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Our results and conclusions hold after controlling for traditional proxies for 
the market state, such as economic activity, down markets and market 
volatility. They are relevant for the two legs of the momentum portfolio 
(winners and losers), and describe equally well a long time series sample 
spanning January 1927-June 2017, and more recent ones. High uncertainty 
regimes are able to explain, as well, most of the apparently puzzling positive 
relationship between momentum profits and market aggregate liquidity, which 
has been recently documented in the literature. 
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C. Two legs of momentum

Table 2.11. Abnormal Returns of the Two Legs of the Winners minus Losers Portfolio
The table shows the results of a regression of the highest and lowest deciles of the 
portfolios, sorted according to prior performance, on market, size and value factors, 
and  estimates for high economic uncertainty regimes, H. UNC (above 121.55 in the 
EPU index); an indicator variable for recessionary periods (REC); an indicator variable 
of whether the economy is in a high uncertainty regime and an expansion period, 
referred to as high good uncertainty (H. GOOD UNC); and, an indicator of whether 
the economy is in a recession and a high uncertainty regime, referred to as high bad 
uncertainty (H. BAD UNC). Finally, the table also shows the estimated slopes of an 
indicator that identifies episodes of recession and low uncertainty regimes (below 
the endogenous threshold), labeled as low bad uncertainty (L. BAD UNC). The impact 
of high uncertainty on the abnormal returns of momentum is in bold. The portfolio 
of losers was multiplied times minus one, as to ensure a short position. Newey–West 
(1987) adjusted standard errors were used to construct the reported t –statistics, t(b)*.

Short- Losers

b t(b) b t(b) b t(b) b t(b) b t(b)

ALPHA 0.9 6.1 1.0 6.6 1.2 6.9 1.0 6.7 1.0 6.4
RMRF -1.4 -49.7 -1.4 -49.9 -1.4 -49.9 -1.4 -50.0 -1.4 -49.9
SMB -0.5 -10.5 -0.5 -10.5 -0.5 -10.6 -0.5 -10.6 -0.5 -10.6
HML -0.4 -10.6 -0.4 -10.6 -0.4 -10.6 -0.4 -10.7 -0.4 -10.7
HIGH UNC. -0.9 -2.6 -0.9 -2.5
RECE. -0.7 -1.9
HIGH GOOD UNC -0.5 -1.4
HIGH BAD UNC -2.2 -3.2 -2.2 -3.1
LOW BAD UNC                 -0.3 -0.7

Long- Winners

b t(b) b t(b) b t(b) b t(b) b t(b)

ALPHA 0.9 9.2 1.1 10.4 1.2 10.0 1.1 10.4 1.0 8.9
RMRF 1.0 52.1 1.0 52.4 1.0 52.1 1.0 52.1 1.0 51.8
SMB 0.3 9.0 0.3 9.2 0.3 9.1 0.3 9.2 0.3 9.1
HML -0.3 -10.7 -0.3 -10.8 -0.3 -10.8 -0.3 -10.9 -0.3 -10.9
HIGH UNC. -1.1 -4.7 -1.1 -4.6
RECE. -0.3 -1.1
HIGH GOOD UNC -0.8 -3.1
HIGH BAD UNC -2.2 -4.5 -2.0 -4.2
LOW BAD UNC                 0.2 0.6
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D. Recent sample robustness

Table 2.12. Momentum Abnormal Returns and Macroeconomic Uncertainty: 
1992-2016

The table shows the results of a regression of WML returns on market, size and value fac-
tors and estimates of an indicator variable for high uncertainty regimes, H. UNC (above 
70th, 80th, and 90th percentiles); an indicator for recessionary periods (REC), one for whether 
the economy is in a high uncertainty regime and an expansion period (H. GOOD UNC); and, 
an indicator of whether the economy is in a recession and a high uncertainty regime (H. 
BAD UNC). The table also shows the estimated slopes episodes of recession and low uncer-
tainty regimes (L. BAD UNC). The impact of uncertainty on the abnormal returns  is in bold. 

 70th Percentile

b t(b) b t(b) b t(b) b t(b) b t(b)

ALPHA 1.4 3.0 2.3 3.7 2.4 3.9 2.3 3.8 1.7 3.4

RMRF -0.7 -6.0 -0.7 -6.2 -0.7 -6.4 -0.7 -6.5 -0.7 -6.3

SMB 0.2 1.2 0.2 1.3 0.2 1.4 0.2 1.3 0.2 1.1

HML -0.5 -3.5 -0.6 -3.7 -0.6 -3.7 -0.6 -3.8 -0.6 -3.7

HIGH 
UNCERTAINTY -2.1 -2.2 -1.8 -1.9

RECE. -2.1 -1.3

HIGH GOOD UNC -1.4 -1.5

HIGH BAD UNC -5.4 -3.0 -4.7 -2.7

LOW BAD UNC 4.5 1.4

80th Percentile 

ALPHA 1.4 3.0 2.4 4.3 2.5 4.5 2.4 4.4 1.7 3.6

RMRF -0.7 -6.0 -0.7 -6.4 -0.7 -6.6 -0.8 -6.8 -0.7 -6.6

SMB 0.2 1.2 0.2 1.2 0.2 1.3 0.2 1.1 0.1 1.0

HML -0.5 -3.5 -0.6 -3.8 -0.6 -3.9 -0.6 -4.1 -0.6 -4.1

HIGH 
UNCERTAINTY -3.1 -3.1 -2.9 -3.0

RECE. -2.2 -1.4

HIGH GOOD UNC -2.2 -2.2

HIGH BAD UNC -8.2 -3.7 -7.4 -3.4

LOW BAD UNC 1.7 0.8
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90th Percentile 

ALPHA 1.4 3.0 1.9 3.7 2.1 3.9 2.0 3.9 1.7 3.6

RMRF -0.7 -6.0 -0.7 -6.2 -0.7 -6.4 -0.7 -6.7 -0.7 -6.6

SMB 0.2 1.2 0.2 1.2 0.2 1.4 0.2 1.1 0.1 1.0

HML -0.5 -3.5 -0.6 -3.7 -0.6 -3.7 -0.6 -4.2 -0.7 -4.2

HIGH 
UNCERTAINTY -2.5 -2.2 -2.2 -1.9

RECE. -2.3 -1.4

HIGH GOOD UNC -1.1 -0.9

HIGH BAD UNC -8.5 -3.6 -8.3 -3.5

LOW BAD UNC                 1.2 0.6



Essays on Risk and Uncertainty in Economics and Finance

63

CHAPTER 3: MEASURING UNCERTAINTY IN THE STOCK MARKET

3.1. Introduction 

Uncertainty and risk have been primary concerns in economics, and 
among scientists in general, since the birth of modern science. Indeed, 
Bernstein (1998) goes as far as to claim that the interest in measuring 
and mastering the two phenomena marks the threshold separating mo-
dern times from the previous thousands of years of history. 

In economics, Frank Knight was the first person to postulate the dis-
tinction between uncertainty and risk on the grounds that the former 
cannot be described by means of a probability measure while the latter 
can. According to both Knight (1921) and Keynes (1921, 1939), econo-
mic agents inhabit an environment of pervasive uncertainty and, the-
refore, there can be little hope of quantifying or forecasting economic 
variables, or of even taking informed decisions that rely on quantitative 
measures of economic dynamics (in other words, probabilities are in-
commensurable). 

Today, the distinction between risk and uncertainty remains a lively 
topic for debate on the academic agenda. Indeed, several recent studies 
have attempted to explain decision-making under uncertainty, albeit 
oriented more towards the social conventions than towards the develo-
pment of rational calculations. Accordingly, in this branch of the lite-
rature, there is a clear need to distinguish between the concepts, while 
measuring what can be measured and not losing sight of what cannot 
be quantified in probabilistic terms (Nelson and Katzenstein, 2014; Ga-
negoda and Evans, 2014; Taleb, 2007).

Although of obvious importance in its own right, this extreme Knightian 
differentiation between risk and uncertainty leads to the impossibility of 
defining a probability space and prevents us from using any variation 
of the Ergodic Theorem in empirical studies. And this, in turn, leads to 
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the impossibility of conducting any science at all (Hendry, 1980; Peter-
sen, 1996) or, at least, the kind of social science based on ‘measurement’, 
as has been fostered by the Cowles Commission for Research in Econo-
mics since its foundation12.

However, confronted by this panorama, the profession has moved from 
this Knightian extreme (fundamental) view of uncertainty and adopted 
a more promising approach to the concept. In this new strand of the 
literature, uncertainty has generally been assimilated to a time-varying 
conditional second moment of the series under study, closely linked to 
underlying, time-varying, structural shocks, such as terrorist attacks, 
political events, economic crises, wars and credit crunches. Yet, despite 
this, the differentiation between risk and uncertainty in most instances 
is not properly dealt with.

Our contribution can be tough of as an attempt to measuring the ‘known’ 
and part of the ‘unknown’, in the popular taxonomy of risk proposed 
by Gomery (1995). This author differentiates between the ‘known’, the 
‘unknown’ and the ‘unknowable’, and highlights a traditional exagge-
rated focus on the former, while ignoring the other two categories. That 
bias can lead to misconceptions about the world around us, because 
the ‘known’ constitutes only a very small fraction of what we see and 
face on our daily decisions. Nevertheless, there is still the ‘unknowable’, 
which is clearly beyond the scope of this paper, since in this situation 
even the events defining the probability space cannot be identified in 
advance as pointed out by Diebold et al. (2010). 

In this paper we seek to make three specific contributions to the study of 
uncertainty. First, we propose a new index for measuring stock market un-
certainty on a daily basis (or what we refer to as financial uncertainty). 
The index considers the inherent differentiation between uncertainty and 
the common variations between the series (which we identify as risk). 
Recent advances in the field have identified the methodological tools 
for performing the task using factor models (Jurado, Ludvigson and Ng, 
2015; henceforth JLN). These proposals, however, have tended to focus 

12.  ‘Science is Measurement’ was the original motto of the Cowles Commission (though it would later be 
changed in 1952 to ‘Theory and Measurement’). See Keuzenkamp (2004) and Bjerkholt (2014) for details 
about the history and methodology of econometrics and the role of the Cowles Commission and the 
Econometric Society in the transition of economics to a more formally based science. 
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their attention on the use of macroeconomic variables to construct their 
indexes, as opposed to financial variables. Therefore, because of the 
low frequency of macroeconomic series, the proposals lack a desirable 
property of traditional proxies of uncertainty based on financial returns 
(such as VXO, VIX or credit-spreads): namely, practitioners and policy 
makers cannot trace their dynamics in real time. 

Our second contribution is to show how our financial uncertainty index 
can also serve as an indicator of macroeconomic uncertainty. We exa-
mine the circumstances under which our index might be thought to cap-
ture all the relevant information in the economy as a whole. We exploit 
the fact that the information contained in hundreds, or even thousands, 
of economic indicators can be encapsulated by just a few stock market 
portfolio returns. This circumstance makes the construction of the in-
dex easier, in terms of its information requirements, modeling design 
and computational costs, and it allows us to provide a high frequency 
uncertainty measure. The construction of our index, based on portfolio 
returns, for which there are significant and timely data, provides a better 
basis for analyzing uncertainty compared to other situations, in which 
this kind of information and frequency are absent. Therefore, the exten-
sion of the methodology beyond the stock markets must be approached 
with caution, since there is little hope to extract the uncertainty compo-
nents of less timely data, in an accurate fashion.

Finally, we analyze the dynamic relationship between uncertainty and 
the series of consumption, interest rates, production and stock market 
prices, among others. This allows us to further our understanding of 
the role of (financial or macroeconomic) uncertainty, and to determi-
ne the dynamics of the economy as a whole. Our empirical model allows 
us to analyze the extent to which traditional monetary policy can be 
trusted to manage situations of uncertainty. Thus, on the one hand, we 
document a significant and negative relationship between uncertainty 
and real variables such as production, employment and consumption; 
on the other, we find that the interest rate tends to decrease after an 
uncertainty shock while uncertainty decreases following a fall in the 
interest rate. However, this last effect only explains a small proportion 
of the total variation in the forecasted uncertainty. 
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The rest of this paper is organized as follows. First, we review theore-
tical and empirical studies of uncertainty. In section 3 we describe the 
methodology used to estimate the uncertainty index. Our approach relies 
on generalized dynamic factor models and stochastic volatility (SV) de-
vices. In section 4 we present our data and in section 5 our main results. 
We also relate our findings to macroeconomic dynamics by means of 
a vector autoregressive (VAR) analysis. In the last section we conclude. 

3.2. Related literature

A. Risk, uncertainty, economic decisions and policy intervention

The current paradigm for understanding uncertainty was developed 
within the framework of irreversible investment, in which a firm’s future 
investment opportunities are treated as real options and the importance 
of waiting until the uncertainty is resolved is emphasized. Hence, ag-
gregate uncertainty shocks13 are thought to be followed by a reduction 
in investment, and possibly in labor, and, consequently, by a deterio-
ration in real activity (Bernanke, 1983; Bertola and Caballero, 1994; 
Abel and Eberly, 1996; Leahy and Whited, 1996; Caballero and Pindyck, 
1996; Bloom et al., 2007; Bachmann and Bayer, 2013). Nevertheless, 
some studies point out that after the original worsening of the variables, 
a rebound effect related to a ‘volatility over-shoot’ may be observed 
(Bloom, 2009; Bloom et al., 2013). It is worth noting that these original 
impacts on the macroeconomic variables may be amplified as a result of 
financial market frictions (Arellano et al., 2012; Christiano et al., 2014; 
Gilchrist et al., 2014). 

The study of uncertainty is not confined to the firm’s investment pro-
blem. For example, Romer (1990) suggests that consumers may postpone 
their acquisition of durable goods in episodes of increasing uncertainty. 
Ramey and Ramey (1995) and Aghion et al. (2010) have studied the ne-
gative relationship between volatility and economic growth. The effects 
of uncertainty on equity prices and other financial variables have also 

13.  Panousi and Papanikolaou (2012) explain possible sources of inefficiency in the investment process 
arising from idiosyncratic uncertainty, under high-powered incentives and risk-averse managers. Bachmann 
and Bayer (2013) also study the impact of idiosyncratic uncertainty shocks on business cycles. 
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been analyzed. In this stream, Bansal and Yaron (2004) provide a model 
in which markets dislike uncertainty and worse long-run growth pros-
pects reduce equity prices. In the same line, Bekaert et al. (2009) find 
that uncertainty plays an important role in the term structure dynamics 
and that it is the main force behind the counter-cyclical volatility of 
asset returns.

Additionally, there has been a revival of interest in examining the rela-
tionship between uncertainty and policy interventions. However, there 
is no clear consensus in this resurgent research agenda. Some authors 
conclude that the optimal monetary policy does not change signifi-
cantly during episodes of crisis and that uncertainty about crises has 
relatively little effect on policy transmission (Williams, 2012), but others 
report that financial uncertainty plays a significant role in monetary po-
licy transmission mechanisms (Baum et al., 2013; Bekaert et al., 2013). 
Neither is it clear whether a highly responsive or moderate monetary 
policy scheme is best when facing uncertainty. For instance, Williams 
(2013), in the same spirit as Brainard (1967), forwards the argument 
that, once uncertainty is recognized, some moderation in monetary po-
licy might well be optimal. In marked contrast (albeit under a different 
notion of uncertainty), Fendoǧlu (2014) recommends a non-negligible 
response to uncertainty shocks. 

B- Empirical measures of uncertainty 

Empirical studies have frequently relied on proxies of uncertainty, most 
of which have the advantage of being directly observable. Such pro-
xies include stock returns or their implied/realized volatility (i.e., VIX 
or VXO), the cross-sectional dispersion of firms’ profits (Bloom, 2009), 
estimated time-varying productivity (Bloom et al., 2013), the cross-sec-
tional dispersion of survey-based forecasts (Dick et al., 2013; Bachmann 
et al., 2013), credit spreads (Fendoǧlu, 2014), and the appearance of 
‘uncertainty-related’ key words in the media (Baker et al., 2016). 

Although these uncertainty proxies have provided key insights to the 
comprehension of uncertainty, and have been reliable starting points for 
the analysis of the economic impacts of uncertainty on economic varia-
bles, most of them have come under criticism, most notably from Scotti 
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(2016) and JLN. On the one hand, volatility measures blend uncertainty 
with other notions (such as risk and risk-aversion), owing to the fact 
that they do not usually take the forecastable component of the varia-
tion into account before calculating uncertainty. On the other, analysts’ 
forecasts are only available for a limited number of series. Moreover, it 
is not entirely clear whether the responses drawn from these surveys ac-
curately capture the conditional expectations of the economy as a who-
le. The disagreement reported in survey forecasts could be more of an 
expression of different opinions than of real uncertainty (Diether et al., 
2002) and even if forecasts are unbiased, the disagreement in analysts’ 
point forecasts is not generally equivalent to forecast error uncertainty 
(Lahiri and Sheng, 2010)14. Aimed at overcoming these shortcomings, a 
new branch of the literature has emerged, which proposes measuring 
uncertainty only after the forecastable component of the series has been 
removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN). 

Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, 
which is important in order to distinguish satisfactorily between un-
certainty and risk. We also aim to construct estimations of uncertainty 
by deliberately adopting an atheoretical approach, in the same vein as 
JLN. Our study contributes to the existing literature by providing a daily 
measurement of uncertainty. This is important, because it means the 
market can be monitored in real time, while enabling the researcher to 
undertake event studies with greater precision including uncertainty as 
a variable. The literature notes that estimations of impacts extracted 
from event studies are much more precise and less noisy as the frequen-
cy of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 2010). 

3.3. Methodology

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate 

14.  Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them by using 
additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies focus on variation in 
outcomes around subjective survey expectations.
15.  These authors do not address the problem of measuring uncertainty directly, but still they use a closely 
related methodological approach to the one employed in this strand of the literature.
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their idiosyncratic variation. To do this, we filter the original series using 
a generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov 
chain Monte Carlo (MCMC) techniques. Then, we average the series, ob-
taining a single index of uncertainty for the stock market, and possibly 
for the economy as a whole. In sections 3.1 and 3.2 below, we explain 
each step in detail. 

A. Idiosyncratic component extraction

Following Bai and Ng (2008), let N be the number of cross-sectional 
units and T be the number of time series observations. For 
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A. Idiosyncratic component extraction 

Following Bai and Ng (2008), let A be the number of cross-sectional units and 
]  be the number of time series observations. For K = 1,… , A  and ! =
1,… , ], the dynamic factor model (DFM) can be defined as: 

∆à) = 	 §à(()c) + Gà),    (3.1) 

where §à(() = (1 −	§ài(−,… ,−§à«(
4)  is a vector of dynamic factor 

loadings of order L. When L is finite, we refer to it as a DFM. In contrast, a 
GDFM allows L  to be infinite. Stock and Watson (2002, 2011) provide 
examples of the former and Forni and Reichlin (1998) and Forni et al. (2000) 
introduce the latter. In any case, the (dynamic) factors c) evolve according to:  

c) = 	B(()»),     (3.2) 

where ») are KK≥ errors. The dimension of	c), denoted …, is the same as that of 
») and it refers to the number of dynamic or primitive factors (Bai and Ng, 
2007). 
The model stated in (3.2) can be rewritten in static form, simply by redefining 
the vector of factors to contain the dynamic factors and their lags, and the 
matrix of loads accordingly, as: 

á
(A × ]) =

		Λ	3
(A × H)(H × ]) +

G
(A × ]),   (3.3) 

where á = (ái, … , á>)  and 3 = (3i, … . , 3∞) . Clearly, 3  and Λ  are not 
separately identifiable. For any arbitrary (H × H) invertible matrix : , 3ΛX =
3::{iÀX = 3∗ΛX∗ , where 3∗ = 3À  and À∗ = À:{i , the factor model is 
observationally equivalent to á = 3∗ÀX∗ + G . Therefore Hã  restrictions are 
required to uniquely fix 3  and À  (Bai and Wang, 2015). Note that the 
estimation of the factors by principal components (PC) or singular value 
decomposition (SVD) imposes the normalization that Ã

ÕÃ

>
= Œπ  and 3X3  is 

diagonal, which are sufficient to guarantee identification (up to a column sign 
variation). 
The GDFM is a generalization of the DFM because it allows a richer dynamic 
structure for the factors. It places smaller weights on variables with larger 
idiosyncratic (uncertainty) components. So that the idiosyncratic ‘error’ 
contained in the linear combination is minimized. In this way we ensure that 
the uncertainty component is purged from risk-related variations. 
Our first step enables us to estimate the idiosyncratic variation of the 
series 	Gà)¥ = áà) − Bœà) , where Bœà) = 	 §à(()c) . This component is primarily 
related to uncertainty, whereas the common variation (i.e., the variance of Bœà)) 
can be referred to as risk.  
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of them have come under criticism, most notably from Scotti (2016) and JLN. 
On the one hand, volatility measures blend uncertainty with other notions 
(such as risk and risk-aversion), owing to the fact that they do not usually take 
the forecastable component of the variation into account before calculating 
uncertainty. On the other, analysts’ forecasts are only available for a limited 
number of series. Moreover, it is not entirely clear whether the responses 
drawn from these surveys accurately capture the conditional expectations of 
the economy as a whole. The disagreement reported in survey forecasts could 
be more of an expression of different opinions than of real uncertainty 
(Diether et al., 2002) and even if forecasts are unbiased, the disagreement in 
analysts’ point forecasts is not generally equivalent to forecast error 
uncertainty (Lahiri and Sheng, 2010) 14 . Aimed at overcoming these 
shortcomings, a new branch of the literature has emerged, which proposes 
measuring uncertainty only after the forecastable component of the series has 
been removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN).  
Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, which 
is important in order to distinguish satisfactorily between uncertainty and risk. 
We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
the existing literature by providing a daily measurement of uncertainty. This is 
important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 
impacts extracted from event studies are much more precise and less noisy as 
the frequency of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 
2010).  
4.2. Methodology 

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate their 
idiosyncratic variation. To do this, we filter the original series using a 
generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  

	
14 Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them 
by using additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies 
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15 These authors do not address the problem of measuring uncertainty directly, but still they 
use a closely related methodological approach to the one employed in this strand of the 
literature. 
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(Diether et al., 2002) and even if forecasts are unbiased, the disagreement in 
analysts’ point forecasts is not generally equivalent to forecast error 
uncertainty (Lahiri and Sheng, 2010) 14 . Aimed at overcoming these 
shortcomings, a new branch of the literature has emerged, which proposes 
measuring uncertainty only after the forecastable component of the series has 
been removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN).  
Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, which 
is important in order to distinguish satisfactorily between uncertainty and risk. 
We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
the existing literature by providing a daily measurement of uncertainty. This is 
important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 
impacts extracted from event studies are much more precise and less noisy as 
the frequency of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 
2010).  
4.2. Methodology 

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate their 
idiosyncratic variation. To do this, we filter the original series using a 
generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  
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generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
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forecastable component of the variation before calculating uncertainty, which 
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single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  

	
14 Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them 
by using additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies 
focus on variation in outcomes around subjective survey expectations. 
15 These authors do not address the problem of measuring uncertainty directly, but still they 
use a closely related methodological approach to the one employed in this strand of the 
literature. 

	 50	

A. Idiosyncratic component extraction 

Following Bai and Ng (2008), let A be the number of cross-sectional units and 
]  be the number of time series observations. For K = 1,… , A  and ! =
1,… , ], the dynamic factor model (DFM) can be defined as: 

∆à) = 	 §à(()c) + Gà),    (3.1) 

where §à(() = (1 −	§ài(−,… ,−§à«(
4)  is a vector of dynamic factor 

loadings of order L. When L is finite, we refer to it as a DFM. In contrast, a 
GDFM allows L  to be infinite. Stock and Watson (2002, 2011) provide 
examples of the former and Forni and Reichlin (1998) and Forni et al. (2000) 
introduce the latter. In any case, the (dynamic) factors c) evolve according to:  

c) = 	B(()»),     (3.2) 

where ») are KK≥ errors. The dimension of	c), denoted …, is the same as that of 
») and it refers to the number of dynamic or primitive factors (Bai and Ng, 
2007). 
The model stated in (3.2) can be rewritten in static form, simply by redefining 
the vector of factors to contain the dynamic factors and their lags, and the 
matrix of loads accordingly, as: 

á
(A × ]) =

		Λ	3
(A × H)(H × ]) +

G
(A × ]),   (3.3) 

where á = (ái, … , á>)  and 3 = (3i, … . , 3∞) . Clearly, 3  and Λ  are not 
separately identifiable. For any arbitrary (H × H) invertible matrix : , 3ΛX =
3::{iÀX = 3∗ΛX∗ , where 3∗ = 3À  and À∗ = À:{i , the factor model is 
observationally equivalent to á = 3∗ÀX∗ + G . Therefore Hã  restrictions are 
required to uniquely fix 3  and À  (Bai and Wang, 2015). Note that the 
estimation of the factors by principal components (PC) or singular value 
decomposition (SVD) imposes the normalization that Ã

ÕÃ

>
= Œπ  and 3X3  is 

diagonal, which are sufficient to guarantee identification (up to a column sign 
variation). 
The GDFM is a generalization of the DFM because it allows a richer dynamic 
structure for the factors. It places smaller weights on variables with larger 
idiosyncratic (uncertainty) components. So that the idiosyncratic ‘error’ 
contained in the linear combination is minimized. In this way we ensure that 
the uncertainty component is purged from risk-related variations. 
Our first step enables us to estimate the idiosyncratic variation of the 
series 	Gà)¥ = áà) − Bœà) , where Bœà) = 	 §à(()c) . This component is primarily 
related to uncertainty, whereas the common variation (i.e., the variance of Bœà)) 
can be referred to as risk.  

 invertible matrix 

	 49	

of them have come under criticism, most notably from Scotti (2016) and JLN. 
On the one hand, volatility measures blend uncertainty with other notions 
(such as risk and risk-aversion), owing to the fact that they do not usually take 
the forecastable component of the variation into account before calculating 
uncertainty. On the other, analysts’ forecasts are only available for a limited 
number of series. Moreover, it is not entirely clear whether the responses 
drawn from these surveys accurately capture the conditional expectations of 
the economy as a whole. The disagreement reported in survey forecasts could 
be more of an expression of different opinions than of real uncertainty 
(Diether et al., 2002) and even if forecasts are unbiased, the disagreement in 
analysts’ point forecasts is not generally equivalent to forecast error 
uncertainty (Lahiri and Sheng, 2010) 14 . Aimed at overcoming these 
shortcomings, a new branch of the literature has emerged, which proposes 
measuring uncertainty only after the forecastable component of the series has 
been removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN).  
Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, which 
is important in order to distinguish satisfactorily between uncertainty and risk. 
We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
the existing literature by providing a daily measurement of uncertainty. This is 
important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 
impacts extracted from event studies are much more precise and less noisy as 
the frequency of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 
2010).  
4.2. Methodology 

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate their 
idiosyncratic variation. To do this, we filter the original series using a 
generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  

	
14 Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them 
by using additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies 
focus on variation in outcomes around subjective survey expectations. 
15 These authors do not address the problem of measuring uncertainty directly, but still they 
use a closely related methodological approach to the one employed in this strand of the 
literature. 

	 50	

A. Idiosyncratic component extraction 

Following Bai and Ng (2008), let A be the number of cross-sectional units and 
]  be the number of time series observations. For K = 1,… , A  and ! =
1,… , ], the dynamic factor model (DFM) can be defined as: 

∆à) = 	 §à(()c) + Gà),    (3.1) 

where §à(() = (1 −	§ài(−,… ,−§à«(
4)  is a vector of dynamic factor 

loadings of order L. When L is finite, we refer to it as a DFM. In contrast, a 
GDFM allows L  to be infinite. Stock and Watson (2002, 2011) provide 
examples of the former and Forni and Reichlin (1998) and Forni et al. (2000) 
introduce the latter. In any case, the (dynamic) factors c) evolve according to:  

c) = 	B(()»),     (3.2) 

where ») are KK≥ errors. The dimension of	c), denoted …, is the same as that of 
») and it refers to the number of dynamic or primitive factors (Bai and Ng, 
2007). 
The model stated in (3.2) can be rewritten in static form, simply by redefining 
the vector of factors to contain the dynamic factors and their lags, and the 
matrix of loads accordingly, as: 

á
(A × ]) =

		Λ	3
(A × H)(H × ]) +

G
(A × ]),   (3.3) 

where á = (ái, … , á>)  and 3 = (3i, … . , 3∞) . Clearly, 3  and Λ  are not 
separately identifiable. For any arbitrary (H × H) invertible matrix : , 3ΛX =
3::{iÀX = 3∗ΛX∗ , where 3∗ = 3À  and À∗ = À:{i , the factor model is 
observationally equivalent to á = 3∗ÀX∗ + G . Therefore Hã  restrictions are 
required to uniquely fix 3  and À  (Bai and Wang, 2015). Note that the 
estimation of the factors by principal components (PC) or singular value 
decomposition (SVD) imposes the normalization that Ã

ÕÃ

>
= Œπ  and 3X3  is 

diagonal, which are sufficient to guarantee identification (up to a column sign 
variation). 
The GDFM is a generalization of the DFM because it allows a richer dynamic 
structure for the factors. It places smaller weights on variables with larger 
idiosyncratic (uncertainty) components. So that the idiosyncratic ‘error’ 
contained in the linear combination is minimized. In this way we ensure that 
the uncertainty component is purged from risk-related variations. 
Our first step enables us to estimate the idiosyncratic variation of the 
series 	Gà)¥ = áà) − Bœà) , where Bœà) = 	 §à(()c) . This component is primarily 
related to uncertainty, whereas the common variation (i.e., the variance of Bœà)) 
can be referred to as risk.  

	 49	

of them have come under criticism, most notably from Scotti (2016) and JLN. 
On the one hand, volatility measures blend uncertainty with other notions 
(such as risk and risk-aversion), owing to the fact that they do not usually take 
the forecastable component of the variation into account before calculating 
uncertainty. On the other, analysts’ forecasts are only available for a limited 
number of series. Moreover, it is not entirely clear whether the responses 
drawn from these surveys accurately capture the conditional expectations of 
the economy as a whole. The disagreement reported in survey forecasts could 
be more of an expression of different opinions than of real uncertainty 
(Diether et al., 2002) and even if forecasts are unbiased, the disagreement in 
analysts’ point forecasts is not generally equivalent to forecast error 
uncertainty (Lahiri and Sheng, 2010) 14 . Aimed at overcoming these 
shortcomings, a new branch of the literature has emerged, which proposes 
measuring uncertainty only after the forecastable component of the series has 
been removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN).  
Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, which 
is important in order to distinguish satisfactorily between uncertainty and risk. 
We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
the existing literature by providing a daily measurement of uncertainty. This is 
important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 
impacts extracted from event studies are much more precise and less noisy as 
the frequency of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 
2010).  
4.2. Methodology 

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate their 
idiosyncratic variation. To do this, we filter the original series using a 
generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  

	
14 Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them 
by using additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies 
focus on variation in outcomes around subjective survey expectations. 
15 These authors do not address the problem of measuring uncertainty directly, but still they 
use a closely related methodological approach to the one employed in this strand of the 
literature. 

	 50	

A. Idiosyncratic component extraction 

Following Bai and Ng (2008), let A be the number of cross-sectional units and 
]  be the number of time series observations. For K = 1,… , A  and ! =
1,… , ], the dynamic factor model (DFM) can be defined as: 

∆à) = 	 §à(()c) + Gà),    (3.1) 

where §à(() = (1 −	§ài(−,… ,−§à«(
4)  is a vector of dynamic factor 

loadings of order L. When L is finite, we refer to it as a DFM. In contrast, a 
GDFM allows L  to be infinite. Stock and Watson (2002, 2011) provide 
examples of the former and Forni and Reichlin (1998) and Forni et al. (2000) 
introduce the latter. In any case, the (dynamic) factors c) evolve according to:  

c) = 	B(()»),     (3.2) 

where ») are KK≥ errors. The dimension of	c), denoted …, is the same as that of 
») and it refers to the number of dynamic or primitive factors (Bai and Ng, 
2007). 
The model stated in (3.2) can be rewritten in static form, simply by redefining 
the vector of factors to contain the dynamic factors and their lags, and the 
matrix of loads accordingly, as: 

á
(A × ]) =

		Λ	3
(A × H)(H × ]) +

G
(A × ]),   (3.3) 

where á = (ái, … , á>)  and 3 = (3i, … . , 3∞) . Clearly, 3  and Λ  are not 
separately identifiable. For any arbitrary (H × H) invertible matrix : , 3ΛX =
3::{iÀX = 3∗ΛX∗ , where 3∗ = 3À  and À∗ = À:{i , the factor model is 
observationally equivalent to á = 3∗ÀX∗ + G . Therefore Hã  restrictions are 
required to uniquely fix 3  and À  (Bai and Wang, 2015). Note that the 
estimation of the factors by principal components (PC) or singular value 
decomposition (SVD) imposes the normalization that Ã

ÕÃ

>
= Œπ  and 3X3  is 

diagonal, which are sufficient to guarantee identification (up to a column sign 
variation). 
The GDFM is a generalization of the DFM because it allows a richer dynamic 
structure for the factors. It places smaller weights on variables with larger 
idiosyncratic (uncertainty) components. So that the idiosyncratic ‘error’ 
contained in the linear combination is minimized. In this way we ensure that 
the uncertainty component is purged from risk-related variations. 
Our first step enables us to estimate the idiosyncratic variation of the 
series 	Gà)¥ = áà) − Bœà) , where Bœà) = 	 §à(()c) . This component is primarily 
related to uncertainty, whereas the common variation (i.e., the variance of Bœà)) 
can be referred to as risk.  

, where 

	 49	

of them have come under criticism, most notably from Scotti (2016) and JLN. 
On the one hand, volatility measures blend uncertainty with other notions 
(such as risk and risk-aversion), owing to the fact that they do not usually take 
the forecastable component of the variation into account before calculating 
uncertainty. On the other, analysts’ forecasts are only available for a limited 
number of series. Moreover, it is not entirely clear whether the responses 
drawn from these surveys accurately capture the conditional expectations of 
the economy as a whole. The disagreement reported in survey forecasts could 
be more of an expression of different opinions than of real uncertainty 
(Diether et al., 2002) and even if forecasts are unbiased, the disagreement in 
analysts’ point forecasts is not generally equivalent to forecast error 
uncertainty (Lahiri and Sheng, 2010) 14 . Aimed at overcoming these 
shortcomings, a new branch of the literature has emerged, which proposes 
measuring uncertainty only after the forecastable component of the series has 
been removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN).  
Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, which 
is important in order to distinguish satisfactorily between uncertainty and risk. 
We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
the existing literature by providing a daily measurement of uncertainty. This is 
important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 
impacts extracted from event studies are much more precise and less noisy as 
the frequency of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 
2010).  
4.2. Methodology 

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate their 
idiosyncratic variation. To do this, we filter the original series using a 
generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  

	
14 Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them 
by using additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies 
focus on variation in outcomes around subjective survey expectations. 
15 These authors do not address the problem of measuring uncertainty directly, but still they 
use a closely related methodological approach to the one employed in this strand of the 
literature. 

	 50	

A. Idiosyncratic component extraction 

Following Bai and Ng (2008), let A be the number of cross-sectional units and 
]  be the number of time series observations. For K = 1,… , A  and ! =
1,… , ], the dynamic factor model (DFM) can be defined as: 

∆à) = 	 §à(()c) + Gà),    (3.1) 

where §à(() = (1 −	§ài(−,… ,−§à«(
4)  is a vector of dynamic factor 

loadings of order L. When L is finite, we refer to it as a DFM. In contrast, a 
GDFM allows L  to be infinite. Stock and Watson (2002, 2011) provide 
examples of the former and Forni and Reichlin (1998) and Forni et al. (2000) 
introduce the latter. In any case, the (dynamic) factors c) evolve according to:  

c) = 	B(()»),     (3.2) 

where ») are KK≥ errors. The dimension of	c), denoted …, is the same as that of 
») and it refers to the number of dynamic or primitive factors (Bai and Ng, 
2007). 
The model stated in (3.2) can be rewritten in static form, simply by redefining 
the vector of factors to contain the dynamic factors and their lags, and the 
matrix of loads accordingly, as: 

á
(A × ]) =

		Λ	3
(A × H)(H × ]) +

G
(A × ]),   (3.3) 

where á = (ái, … , á>)  and 3 = (3i, … . , 3∞) . Clearly, 3  and Λ  are not 
separately identifiable. For any arbitrary (H × H) invertible matrix : , 3ΛX =
3::{iÀX = 3∗ΛX∗ , where 3∗ = 3À  and À∗ = À:{i , the factor model is 
observationally equivalent to á = 3∗ÀX∗ + G . Therefore Hã  restrictions are 
required to uniquely fix 3  and À  (Bai and Wang, 2015). Note that the 
estimation of the factors by principal components (PC) or singular value 
decomposition (SVD) imposes the normalization that Ã

ÕÃ

>
= Œπ  and 3X3  is 

diagonal, which are sufficient to guarantee identification (up to a column sign 
variation). 
The GDFM is a generalization of the DFM because it allows a richer dynamic 
structure for the factors. It places smaller weights on variables with larger 
idiosyncratic (uncertainty) components. So that the idiosyncratic ‘error’ 
contained in the linear combination is minimized. In this way we ensure that 
the uncertainty component is purged from risk-related variations. 
Our first step enables us to estimate the idiosyncratic variation of the 
series 	Gà)¥ = áà) − Bœà) , where Bœà) = 	 §à(()c) . This component is primarily 
related to uncertainty, whereas the common variation (i.e., the variance of Bœà)) 
can be referred to as risk.  

 and 

	 49	

of them have come under criticism, most notably from Scotti (2016) and JLN. 
On the one hand, volatility measures blend uncertainty with other notions 
(such as risk and risk-aversion), owing to the fact that they do not usually take 
the forecastable component of the variation into account before calculating 
uncertainty. On the other, analysts’ forecasts are only available for a limited 
number of series. Moreover, it is not entirely clear whether the responses 
drawn from these surveys accurately capture the conditional expectations of 
the economy as a whole. The disagreement reported in survey forecasts could 
be more of an expression of different opinions than of real uncertainty 
(Diether et al., 2002) and even if forecasts are unbiased, the disagreement in 
analysts’ point forecasts is not generally equivalent to forecast error 
uncertainty (Lahiri and Sheng, 2010) 14 . Aimed at overcoming these 
shortcomings, a new branch of the literature has emerged, which proposes 
measuring uncertainty only after the forecastable component of the series has 
been removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN).  
Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, which 
is important in order to distinguish satisfactorily between uncertainty and risk. 
We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
the existing literature by providing a daily measurement of uncertainty. This is 
important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 
impacts extracted from event studies are much more precise and less noisy as 
the frequency of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 
2010).  
4.2. Methodology 

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate their 
idiosyncratic variation. To do this, we filter the original series using a 
generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  

	
14 Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them 
by using additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies 
focus on variation in outcomes around subjective survey expectations. 
15 These authors do not address the problem of measuring uncertainty directly, but still they 
use a closely related methodological approach to the one employed in this strand of the 
literature. 

	 50	

A. Idiosyncratic component extraction 

Following Bai and Ng (2008), let A be the number of cross-sectional units and 
]  be the number of time series observations. For K = 1,… , A  and ! =
1,… , ], the dynamic factor model (DFM) can be defined as: 

∆à) = 	 §à(()c) + Gà),    (3.1) 

where §à(() = (1 −	§ài(−,… ,−§à«(
4)  is a vector of dynamic factor 

loadings of order L. When L is finite, we refer to it as a DFM. In contrast, a 
GDFM allows L  to be infinite. Stock and Watson (2002, 2011) provide 
examples of the former and Forni and Reichlin (1998) and Forni et al. (2000) 
introduce the latter. In any case, the (dynamic) factors c) evolve according to:  

c) = 	B(()»),     (3.2) 

where ») are KK≥ errors. The dimension of	c), denoted …, is the same as that of 
») and it refers to the number of dynamic or primitive factors (Bai and Ng, 
2007). 
The model stated in (3.2) can be rewritten in static form, simply by redefining 
the vector of factors to contain the dynamic factors and their lags, and the 
matrix of loads accordingly, as: 

á
(A × ]) =

		Λ	3
(A × H)(H × ]) +

G
(A × ]),   (3.3) 

where á = (ái, … , á>)  and 3 = (3i, … . , 3∞) . Clearly, 3  and Λ  are not 
separately identifiable. For any arbitrary (H × H) invertible matrix : , 3ΛX =
3::{iÀX = 3∗ΛX∗ , where 3∗ = 3À  and À∗ = À:{i , the factor model is 
observationally equivalent to á = 3∗ÀX∗ + G . Therefore Hã  restrictions are 
required to uniquely fix 3  and À  (Bai and Wang, 2015). Note that the 
estimation of the factors by principal components (PC) or singular value 
decomposition (SVD) imposes the normalization that Ã

ÕÃ

>
= Œπ  and 3X3  is 

diagonal, which are sufficient to guarantee identification (up to a column sign 
variation). 
The GDFM is a generalization of the DFM because it allows a richer dynamic 
structure for the factors. It places smaller weights on variables with larger 
idiosyncratic (uncertainty) components. So that the idiosyncratic ‘error’ 
contained in the linear combination is minimized. In this way we ensure that 
the uncertainty component is purged from risk-related variations. 
Our first step enables us to estimate the idiosyncratic variation of the 
series 	Gà)¥ = áà) − Bœà) , where Bœà) = 	 §à(()c) . This component is primarily 
related to uncertainty, whereas the common variation (i.e., the variance of Bœà)) 
can be referred to as risk.  

, the fac-
tor model is observationally equivalent to 

	 49	

of them have come under criticism, most notably from Scotti (2016) and JLN. 
On the one hand, volatility measures blend uncertainty with other notions 
(such as risk and risk-aversion), owing to the fact that they do not usually take 
the forecastable component of the variation into account before calculating 
uncertainty. On the other, analysts’ forecasts are only available for a limited 
number of series. Moreover, it is not entirely clear whether the responses 
drawn from these surveys accurately capture the conditional expectations of 
the economy as a whole. The disagreement reported in survey forecasts could 
be more of an expression of different opinions than of real uncertainty 
(Diether et al., 2002) and even if forecasts are unbiased, the disagreement in 
analysts’ point forecasts is not generally equivalent to forecast error 
uncertainty (Lahiri and Sheng, 2010) 14 . Aimed at overcoming these 
shortcomings, a new branch of the literature has emerged, which proposes 
measuring uncertainty only after the forecastable component of the series has 
been removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN).  
Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, which 
is important in order to distinguish satisfactorily between uncertainty and risk. 
We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
the existing literature by providing a daily measurement of uncertainty. This is 
important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 
impacts extracted from event studies are much more precise and less noisy as 
the frequency of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 
2010).  
4.2. Methodology 

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate their 
idiosyncratic variation. To do this, we filter the original series using a 
generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  

	
14 Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them 
by using additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies 
focus on variation in outcomes around subjective survey expectations. 
15 These authors do not address the problem of measuring uncertainty directly, but still they 
use a closely related methodological approach to the one employed in this strand of the 
literature. 

	 50	

A. Idiosyncratic component extraction 

Following Bai and Ng (2008), let A be the number of cross-sectional units and 
]  be the number of time series observations. For K = 1,… , A  and ! =
1,… , ], the dynamic factor model (DFM) can be defined as: 

∆à) = 	 §à(()c) + Gà),    (3.1) 

where §à(() = (1 −	§ài(−,… ,−§à«(
4)  is a vector of dynamic factor 

loadings of order L. When L is finite, we refer to it as a DFM. In contrast, a 
GDFM allows L  to be infinite. Stock and Watson (2002, 2011) provide 
examples of the former and Forni and Reichlin (1998) and Forni et al. (2000) 
introduce the latter. In any case, the (dynamic) factors c) evolve according to:  

c) = 	B(()»),     (3.2) 

where ») are KK≥ errors. The dimension of	c), denoted …, is the same as that of 
») and it refers to the number of dynamic or primitive factors (Bai and Ng, 
2007). 
The model stated in (3.2) can be rewritten in static form, simply by redefining 
the vector of factors to contain the dynamic factors and their lags, and the 
matrix of loads accordingly, as: 

á
(A × ]) =

		Λ	3
(A × H)(H × ]) +

G
(A × ]),   (3.3) 

where á = (ái, … , á>)  and 3 = (3i, … . , 3∞) . Clearly, 3  and Λ  are not 
separately identifiable. For any arbitrary (H × H) invertible matrix : , 3ΛX =
3::{iÀX = 3∗ΛX∗ , where 3∗ = 3À  and À∗ = À:{i , the factor model is 
observationally equivalent to á = 3∗ÀX∗ + G . Therefore Hã  restrictions are 
required to uniquely fix 3  and À  (Bai and Wang, 2015). Note that the 
estimation of the factors by principal components (PC) or singular value 
decomposition (SVD) imposes the normalization that Ã

ÕÃ

>
= Œπ  and 3X3  is 

diagonal, which are sufficient to guarantee identification (up to a column sign 
variation). 
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structure for the factors. It places smaller weights on variables with larger 
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shortcomings, a new branch of the literature has emerged, which proposes 
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We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
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important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 
impacts extracted from event studies are much more precise and less noisy as 
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2010).  
4.2. Methodology 
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stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  
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diagonal, which are sufficient to guarantee identification (up to a column sign 
variation). 
The GDFM is a generalization of the DFM because it allows a richer dynamic 
structure for the factors. It places smaller weights on variables with larger 
idiosyncratic (uncertainty) components. So that the idiosyncratic ‘error’ 
contained in the linear combination is minimized. In this way we ensure that 
the uncertainty component is purged from risk-related variations. 
Our first step enables us to estimate the idiosyncratic variation of the 
series 	Gà)¥ = áà) − Bœà) , where Bœà) = 	 §à(()c) . This component is primarily 
related to uncertainty, whereas the common variation (i.e., the variance of Bœà)) 
can be referred to as risk.  
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of them have come under criticism, most notably from Scotti (2016) and JLN. 
On the one hand, volatility measures blend uncertainty with other notions 
(such as risk and risk-aversion), owing to the fact that they do not usually take 
the forecastable component of the variation into account before calculating 
uncertainty. On the other, analysts’ forecasts are only available for a limited 
number of series. Moreover, it is not entirely clear whether the responses 
drawn from these surveys accurately capture the conditional expectations of 
the economy as a whole. The disagreement reported in survey forecasts could 
be more of an expression of different opinions than of real uncertainty 
(Diether et al., 2002) and even if forecasts are unbiased, the disagreement in 
analysts’ point forecasts is not generally equivalent to forecast error 
uncertainty (Lahiri and Sheng, 2010) 14 . Aimed at overcoming these 
shortcomings, a new branch of the literature has emerged, which proposes 
measuring uncertainty only after the forecastable component of the series has 
been removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN).  
Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, which 
is important in order to distinguish satisfactorily between uncertainty and risk. 
We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
the existing literature by providing a daily measurement of uncertainty. This is 
important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 
impacts extracted from event studies are much more precise and less noisy as 
the frequency of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 
2010).  
4.2. Methodology 

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate their 
idiosyncratic variation. To do this, we filter the original series using a 
generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  

	
14 Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them 
by using additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies 
focus on variation in outcomes around subjective survey expectations. 
15 These authors do not address the problem of measuring uncertainty directly, but still they 
use a closely related methodological approach to the one employed in this strand of the 
literature. 
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A. Idiosyncratic component extraction 

Following Bai and Ng (2008), let A be the number of cross-sectional units and 
]  be the number of time series observations. For K = 1,… , A  and ! =
1,… , ], the dynamic factor model (DFM) can be defined as: 

∆à) = 	 §à(()c) + Gà),    (3.1) 

where §à(() = (1 −	§ài(−,… ,−§à«(
4)  is a vector of dynamic factor 

loadings of order L. When L is finite, we refer to it as a DFM. In contrast, a 
GDFM allows L  to be infinite. Stock and Watson (2002, 2011) provide 
examples of the former and Forni and Reichlin (1998) and Forni et al. (2000) 
introduce the latter. In any case, the (dynamic) factors c) evolve according to:  

c) = 	B(()»),     (3.2) 

where ») are KK≥ errors. The dimension of	c), denoted …, is the same as that of 
») and it refers to the number of dynamic or primitive factors (Bai and Ng, 
2007). 
The model stated in (3.2) can be rewritten in static form, simply by redefining 
the vector of factors to contain the dynamic factors and their lags, and the 
matrix of loads accordingly, as: 

á
(A × ]) =

		Λ	3
(A × H)(H × ]) +

G
(A × ]),   (3.3) 

where á = (ái, … , á>)  and 3 = (3i, … . , 3∞) . Clearly, 3  and Λ  are not 
separately identifiable. For any arbitrary (H × H) invertible matrix : , 3ΛX =
3::{iÀX = 3∗ΛX∗ , where 3∗ = 3À  and À∗ = À:{i , the factor model is 
observationally equivalent to á = 3∗ÀX∗ + G . Therefore Hã  restrictions are 
required to uniquely fix 3  and À  (Bai and Wang, 2015). Note that the 
estimation of the factors by principal components (PC) or singular value 
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B. Conditional volatility estimation 

Once we recover the series of filtered returns,	Gà)¥ , a SV model is specified on 
an individual level, for each K = 1,…A16, as:  

G)
¥ = G–o/ã—),     (3.4) 

ℎ) = “ + ∅(ℎ){i − “) + ì‘) ,  (3.5) 

where —) and ‘) are independent standard normal innovations for all ! and L 
belonging to {1, … , ]} . The non-observable process ℎ = (ℎ¢, ℎi, … , ℎ∞) 
appearing in equation 3.5 is the time-varying volatility with initial state 
distribution 	ℎ¢|“, ’, ì~AN“, ìã/(1 − ’ã)V. This centered parameterization 
of the model should be contrasted with the uncentered reparameterization 
provided by Kastner and Frühwirth-Schnatter (2014): 

G)
¥~AN0, G◊jÖ–PoV,     (3.6) 

ℎÿ) = ∅ℎÿ){i + ‘), ‘)~A(0,1).   (3.7) 
Whether the first or the second parameterization is preferred for estimation 
purposes generally depends on the value of the ‘true’ parameters (Kastner and 
Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  
Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
average of the individual volatilities:  

@) =
∑ –zo
~
zü�

>
.     (3.8) 

This scheme corresponds to the equally weighted average, with	∑ ºàℎà)
>
àêi

Ÿ
→ D(@)) , where º = 1 A⁄ . Alternatives, such as using the first PC to 
aggregate the series of variances, are possible but have no grounding in 

	
16 In what follows we omit the cross-sectional subscript to simplify the notation.  
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  

	
17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  
Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
average of the individual volatilities:  
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  

	
17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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B. Conditional volatility estimation 

Once we recover the series of filtered returns,	Gà)¥ , a SV model is specified on 
an individual level, for each K = 1,…A16, as:  

G)
¥ = G–o/ã—),     (3.4) 

ℎ) = “ + ∅(ℎ){i − “) + ì‘) ,  (3.5) 

where —) and ‘) are independent standard normal innovations for all ! and L 
belonging to {1, … , ]} . The non-observable process ℎ = (ℎ¢, ℎi, … , ℎ∞) 
appearing in equation 3.5 is the time-varying volatility with initial state 
distribution 	ℎ¢|“, ’, ì~AN“, ìã/(1 − ’ã)V. This centered parameterization 
of the model should be contrasted with the uncentered reparameterization 
provided by Kastner and Frühwirth-Schnatter (2014): 
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ℎÿ) = ∅ℎÿ){i + ‘), ‘)~A(0,1).   (3.7) 
Whether the first or the second parameterization is preferred for estimation 
purposes generally depends on the value of the ‘true’ parameters (Kastner and 
Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  
Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
average of the individual volatilities:  
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aggregate the series of variances, are possible but have no grounding in 
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  

	
17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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B. Conditional volatility estimation 

Once we recover the series of filtered returns,	Gà)¥ , a SV model is specified on 
an individual level, for each K = 1,…A16, as:  

G)
¥ = G–o/ã—),     (3.4) 

ℎ) = “ + ∅(ℎ){i − “) + ì‘) ,  (3.5) 

where —) and ‘) are independent standard normal innovations for all ! and L 
belonging to {1, … , ]} . The non-observable process ℎ = (ℎ¢, ℎi, … , ℎ∞) 
appearing in equation 3.5 is the time-varying volatility with initial state 
distribution 	ℎ¢|“, ’, ì~AN“, ìã/(1 − ’ã)V. This centered parameterization 
of the model should be contrasted with the uncentered reparameterization 
provided by Kastner and Frühwirth-Schnatter (2014): 
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¥~AN0, G◊jÖ–PoV,     (3.6) 

ℎÿ) = ∅ℎÿ){i + ‘), ‘)~A(0,1).   (3.7) 
Whether the first or the second parameterization is preferred for estimation 
purposes generally depends on the value of the ‘true’ parameters (Kastner and 
Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  
Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
average of the individual volatilities:  
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  

	
17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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B. Conditional volatility estimation 

Once we recover the series of filtered returns,	Gà)¥ , a SV model is specified on 
an individual level, for each K = 1,…A16, as:  
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¥ = G–o/ã—),     (3.4) 

ℎ) = “ + ∅(ℎ){i − “) + ì‘) ,  (3.5) 

where —) and ‘) are independent standard normal innovations for all ! and L 
belonging to {1, … , ]} . The non-observable process ℎ = (ℎ¢, ℎi, … , ℎ∞) 
appearing in equation 3.5 is the time-varying volatility with initial state 
distribution 	ℎ¢|“, ’, ì~AN“, ìã/(1 − ’ã)V. This centered parameterization 
of the model should be contrasted with the uncentered reparameterization 
provided by Kastner and Frühwirth-Schnatter (2014): 
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¥~AN0, G◊jÖ–PoV,     (3.6) 

ℎÿ) = ∅ℎÿ){i + ‘), ‘)~A(0,1).   (3.7) 
Whether the first or the second parameterization is preferred for estimation 
purposes generally depends on the value of the ‘true’ parameters (Kastner and 
Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  
Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
average of the individual volatilities:  
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  
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B. Conditional volatility estimation 

Once we recover the series of filtered returns,	Gà)¥ , a SV model is specified on 
an individual level, for each K = 1,…A16, as:  

G)
¥ = G–o/ã—),     (3.4) 

ℎ) = “ + ∅(ℎ){i − “) + ì‘) ,  (3.5) 

where —) and ‘) are independent standard normal innovations for all ! and L 
belonging to {1, … , ]} . The non-observable process ℎ = (ℎ¢, ℎi, … , ℎ∞) 
appearing in equation 3.5 is the time-varying volatility with initial state 
distribution 	ℎ¢|“, ’, ì~AN“, ìã/(1 − ’ã)V. This centered parameterization 
of the model should be contrasted with the uncentered reparameterization 
provided by Kastner and Frühwirth-Schnatter (2014): 
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¥~AN0, G◊jÖ–PoV,     (3.6) 

ℎÿ) = ∅ℎÿ){i + ‘), ‘)~A(0,1).   (3.7) 
Whether the first or the second parameterization is preferred for estimation 
purposes generally depends on the value of the ‘true’ parameters (Kastner and 
Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  
Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
average of the individual volatilities:  
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  
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B. Conditional volatility estimation 

Once we recover the series of filtered returns,	Gà)¥ , a SV model is specified on 
an individual level, for each K = 1,…A16, as:  
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¥ = G–o/ã—),     (3.4) 

ℎ) = “ + ∅(ℎ){i − “) + ì‘) ,  (3.5) 

where —) and ‘) are independent standard normal innovations for all ! and L 
belonging to {1, … , ]} . The non-observable process ℎ = (ℎ¢, ℎi, … , ℎ∞) 
appearing in equation 3.5 is the time-varying volatility with initial state 
distribution 	ℎ¢|“, ’, ì~AN“, ìã/(1 − ’ã)V. This centered parameterization 
of the model should be contrasted with the uncentered reparameterization 
provided by Kastner and Frühwirth-Schnatter (2014): 
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ℎÿ) = ∅ℎÿ){i + ‘), ‘)~A(0,1).   (3.7) 
Whether the first or the second parameterization is preferred for estimation 
purposes generally depends on the value of the ‘true’ parameters (Kastner and 
Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  
Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
average of the individual volatilities:  
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  
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introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  

	
17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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centered parameterization of the model should be contrasted with the 
uncentered reparameterization provided by Kastner and Frühwirth-Sch-
natter (2014):
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likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  
Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  
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Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
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Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  
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mation purposes generally depends on the value of the ‘true’ parame-
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Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
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representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
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average of the individual volatilities:  

@) =
∑ –zo
~
zü�

>
.     (3.8) 

This scheme corresponds to the equally weighted average, with	∑ ºàℎà)
>
àêi

Ÿ
→ D(@)) , where º = 1 A⁄ . Alternatives, such as using the first PC to 
aggregate the series of variances, are possible but have no grounding in 

	
16 In what follows we omit the cross-sectional subscript to simplify the notation.  
 

	 52	

econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  
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Whether the first or the second parameterization is preferred for estimation 
purposes generally depends on the value of the ‘true’ parameters (Kastner and 
Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  
Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  
Once the idiosyncratic stochastic volatility measures have been constructed, 
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  
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Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
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representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 
introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
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Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
average of the individual volatilities:  

@) =
∑ –zo
~
zü�

>
.     (3.8) 

This scheme corresponds to the equally weighted average, with	∑ ºàℎà)
>
àêi

Ÿ
→ D(@)) , where º = 1 A⁄ . Alternatives, such as using the first PC to 
aggregate the series of variances, are possible but have no grounding in 

	
16 In what follows we omit the cross-sectional subscript to simplify the notation.  
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econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 
4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 
Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 
In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  

	
17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

. Alternatives, such as using the first PC to 
aggregate the series of variances, are possible but have no grounding in 
econometric theory to guarantee their consistency in the estimation pro-
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by JLN, here we only use information from portfolio returns organized 
by different factor criteria; thus, there is no ex ante reason to weight 

w
w

w
.e

di
to

ria
l.u

ni
ca

n.
es



Jorge M. Uribe Gil

72

each portfolio return using different loads. In principle, any firm might 
belong to any portfolio, and all of them are equally important in the es-
timation of the aggregate shock. Hence, it is natural to favor the equal-
ly-weighted scheme over other asymmetric alternatives, but note that 
the asymmetric scheme would be more appropriate when macro-varia-
bles are blended with financial or other kind of variables.

3.4. Data

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-
to-market value, as provided by Kenneth French on his website17. Those 
portfolios have been widely used in the literature examining multi-fac-
tor asset pricing models (Cochrane, 2005), and can be seen as a good 
summary of whole market dynamics. Moreover, Sentana (2004) justifies 
the use of portfolios for extracting the subjacent factors by proving that 
many portfolios converge to the factors as the number of assets increa-
ses. Clearly this does not rule out the fact that other possibilities might 
be explored in future research, such as the use of less well-known port-
folios constructed on an industry sector basis, or using different factors 
to organize the series.

Our data set spans from 1 July 1926 to 30 September 2014, which gives 
a total of 23,321 observations. More details on the portfolio formation 
are provided in Davis, Fama and French (2000) and on Kenneth French’s 
web page.

In section 5.3 we estimate a vector autoregressive (VAR) model. The 
data for this exercise were taken from the web page of the Federal Re-
serve Saint Louis (FRED: http://research.stlouisfed.org/). Specifically, we 
use the Industrial Production Index; the total number of employees in 
the non-farm sector; Real Personal Consumption Expenditures in 2009 
prices; the Personal Consumption Expenditures Price Index; the New 
Orders Index known as NAPM-NOI; Average Weekly Hours of Produc-
tion and Nonsupervisory Employees for the Manufacturing sector (the 
all-sector index is not available from the beginning of our sample); 

17.  http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Effective Federal Funds Rate; M2 Money Stock in billions of dollars 
and Standard and Poor’s 500 index. Each series was taken seasonally 
adjusted where necessary, and the sample spans from February 1959 to 
September 2014, which is the longest period possible using these series. 

3.5. Results 

In this section we present our uncertainty index (section A); we compare 
it with some of the main macro-uncertainty indicators (section B); we 
analyze the relationship between our proposal and some real and finan-
cial variables, including policy variables (section C); and, we perform 
several robustness exercises (section D). 

A. Uncertainty index 

We estimate the GDFM using six static factors and one dynamic factor, 
which are optimal following the criteria proposed by Bai and Ng (2002) 
and Bai and Ng (2007), respectively. Based on these estimates we cons-
truct the uncertainty index by aggregating the conditional volatilities of 
the idiosyncratic residual series as explained in section 3.

The daily uncertainty index is presented in Figure 3.1, together with 
the recession dates in the United States, as indicated by the NBER on its 
web site. The index peaks coincide with well-documented episodes of 
uncertainty in the financial markets and the real economy, including the 
Great Depression, the recession of 1937-38 in the US, Black Monday in 
October 1987, the bursting of the dot-com bubble and the Great Reces-
sion 2007-2009.

Recession dates, such as August 1929 to March 1933, May 1937 to June 
1938 and December 2007 to June 2009, clearly correlate with the amount 
of uncertainty in the market, although interestingly, not all recessionary 
episodes are preceded or followed by a notable uncertainty shock. For 
example, the uncertainty peak in the index corresponding to March 2000 
appears one year before the economic contraction in March 2001. Likewi-
se, several recessions during the decades of the 40s, 50s and 60s do not 
seem to be associated with episodes of high or even increasing uncertainty. 
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More importantly, uncertainty in the stock markets appears to correlate 
not only with the volatility of fundamentals (i.e., recessions), but also 
with episodes of over-valuation or bubbles in the market, as discussed 
for example in Yuhn et al. (2015), namely, those of 1987 (Black Mon-
day), 2000 (information technology boom) and 2007 (housing market 
boom). Indeed, these episodes may well be the main drivers of uncer-
tainty (even more so than the recessions), at least in the last part of our 
sample. Many such episodes have been identified in the recent literature 
and they constitute a particularly active area of current research within 
the financial econometrics field (Phillips and Yu, 2011; Phillips et al., 
2011; Homm and Breitung, 2012; Phillips et al., 2015; Anderson and 
Brooks, 2014) and even outside economics, especially in the application 
of statistical mechanics tools to financial problems (see Zhou and Sor-
nette (2003), Sornette and Zhou (2004), Sornette et al. (2009), Budinski-
Petković et al. (2014) and references therein). 

The observation above can be rationalized under a framework of agents 
with heterogeneous beliefs and bounded rationality as the one proposed 
by Hommes and Wagener (2009). In their model, there is an endogenous 
switching mechanism, governing the proportion of financial investors 
who follow a ‘perfect foresight’ forecasting rule (driven by market fun-
damentals), or alternative linear heuristics, such as ‘biased beliefs’ and 
‘past trends’. Instabilities may follow after an increasing in the number 
of non-fundamentalist traders in the market and hence, produce the 
apparition of persistent bubbles. Uncertainty, as measured by our index, 
is naturally related to this possibility. That is, in high uncertainty regi-
mes more agents may choose to switch to a non-fundamentalist rule of 
prediction, driving the prices away from their fundamental path. 

In Table 3.1 we report descriptive statistics for a monthly (end-of-the-
month) version of the uncertainty index. We construct this monthly 
index to facilitate comparisons with other macro-uncertainty proxies. 
The skewness, kurtosis, persistence and half-life of the shocks for the 
full sample and for two sub-samples are presented (January 1927 to 
March 1940 and April 1940 to September 2014). This break date was 
chosen after testing for multiple breaks (Bai and Perron, 1998, 2003) in 
the autoregressive model of the shocks persistence (AR(1) with drift)18. 

18.  See Perron (2006) for a survey of this literature.
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Figure 3.1: Uncertainty Index: Jan-06-27 to Sept-30-14

The first 153 observations have been discarded and the last 153 have been replaced by 
calculations using a (scaled) one-sided filter version of the GDFM (Forni et al., 2005). 
The reason for doing this is that original GDFM are biased at the beginning and at the 
end of the sample, because they make use of the estimation of the variance- covariance 
matrices of order 
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Figure 3.1: Uncertainty Index: Jan-06-27 to Sept-30-14. The first 153 observations have 
been discarded and the last 153 have been replaced by calculations using a (scaled) one-sided 
filter version of the GDFM (Forni et al., 2005). The reason for doing this is that original 
GDFM are biased at the beginning and at the end of the sample, because they make use of 
the estimation of the variance- covariance matrices of order	√]. Grey areas correspond to 
NBER recession dates (peak-to-trough), including the peaks and troughs. The horizontal line 
corresponds to the 95 percentile of the empirical distribution of the index from Jan-40 
onwards. The original measure is rescaled by a factor of 100 in the plot. 

 

Table 3.1. Summary statistics of the uncertainty index in two sub-samples 
 

  Sample period 

Statistic Jan 1927-Sept 
2014 

Jan 1927-Mar 
1940 

Apr 1940-Sept 
2014 

Skewness 1.60 0.32 1.70 
Kurtosis 4.74 1.97 6.62 
Persistence, AR(1) 0.993 0.963 0.978 
Half-life: months (years) 101 (8.42) 18.3 (1.53) 31.9 (2.65) 

 

Table 3.1 shows that using the full sample to calculate persistence can lead to a 
spurious estimation of the summary statistics. Indeed, the sample distribution 
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of the uncertainty index in the two sub-samples looks quite distinct. In the 
first part of the sample, persistence is smaller and, therefore, the ‘shocks’ 
disappear in a shorter period of time (1.53 years) than is the case in the second 
sub-sample (2.65 years). There are fewer observations distant from the mean 
and, lastly, the distribution presents a slightly asymmetric behavior (skewness 
equal to 0.32). In contrast, even when the second part of the estimation 
presents shocks of a smaller magnitude (Figure 3.1), the distribution that 
characterizes them tends to generate a higher number of ‘outliers’ (kurtosis 
equal to 6.92) and they are more likely to be above than below the mean (1.7 is 
the asymmetric coefficient). This behavior may be interpreted as uncertainty 
showing some degree of inconsistency across time, which is related to the 
knightian framework, for which uncertainty is indeed understood as a non-
predictable state.  

Our estimations of persistence of macro-uncertainty are lower than those 
reported elsewhere, for example, those provided by JLN. The latter estimate a 
persistence of 53.58 months, while in the second part of our sample our 
estimation is of 31.9 months (41.2 months from Jan. 1960 to Sept. 2014). This 
could be interpreted as evidence that financial-uncertainty shocks are not as 
persistent as macro-uncertainty shocks. Nevertheless, it should be noted that 
JLN also report the persistence and half-lives of frequently used proxies for 
uncertainty, including the VXO and the cross-sectional standard deviation of 
the returns. They show that these uncertainty-related measures are far less 
persistent than are macro-uncertainty shocks (with half-lives of 4.13 and 1.92 
months). Thus, the half-life and persistence of our uncertainty measure are 
more similar to those of the macro-uncertainty shocks than to those derived 
from the volatility measures.  

B. Correlations with macro-uncertainty indexes  

The closest measure of uncertainty to ours, methodologically speaking, is the 
uncertainty index proposed by JLN, although their proposal might be 
interpreted more directly as a ‘macro-uncertainty’ indicator, given its emphasis 
on economic variables as opposed to purely financial ones. Given these 
circumstances, it seems to be a good candidate with which to compare our 
index while seeking to identify any convergent and divergent paths. In order to 
compare the indexes, we first reduce our sample to fit theirs. Our resampled 

. Grey areas correspond to NBER recession dates (peak-to-trough), 
including the peaks and troughs. The horizontal line corresponds to the 95 percentile 
of the empirical distribution of the index from Jan-40 onwards. The original measure 
is rescaled by a factor of 100 in the plot.
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of the uncertainty index in the two sub-samples looks quite distinct. In the 
first part of the sample, persistence is smaller and, therefore, the ‘shocks’ 
disappear in a shorter period of time (1.53 years) than is the case in the second 
sub-sample (2.65 years). There are fewer observations distant from the mean 
and, lastly, the distribution presents a slightly asymmetric behavior (skewness 
equal to 0.32). In contrast, even when the second part of the estimation 
presents shocks of a smaller magnitude (Figure 3.1), the distribution that 
characterizes them tends to generate a higher number of ‘outliers’ (kurtosis 
equal to 6.92) and they are more likely to be above than below the mean (1.7 is 
the asymmetric coefficient). This behavior may be interpreted as uncertainty 
showing some degree of inconsistency across time, which is related to the 
knightian framework, for which uncertainty is indeed understood as a non-
predictable state.  

Our estimations of persistence of macro-uncertainty are lower than those 
reported elsewhere, for example, those provided by JLN. The latter estimate a 
persistence of 53.58 months, while in the second part of our sample our 
estimation is of 31.9 months (41.2 months from Jan. 1960 to Sept. 2014). This 
could be interpreted as evidence that financial-uncertainty shocks are not as 
persistent as macro-uncertainty shocks. Nevertheless, it should be noted that 
JLN also report the persistence and half-lives of frequently used proxies for 
uncertainty, including the VXO and the cross-sectional standard deviation of 
the returns. They show that these uncertainty-related measures are far less 
persistent than are macro-uncertainty shocks (with half-lives of 4.13 and 1.92 
months). Thus, the half-life and persistence of our uncertainty measure are 
more similar to those of the macro-uncertainty shocks than to those derived 
from the volatility measures.  

B. Correlations with macro-uncertainty indexes  

The closest measure of uncertainty to ours, methodologically speaking, is the 
uncertainty index proposed by JLN, although their proposal might be 
interpreted more directly as a ‘macro-uncertainty’ indicator, given its emphasis 
on economic variables as opposed to purely financial ones. Given these 
circumstances, it seems to be a good candidate with which to compare our 
index while seeking to identify any convergent and divergent paths. In order to 
compare the indexes, we first reduce our sample to fit theirs. Our resampled 

Table 3.1. Summary statistics of the uncertainty index in two sub-samples

  Sample period

Statistic Jan 1927- 
Sept 2014

Jan 1927- 
Mar 1940

Apr 1940- 
Sept 2014

Skewness 1.60 0.32 1.70
Kurtosis 4.74 1.97 6.62

Persistence, AR(1) 0.993 0.963 0.978

Half-life: months (years) 101 (8.42) 18.3 (1.53) 31.9 (2.65)

Table 3.1 shows that using the full sample to calculate persistence can 
lead to a spurious estimation of the summary statistics. Indeed, the sam-
ple distribution of the uncertainty index in the two sub-samples looks 
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quite distinct. In the first part of the sample, persistence is smaller and, 
therefore, the ‘shocks’ disappear in a shorter period of time (1.53 years) 
than is the case in the second sub-sample (2.65 years). There are fewer 
observations distant from the mean and, lastly, the distribution presents 
a slightly asymmetric behavior (skewness equal to 0.32). In contrast, 
even when the second part of the estimation presents shocks of a smaller 
magnitude (Figure 3.1), the distribution that characterizes them tends 
to generate a higher number of ‘outliers’ (kurtosis equal to 6.92) and 
they are more likely to be above than below the mean (1.7 is the as-
ymmetric coefficient). This behavior may be interpreted as uncertainty 
showing some degree of inconsistency across time, which is related to 
the knightian framework, for which uncertainty is indeed understood as 
a non-predictable state. 

Our estimations of persistence of macro-uncertainty are lower than tho-
se reported elsewhere, for example, those provided by JLN. The latter 
estimate a persistence of 53.58 months, while in the second part of 
our sample our estimation is of 31.9 months (41.2 months from Jan. 
1960 to Sept. 2014). This could be interpreted as evidence that financial-
uncertainty shocks are not as persistent as macro-uncertainty shocks. 
Nevertheless, it should be noted that JLN also report the persistence and 
half-lives of frequently used proxies for uncertainty, including the VXO 
and the cross-sectional standard deviation of the returns. They show 
that these uncertainty-related measures are far less persistent than are 
macro-uncertainty shocks (with half-lives of 4.13 and 1.92 months). 
Thus, the half-life and persistence of our uncertainty measure are more 
similar to those of the macro-uncertainty shocks than to those derived 
from the volatility measures. 

B. Correlations with macro-uncertainty indexes 

The closest measure of uncertainty to ours, methodologically speaking, 
is the uncertainty index proposed by JLN, although their proposal might 
be interpreted more directly as a ‘macro-uncertainty’ indicator, given 
its emphasis on economic variables as opposed to purely financial ones. 
Given these circumstances, it seems to be a good candidate with which 
to compare our index while seeking to identify any convergent and 
divergent paths. In order to compare the indexes, we first reduce our 
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sample to fit theirs. Our resampled data start in January 1960 and end 
in May 201319. After so doing, we recalculate our uncertainty index by 
aiming to use the same dates as those employed by JLN. Second, we 
take the end-of-the-month value of our index, to resemble their index 
frequency (monthly). 

The results are reported in Figure 3.2. The shaded areas in the plot co-
rrespond to periods of ‘high’ correlation. The Pearson’s correlation for 
the full sample between the indexes is barely above 22%, which could 
be interpreted, at first glance, to indicate that different forces lie behind 
the macro-uncertainty and the financial-uncertainty. However, this co-
rrelation seems very volatile. We also calculate moving-window corre-
lations of five years during the sample and here our findings are more 
informative than the static correlation. The correlation remains above 
50% for most of the period (left panel). Moreover, for the last part of 
the sample (from around February 2009 to May 2013), this correlation 
remained above 90%, revealing practically no difference in the indexes’ 
dynamics. Even higher values were reached during the 70s and we ob-
serve correlations between 40 and 80% in the period from May 1994 
to February 2003 (right panel). There are also two periods in which this 
correlation became negative, specifically from January 1992 to August 
1993 and December 2005 to September 2007. After these short phases, 
the indexes started to move in the same direction once again, and in 
both cases with a stronger impetus than before. 

Finally, an analysis of the levels of the uncertainty indexes shows them 
to be particularly different during the periods from March 1979 to May 
1983 and July 1998 to January 2003. Our intuition regarding the ex-
planation for these divergent paths during these periods is that while 
uncertainty in the financial markets is driven significantly by bubble 
episodes, such episodes are not always the drivers of the recessions in 
the real economy and, therefore, cannot be related on a one-to-one 
basis with macro-uncertainty. Thus, the financial-uncertainty index 
highlights uncertainty associated with bubble episodes (for instance, 
during the dot.com collapse) that did not materialize as strong recessio-
nary phases in the real economy and which, therefore, are not captured 

19.  The JLN-index is publicly available for this period on Sidney Ludvigson’s web page: http://www.econ.
nyu.edu/user/ludvigsons/
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by the JLN-uncertainty index. In the same vein, recessionary episodes 
not directly related to the financial market (such as those from 1979 to 
1983) are not especially pronounced in our financial-uncertainty indi-
cator. 

Figure 3.2: Uncertainty Comparisons I

The solid line represents our Uncertainty Index (U), while the dotted line represents the 
Jurado-Ludvigson-Ng’s Index (JLN) with forecast horizon 
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data start in January 1960 and end in May 2013 19 . After so doing, we 
recalculate our uncertainty index by aiming to use the same dates as those 
employed by JLN. Second, we take the end-of-the-month value of our index, 
to resemble their index frequency (monthly).  

The results are reported in Figure 3.2. The shaded areas in the plot correspond 
to periods of ‘high’ correlation. The Pearson’s correlation for the full sample 
between the indexes is barely above 22%, which could be interpreted, at first 
glance, to indicate that different forces lie behind the macro-uncertainty and 
the financial-uncertainty. However, this correlation seems very volatile. We 
also calculate moving-window correlations of five years during the sample and 
here our findings are more informative than the static correlation. The 
correlation remains above 50% for most of the period (left panel). Moreover, 
for the last part of the sample (from around February 2009 to May 2013), this 
correlation remained above 90%, revealing practically no difference in the 
indexes’ dynamics. Even higher values were reached during the 70s and we 
observe correlations between 40 and 80% in the period from May 1994 to 
February 2003 (right panel). There are also two periods in which this 
correlation became negative, specifically from January 1992 to August 1993 
and December 2005 to September 2007. After these short phases, the indexes 
started to move in the same direction once again, and in both cases with a 
stronger impetus than before.  

Finally, an analysis of the levels of the uncertainty indexes shows them to be 
particularly different during the periods from March 1979 to May 1983 and 
July 1998 to January 2003. Our intuition regarding the explanation for these 
divergent paths during these periods is that while uncertainty in the financial 
markets is driven significantly by bubble episodes, such episodes are not 
always the drivers of the recessions in the real economy and, therefore, cannot 
be related on a one-to-one basis with macro-uncertainty. Thus, the financial-
uncertainty index highlights uncertainty associated with bubble episodes (for 
instance, during the dot.com collapse) that did not materialize as strong 
recessionary phases in the real economy and which, therefore, are not 
captured by the JLN-uncertainty index. In the same vein, recessionary 
episodes not directly related to the financial market (such as those from 1979 
to 1983) are not especially pronounced in our financial-uncertainty indicator.  

	
19  The JLN-index is publicly available for this period on Sidney Ludvigson’s web page: 
http://www.econ.nyu.edu/user/ludvigsons/ 
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Figure 3.2: Uncertainty Comparisons I. The solid line represents our Uncertainty Index 
(U), while the dotted line represents the Jurado-Ludvigson-Ng’s Index (JLN) with forecast 
horizon ℎ = 1, both from Apr-65 to May-13. In the panel on the left, the shaded areas 
correspond to correlation periods above 0.5. In the panel on the right, the shaded areas are 
the actual correlations. Correlations were calculated using rolling windows of five years. 

 

We also compare our index with the VIX, another frequent proxy for macro- 
and financial-uncertainty (Figure 3.3), but which is only available after January 
1990. We found a correlation of 65.2% using the full sample. The dynamics of 
the VIX and the uncertainty index appear to be largely similar with a 
correlation above 70% for the last ten years of the sample. However, these 
dynamics are considerably different (considering the correlation levels) for the 
first ten years of the sample. Here again, the results could be linked to the fact 
that volatility as a risk measure is inversely related to the presence of over-
valuation in the stock markets, whereas over-valuation appears to be positively 
related to uncertainty.  

 
Figure 3.3: Uncertainty Comparisons II. The solid line represents our uncertainty index 
(U), while the dotted line represents the VIX, both from Jan-90 to Sept-14. Shaded areas 
correspond to the five-year rolling correlations and, therefore, start only after Jan-95. 
Correlations are measured along the right axis. 
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, both from Apr-65 
to May-13. In the panel on the left, the shaded areas correspond to correlation periods 
above 0.5. In the panel on the right, the shaded areas are the actual correlations. Cor-
relations were calculated using rolling windows of five years.

We also compare our index with the VIX, another frequent proxy for 
macro- and financial-uncertainty (Figure 3.3), but which is only availa-
ble after January 1990. We found a correlation of 65.2% using the full 
sample. The dynamics of the VIX and the uncertainty index appear to 
be largely similar with a correlation above 70% for the last ten years of 
the sample. However, these dynamics are considerably different (consi-
dering the correlation levels) for the first ten years of the sample. Here 
again, the results could be linked to the fact that volatility as a risk 
measure is inversely related to the presence of over-valuation in the 
stock markets, whereas over-valuation appears to be positively related 
to uncertainty. 
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Figure 3.3: Uncertainty Comparisons II

The solid line represents our uncertainty index (U), while the dotted line represents the 
VIX, both from Jan-90 to Sept-14. Shaded areas correspond to the five-year rolling 
correlations and, therefore, start only after Jan-95. Correlations are measured along 
the right axis.

C. VAR dynamics: Uncertainty, economic activity and policy variables 

In this section, we explore the dynamic relationship between our uncer-
tainty index and some macroeconomic and financial variables. To do so, 
we use the model proposed by Christiano et al. (2005). This model has 
been widely studied in the literature and is, therefore, useful for compa-
ring our uncertainty estimates. The model is given in reduced form by:
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Figure 3.4: Economic Dynamics under Uncertainty. We use a VAR (12) comprising 11 
variables. The axes are in percentages but the Federal Funds Rate is in basic points. The 
figure shows the reaction of the variables to an unexpected increment of uncertainty. The 
estimation period runs from February 1959 to September 2014. Confidence bands (86%) are 
calculated using bootstrapping techniques as explained in Efron and Tibshirani (1993). The 
variables are defined as: IP: Industrial Production Index, E: Employment, NO: New Orders, 
C: Consumption, R: Federal Funds Rate, SP: Standard and Poor’s 500. 
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where, 
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 refers to the fastest variables, which are assumed to re-
spond contemporaneously to the policy innovation, such as: the Stock 
Market Index and M2. Finally, we place our Uncertainty Index U in last 
position (as do JLN and Bloom, 2009)20. We estimate a VAR with 12 lags, 

20.  See section 3.4 for a more detailed description of the data used in this section.
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as opposed to the four quarters used in Christiano et al. (2005) to cover the 
same time-span. All the variables enter in log-levels, with the exceptions 
of the Federal Funds Rate and Uncertainty, which enter in original units, 
and M2, which enters in growth rates. We recover the structural innova-
tions by means of a Cholesky factorization of the variance-covariance 
matrix. As is well known, the Cholesky decomposition implies a certain 
ordering of the set of variables, depending on whether they react or not to 
other variables contemporaneously. Following Christiano et al. (2005), the 
variables are sorted from more exogenous to more endogenous as stated 
above. The impulse response functions are presented in Figure 3.4. 

The reactions of Production and Employment to uncertainty shocks 
have been studied elsewhere, for example in JLN and Bloom (2009). 
The former report very similar results to ours even when using their 
uncertainty index, which requires considerably more information, pro-
cessing time and modeling design than are required by our index (see 
also section 5.4). Production reacts negatively to uncertainty increments 
and the persistence of the shock extends beyond the two-year horizon. 
In the sixth months after the innovation, 10.5% of the forecast error of 
the production series is explained by the uncertainty shock, and up to 
23.8% is explained 12 months on21.

Analogously, although at a smaller magnitude, employment decreases 
following a positive uncertainty shock and the impact persists for two and 
a half years (that is, six months more than in the case of production)22. 
Neither we nor JLN find any evidence supporting the ‘rebound’ effect 
proposed by Bloom (2009) in the case of production. However, the re-
bound effect is evident when analyzing the New Orders variable, which 
is a better proxy for current investment. First, new orders decrease in the 
face of uncertainty –a negative impact that lasts approximately eight 
months, but there is a statistically significant rebound effect in months 
16 to 19. The reason why a similar effect is not detected in the produc-
tion dynamics could be that following the original uncertainty shocks, 
negative feedback is obtained from consumption and expected demand. 

21.  See Table 3.2 in the Appendix.
22.  JLN report an impact of their uncertainty shock on production that persists for more than 60 months. 
We also find that the IRF tends to stabilize at a lower level following a shock, as can be seen in Figure 
3.4, although this is only true for the average level. Note that the bootstrapped confidence intervals of our 
exercise prevent us from fixing the effects beyond three years as statistically different from zero. 
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Figure 3.4: Economic Dynamics under Uncertainty. 

We use a VAR (12) comprising 11 variables. The axes are in percentages but the Fed-
eral Funds Rate is in basic points. The figure shows the reaction of the variables to 
an unexpected increment of uncertainty. The estimation period runs from February 
1959 to September 2014. Confidence bands (86%) are calculated using bootstrapping 
techniques as explained in Efron and Tibshirani (1993). The variables are defined as: 
IP: Industrial Production Index, E: Employment, NO: New Orders, C: Consumption, R: 
Federal Funds Rate, SP: Standard and Poor’s 500.
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C. VAR dynamics: Uncertainty, economic activity and policy variables  

In this section, we explore the dynamic relationship between our uncertainty 
index and some macroeconomic and financial variables. To do so, we use the 
model proposed by Christiano et al. (2005). This model has been widely 
studied in the literature and is, therefore, useful for comparing our uncertainty 
estimates. The model is given in reduced form by: 

€) = ´(()€){i + G),     (3.9) 

where, €) = [€i)	, 2	, €ã), @	]′ is a matrix (] × A) containing the A  column-
vectors of the model. €i) contains slow-moving variables which do not react 
contemporaneously to a monetary policy shock: Production, Employment, 
Consumption, Inflation, New Orders, Wages and Labor. 2  refers to the 
Federal Funds Rate, understood as the monetary policy instrument. €ã) refers 
to the fastest variables, which are assumed to respond contemporaneously to 
the policy innovation, such as: the Stock Market Index and M2. Finally, we 
place our Uncertainty Index U in last position (as do JLN and Bloom, 2009)20. 
We estimate a VAR with 12 lags, as opposed to the four quarters used in 
Christiano et al. (2005) to cover the same time-span. All the variables enter in 
log-levels, with the exceptions of the Federal Funds Rate and Uncertainty, 
which enter in original units, and M2, which enters in growth rates. We 
recover the structural innovations by means of a Cholesky factorization of the 
variance-covariance matrix. As is well known, the Cholesky decomposition 
implies a certain ordering of the set of variables, depending on whether they 
react or not to other variables contemporaneously. Following Christiano et al. 
(2005), the variables are sorted from more exogenous to more endogenous as 
stated above. The impulse response functions are presented in Figure 3.4.  

The reactions of Production and Employment to uncertainty shocks have 
been studied elsewhere, for example in JLN and Bloom (2009). The former 
report very similar results to ours even when using their uncertainty index, 
which requires considerably more information, processing time and modeling 
design than are required by our index (see also section 5.4). Production reacts 
negatively to uncertainty increments and the persistence of the shock extends 
beyond the two-year horizon. In the sixth months after the innovation, 10.5% 
of the forecast error of the production series is explained by the uncertainty 

	
20 See section 3.4 for a more detailed description of the data used in this section. 
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shock, and up to 23.8% is explained 12 months on21. 
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estimation period runs from February 1959 to September 2014. Confidence bands (86%) are 
calculated using bootstrapping techniques as explained in Efron and Tibshirani (1993). The 
variables are defined as: IP: Industrial Production Index, E: Employment, NO: New Orders, 
C: Consumption, R: Federal Funds Rate, SP: Standard and Poor’s 500. 
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Although there are theoretical claims explicitly linking uncertainty 
shocks and consumption (see, for instance, Romer, 1990), little empi-
rical evidence has been presented to document this relationship. Here, 
we find that after an increment in uncertainty, consumption is severely 
affected (indeed, more or less in the same proportion as production, and 
more so than employment). However, the shock tends to disappear more 
quickly (1.3 years before the upper confidence band reaches zero), but 
it is also apparent that it causes the series to stabilize at a lower level 
relative to that of the production series.

In line with the theory, financial prices, such as the stock market in-
dex, are significantly affected by uncertainty in the financial markets. 
Indeed, the marked fall in the market index in the face of uncertainty, 
and the stabilization of the sequence at a lower level, is consistent with 
the theoretical discussion in Bansal and Yaron (2004). Basically, the in-
tuition is tied to the fact that markets do not like uncertainty and after 
an increase in uncertainty, the discount of the expected cash flows is 
greater, causing the market to reduce the price of the stock. 

As can be seen from Table 3.2 in the Appendix, a variance decompo-
sition of the forecast errors of the series confirms the importance of 
uncertainty as a driver of the economy’s dynamics. One year after the 
original structural innovation, it accounts for 23.8% of the variance 
in production, 19.5% of new orders, 13.2% of employment and 15.9% 
of the stock market prices. In all cases, it is the second or third largest 
source of variation. It also affects other series, albeit to a lesser degree, 
including consumption (7.6%) and Federal Funds (4.7%), being in these 
cases the fourth or fifth cause of variation among the eleven variables 
considered. 

Lastly, the Federal Funds Rate also seems to be sensitive to uncertainty. 
In the face of an uncertainty shock the Federal Reserve tends to reduce 
the interest rate (thereby confirming that the reduction in equity pri-
ces is due to uncertainty and not to possible confounding interest mo-
vements). The reduction is particularly persistent during the first year 
before it begins to disappear. Nevertheless, the uncertainty shock only 
accounts for between 4 and 5% of the total variation in the Fed rate 
according to the variance decomposition.
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Figure 3.5: Policy intervention and uncertainty
We use a VAR (12) comprising 11 variables. The axes are in basic points and units, 
respectively. We replicate the left panel from Figure 3.5 and we multiply by minus 
one the response to an increase in the Federal Funds Rate, to be consistent with the 
text. The estimation period runs from February 1959 to September 2014. Confidence 
bands (86%) are calculated using bootstrapping techniques as explained in Efron and 
Tibshirani (1993). 
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Analogously, although at a smaller magnitude, employment decreases 
following a positive uncertainty shock and the impact persists for two and a 
half years (that is, six months more than in the case of production)22. Neither 
we nor JLN find any evidence supporting the ‘rebound’ effect proposed by 
Bloom (2009) in the case of production. However, the rebound effect is 
evident when analyzing the New Orders variable, which is a better proxy for 
current investment. First, new orders decrease in the face of uncertainty – a 
negative impact that lasts approximately eight months, but there is a 
statistically significant rebound effect in months 16 to 19. The reason why a 
similar effect is not detected in the production dynamics could be that 
following the original uncertainty shocks, negative feedback is obtained from 
consumption and expected demand.  

Although there are theoretical claims explicitly linking uncertainty shocks and 
consumption (see, for instance, Romer, 1990), little empirical evidence has 
been presented to document this relationship. Here, we find that after an 
increment in uncertainty, consumption is severely affected (indeed, more or 
less in the same proportion as production, and more so than employment). 
However, the shock tends to disappear more quickly (1.3 years before the 
upper confidence band reaches zero), but it is also apparent that it causes the 
series to stabilize at a lower level relative to that of the production series. 

In line with the theory, financial prices, such as the stock market index, are 
significantly affected by uncertainty in the financial markets. Indeed, the 
marked fall in the market index in the face of uncertainty, and the stabilization 
of the sequence at a lower level, is consistent with the theoretical discussion in 
Bansal and Yaron (2004). Basically, the intuition is tied to the fact that markets 
do not like uncertainty and after an increase in uncertainty, the discount of the 
expected cash flows is greater, causing the market to reduce the price of the 
stock.  

As can be seen from Table 3.2 in the Appendix, a variance decomposition of 
the forecast errors of the series confirms the importance of uncertainty as a 
driver of the economy’s dynamics. One year after the original structural 
innovation, it accounts for 23.8% of the variance in production, 19.5% of new 

	
22 JLN report an impact of their uncertainty shock on production that persists for more than 
60 months. We also find that the IRF tends to stabilize at a lower level following a shock, as 
can be seen in Figure 3.4, although this is only true for the average level. Note that the 
bootstrapped confidence intervals of our exercise prevent us from fixing the effects beyond 
three years as statistically different from zero.  
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orders, 13.2% of employment and 15.9% of the stock market prices. In all 
cases, it is the second or third largest source of variation. It also affects other 
series, albeit to a lesser degree, including consumption (7.6%) and Federal 
Funds (4.7%), being in these cases the fourth or fifth cause of variation among 
the eleven variables considered.  

Lastly, the Federal Funds Rate also seems to be sensitive to uncertainty. In the 
face of an uncertainty shock the Federal Reserve tends to reduce the interest 
rate (thereby confirming that the reduction in equity prices is due to 
uncertainty and not to possible confounding interest movements). The 
reduction is particularly persistent during the first year before it begins to 
disappear. Nevertheless, the uncertainty shock only accounts for between 4 
and 5% of the total variation in the Fed rate according to the variance 
decomposition. 

  

Figure 3.5: Policy intervention and uncertainty. We use a VAR (12) comprising 11 
variables. The axes are in basic points and units, respectively. We replicate the left panel 
from Figure 3.5 and we multiply by minus one the response to an increase in the Federal 
Funds Rate, to be consistent with the text. The estimation period runs from February 1959 
to September 2014. Confidence bands (86%) are calculated using bootstrapping techniques 
as explained in Efron and Tibshirani (1993).  
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Figure 3.5, a loosening monetary policy does affect uncertainty. The effects are 
expected to occur with a lag of one year, to last for a further year, and after 
this period, to disappear. This finding is in line with similar effects 
documented by Bekaert et al. (2013), although they use non-corrected 
uncertainty measures and an alternative strategy to differentiate it from risk.  
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The Cholesky identification strategy allows us to distinguish the effect 
in the reverse direction; in other words, it enables us to answer the ques-
tion: Does an expansionary monetary policy decrease uncertainty? As 
can be observed in Figure 3.5, a loosening monetary policy does affect 
uncertainty. The effects are expected to occur with a lag of one year, to 
last for a further year, and after this period, to disappear. This finding is 
in line with similar effects documented by Bekaert et al. (2013), although 
they use non-corrected uncertainty measures and an alternative strate-
gy to differentiate it from risk.  Our results in this direction add to the 
research field by exploring the relationship between policy intervention 
and uncertainty. However, the effects are small in magnitude (see Table 
3.2 in the Appendix), with between 2 and 6% being due to the monetary 
policy innovations. 

Finally, in Figure 3.6, using our proposed index and JLN’s index, we 
compare the responses of the variables facing uncertainty. However, the 
qualitative and quantitative results reported above do not vary signifi-
cantly depending on the uncertainty measure used.
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Figure 3.6: Economic Dynamics under Uncertainty. Comparison of the JLN and 
U Indexes
We use a VAR (12) comprising 11 variables. The figure displays the reaction of the 
variables to an unexpected increment in two standardized uncertainty measures, the U 
index (solid line) and the JLN index (dotted line). The estimation period for the U index 
runs from February 1959 to September 2014 whereas the JLN index is only publicly 
available from July 1960 to May 2013 on one of its author’s web pages; therefore, we 
use this latter period to estimate the IRFs in this case. The variables are defined as: 
IP: Industrial Production Index, E: Employment, NO: New Orders, C: Consumption, R: 
Federal Funds Rate, SP: SP500.
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3.6. Robustness

We perform several robustness exercises varying the econometric metho-
dology employed to extract the idiosyncratic component. 

Figure 3.7: Robustness exercises
The uncertainty index using GDFM (solid line) is compared with different alternatives: 
a DFM (top left), a one-sided filter version of the GDFM (top right), a recursive algo-
rithm (bottom left) and a conditional volatility measure of the original series (bottom 
right). All the indexes have been standardized to make proper comparisons.

We estimate the uncertainty index using DFM instead of GDFM; we also 
use the ‘one-sided’ filter version of the GDFM proposed by Forni et al. 
(2005) as opposed to the two-sided original GDFM, for the full sample; 
we estimate the index as the stochastic volatility without using any 
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factor model to extract the idiosyncratic component and, finally, we 
estimate the idiosyncratic component in a recursive fashion, recalculat-
ing each model with rolling windows of 80 days (approx. one quarter). 
The latter approach speaks directly about parameter stability. The main 
results are summarized in Figure 3.7.

In general the uncertainty index behaves in a very similar fashion, re-
gardless of the factor methodology used to extract the idiosyncratic 
components of the series. Nor does it change when we use recursive 
estimations. Nevertheless, its behavior is considerably different to that 
of the stochastic volatility of the original series. This, however, is not 
surprising and is indeed in-line with previous findings in the literature. 
Volatility measures tend to overestimate the uncertainty of the economy 
because they confuse uncertainty with risk or risk aversion.

3.7. Conclusions

We propose an index of time-varying financial uncertainty. The cons-
truction of this index is relatively simple as it does not rely on excessive 
data mining devices nor does it have to satisfy demanding information 
requirements. We construct the index on a daily basis, for the United 
States’ economy between 1927 and 2014. As such, the index can be 
used to perform event studies, that is, to evaluate the impact of policy 
treatments on economic uncertainty, thanks to the higher frequency it 
offers compared to other proposals.

Our estimations allow us to identify several periods of uncertainty, some 
of which coincide with well-documented episodes, including major re-
cessions, wars, and political upheavals. Others, especially those occu-
rring in more recent decades, are more closely associated with bubble 
regimes in the stock market. We also document a change in the persis-
tence of uncertainty between 1940 and 2014 compared to that recorded 
between 1927 and 1940. Current uncertainty is more persistent and is 
plagued with more extreme observations, although current periods tend 
to be smaller in magnitude than earlier periods. 
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We discuss the circumstances under which our index is a better measu-
re of financial uncertainty and when it is in agreement with measures 
available elsewhere. We conclude that significant departures between 
macro-uncertainty and financial uncertainty can be expected during 
bubble episodes and we present evidence of this.

However, the economic dynamics that we document here (using a VAR 
model) are consistent with theoretical expectations and previous em-
pirical studies (when available). For example, we find that after an 
uncertainty shock, production and employment react negatively and 
the effects of the shock tend to disappear slowly. We also present no-
vel empirical evidence regarding the negative effect of uncertainty on 
consumption, inventory investment (including overshooting) and stock 
market prices. 

Finally, we explore the relationship between uncertainty and policy va-
riables. We find that there is indeed a relation between the reference 
interest rate in the economy and uncertainty. The interest rate tends 
to decrease in the face of an uncertainty shock, while the uncertainty 
shock decreases following a loosening of the monetary policy position, 
with a lag of one-year. However, this latter effect is very small in terms 
of accounting for the total variation of the forecast errors of the uncer-
tainty variable. This result raises questions regarding the capability of 
the central banks to combat uncertainty by means of traditional mone-
tary policy.

Appendix to Chapter 3

In the estimations we make use of some routines from the web page of 
Serena Ng (http://www.columbia.edu/~sn2294/) to estimate the DFM, 
and to select the optimal number of static and dynamic factors. To esti-
mate the GDFM, both, one-side and two-sides filters, we use codes from 
the web page of Mario Forni. (http://morgana.unimore.it/forni_mario/
matlab.htm). To estimate stochastic volatilities we use the r-package 
‘stochvol’ (Kastner, 2016), to estimate structural breaks in the index we 
employ the r-package ‘strucchange’ and to estimate the VAR model the 
r-package ‘vars’ was used.
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Table 3.2: Variance Decomposition of the Forecast Errors

  Industrial Production

Period 1 6 12 24 48 Max

Ind. Production 95.2% 68.2% 41.8% 23.7% 16.8% 95.2%

Employment 0.7% 3.6% 3.2% 2.1% 5.3% 7.1%

Consumption 0.1% 0.2% 1.0% 0.8% 1.7% 2.2%

Inflation 0.3% 0.2% 2.4% 15.4% 17.0% 18.7%

New Orders 2.5% 8.1% 4.6% 4.9% 3.6% 8.2%

Wage 0.0% 0.1% 0.2% 0.5% 1.0% 1.1%

Hours 0.8% 0.6% 0.4% 0.7% 0.4% 0.9%

R 0.0% 1.6% 4.5% 12.8% 26.0% 26.3%

S&P500 0.0% 5.0% 11.8% 9.8% 6.8% 13.7%

M2 0.0% 1.8% 6.3% 7.7% 7.7% 7.9%

Uncertainty 0.3% 10.5% 23.8% 21.7% 13.7% 25.3%

  New Orders

Period 1 6 12 24 48 Max

Ind. Production 10.9% 7.5% 8.4% 7.7% 7.3% 10.9%

Employment 3.1% 5.3% 5.9% 5.4% 5.0% 6.1%

Consumption 2.9% 1.9% 1.8% 1.5% 1.4% 3.1%

Inflation 1.9% 2.7% 9.2% 12.6% 12.6% 12.8%

New Orders 78.7% 48.2% 39.9% 33.8% 31.5% 78.7%

Wage 0.0% 0.3% 0.4% 0.5% 0.5% 0.5%

Hours 0.5% 0.8% 1.7% 1.5% 1.5% 1.7%

R 0.0% 5.7% 7.2% 8.8% 9.7% 10.5%

S&P500 1.6% 4.9% 4.5% 10.5% 12.7% 13.3%

M2 0.2% 1.2% 1.5% 1.4% 1.4% 1.6%

Uncertainty 0.1% 21.5% 19.5% 16.4% 16.4% 22.6%
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  Consumption

Period 1 6 12 24 48 Max

Ind. Production 2.9% 5.3% 3.9% 2.1% 1.7% 6.7%

Employment 0.7% 4.8% 3.5% 1.8% 3.4% 5.3%

Consumption 93.8% 62.7% 45.0% 31.9% 25.4% 93.8%

Inflation 0.6% 6.4% 14.4% 24.3% 25.4% 26.1%

New Orders 0.3% 0.8% 2.1% 5.0% 4.8% 5.2%

Wage 0.0% 0.3% 0.4% 0.3% 0.4% 0.4%

Hours 0.0% 0.8% 1.0% 0.9% 0.7% 1.1%

R 0.5% 7.4% 12.1% 19.0% 23.6% 23.8%

S&P500 0.7% 3.9% 4.8% 3.3% 2.1% 5.0%

M2 0.2% 2.3% 5.1% 6.6% 9.5% 10.8%

Uncertainty 0.3% 5.3% 7.6% 4.7% 3.1% 7.8%

  Employment

Period 1 6 12 24 48 Max

Ind. Production 32.8% 29.5% 19.1% 11.8% 8.8% 35.1%

Employment 66.1% 53.2% 42.5% 26.3% 11.5% 66.1%

Consumption 0.1% 0.6% 0.4% 0.5% 0.3% 0.8%

Inflation 0.0% 0.1% 0.8% 9.0% 13.3% 14.1%

New Orders 0.7% 4.4% 2.3% 1.9% 2.0% 4.5%

Wage 0.1% 0.1% 0.3% 0.8% 1.4% 1.4%

Hours 0.1% 0.1% 0.4% 1.8% 2.2% 2.3%

R 0.0% 2.5% 7.4% 19.6% 41.4% 44.5%

S&P500 0.1% 3.9% 10.4% 9.2% 7.5% 12.5%

M2 0.0% 0.9% 3.3% 4.2% 3.4% 4.2%

Uncertainty 0.0% 4.6% 13.2% 14.7% 8.2% 15.5%
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  Standard & Poor’s 500

Period 1 6 12 24 48 Max

Ind. Production 0.3% 0.5% 0.4% 0.5% 1.2% 1.2%

Employment 0.1% 1.3% 2.7% 4.1% 5.6% 6.2%

Consumption 0.3% 0.9% 1.8% 1.8% 1.6% 1.8%

Inflation 0.5% 0.4% 4.0% 6.9% 5.8% 6.9%

New Orders 0.3% 1.3% 3.8% 5.7% 4.6% 5.7%

Wage 0.0% 0.2% 2.2% 4.3% 8.0% 9.0%

Hours 0.6% 1.0% 0.8% 0.9% 1.0% 1.0%

R 1.0% 1.5% 1.1% 1.2% 2.1% 2.1%

S&P500 94.5% 73.6% 63.6% 54.1% 44.7% 94.5%

M2 0.2% 3.4% 3.6% 3.9% 3.7% 4.0%

Uncertainty 2.2% 15.9% 15.9% 16.7% 21.7% 23.4%

Federal Funds -R

Period 1 6 12 24 48 Max

Ind. Production 0.0% 6.4% 5.4% 4.9% 6.2% 6.5%

Employment 0.0% 1.7% 6.5% 8.6% 8.2% 9.1%

Consumption 0.0% 0.5% 2.5% 3.3% 8.5% 11.0%

Inflation 0.0% 2.2% 3.7% 3.5% 4.0% 4.0%

New Orders 0.0% 10.6% 11.2% 9.2% 7.6% 11.2%

Wage 0.0% 0.8% 0.7% 0.8% 0.8% 0.9%

Hours 0.0% 1.0% 1.1% 1.1% 1.3% 1.3%

R 0.0% 72.8% 55.9% 47.8% 42.2% 91.7%

S&P500 0.0% 1.7% 6.8% 13.3% 14.4% 16.9%

M2 0.0% 0.5% 1.6% 1.7% 1.5% 1.7%

Uncertainty 0.0% 1.9% 4.7% 5.9% 5.4% 6.1%
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  Uncertainty

Period 1 6 12 24 48 Max

Ind. Production 0.5% 1.9% 2.4% 2.0% 2.2% 2.4%

Employment 0.1% 0.8% 1.0% 1.4% 1.2% 1.5%

Consumption 0.0% 0.5% 1.6% 1.3% 1.1% 1.6%

Inflation 0.4% 2.6% 5.9% 4.8% 5.6% 6.0%

New Orders 0.1% 0.3% 0.4% 1.0% 2.0% 2.1%

Wage 0.0% 0.7% 3.7% 3.5% 3.3% 4.3%

Hours 0.0% 0.7% 1.4% 1.9% 2.2% 2.2%

R 0.0% 0.1% 0.2% 4.0% 4.8% 5.0%

S&P500 1.3% 3.8% 7.1% 22.6% 28.2% 28.6%

M2 1.8% 3.1% 3.1% 2.6% 3.3% 3.4%

Uncertainty 95.7% 85.6% 73.2% 54.9% 46.1% 95.7%

NOTE: We use a VAR (12) comprising 11 variables, in the following Cholesky-order Production, 
Employment, Consumption, Inflation, NO, Wages, Labor, R (Federal Funds Rate), Stock Market 
Index, M2 and the Uncertainty Index. 
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CHAPTER 4: UNCERTAINTY, SYSTEMIC SHOCKS AND THE 
GLOBAL BANKING SECTOR: HAS THE CRISIS MODIFIED THEIR 
RELATIONSHIP?

4.1. Introduction

Systemic risk can be defined as the risk that a financial institution faces 
during periods of widespread financial distress, following exposure to 
an extreme negative shock in the market. This shock may arise either 
as a consequence of the failure of an individual firm of sufficient size 
and connectedness that it imposes significant marginal distress costs on 
the rest of the system, or as a common shock to the financial structure 
that is absorbed and amplified by various firms depending on their own 
particular resilience (Jobst, 2014a). The materialization of systemic risk 
may lead to disruptions in the provision of key financial services due to 
impairments of all or parts of the financial system, which may in turn 
have adverse consequences for the functioning of the real economy (see 
Acharya et al., 2017, and Adrian and Brunnermeier, 2014). 

For these reasons, in recent years systemic risk has become a growing 
concern for regulators, who have made great efforts not only to measure 
the impact of systemic risk on individual firms, but also to identify sys-
temically important financial institutions (SIFIs) that should adhere to 
stronger capital requirements to avoid giving rise to shocks which might 
destabilize the whole system. As a result, significant advances have been 
made in systemic risk regulation, as documented by both the Financial 
Stability Board (FSB) and the International Association of Insurance 
Supervisors (IAIS)23. 

Several methodologies have been proposed for measuring systemic risk, 
above all in the banking sector24. The most common seek to estimate 

23.  See for example FSB (2011, 2012, 2013) and IAIS (2009, 2012, 2013).
24.  See Bisias et al. (2012) for a review.
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marginal increments in the value-at-risk statistics (VaR) of financial 
institutions, or increments in the marginal expected shortfall (ESF) of 
each firm, under a scenario of financial turmoil25. The reason for focu-
sing on a financial institution’s VaR or ESF is because extreme negative 
scenarios are naturally related to the lowest quantiles of the distribution 
of a set of financial variables (including, stock returns) and, hence, to 
systemic risk scenarios. However, traditional methods based on quan-
tiles do not allow the researcher to identify the source of the shocks 
to the system; rather, they calculate the marginal contribution of each 
company to the risk of the system as a whole. 

Our contribution to the literature is the examination of the characte-
ristics and stability of systemic risk and uncertainty, in relation to the 
dynamics of the banking sector stock returns. Particularly, we are inter-
ested in exploring relevant hypotheses for the economics discipline re-
garding the stability of the systemic risk propagation mechanism across 
the global banking sector, and about the importance of equity market 
uncertainty as a source of systemic risk for global financial institutions. 
Both issues are instrumental for the design of macro policies, seeking 
to reduce systemic risk materialization episodes, or to construct a more 
resilient global banking sector in the forthcoming decades. Hence, we 
aim to measure the systemic risk in the global banking sector that arises 
from two primary sources: an unobservable systemic risk factor by Whi-
te et al. (2015) and an economic equity market uncertainty factor (EMU) 
provided by Baker et al (2016). Our proposal is novel in three respects. 
First, we consider the evolving nature of systemic risk, a characteristic 
mainly overlooked in the literature despite having evident policy and 
practical implications for the banking industry26. We provide evidence 
regarding the stability of the relationship between systemic shocks and 
the banks’ responses over the last decade. This sort of evidence is new 
to the literature and is supportive of past claims, made in the field of 
macroeconomics (Stock and Watson, 2012), which hold that during the 
global financial crisis the financial system may have faced stronger ver-
sions of traditional shocks rather than a new type of shock. 

25.  These methods were originally proposed by Acharya et al. (2017) and Adrian and Brunnermeier (2014). 
Numerous empirical implementations followed, for example, in the work of Anginer et al. (2014a, 2014b), 
Bernal et al. (2014), or Drakos and Kouretas (2015).
26.  Two exceptions to this point are the studies by Straetmans and Chaudry (2015) and Kolari and Sanz 
(2017), which we discuss in the next section.
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Second, we undertake an empirical study of the role of equity market 
uncertainty, as measured by Baker et al. (2016), as a systemic risk factor 
for the banking industry. Uncertainty is known to play a critical role in 
determining economic dynamics during episodes of crisis and, in recent 
years, its study has attracted much attention in the literature to account 
for the nonlinear negative dynamics that arise during episodes of eco-
nomic distress (Bloom, 2009; Jurado et al., 2015). Empirical tools are 
now available that can provide accurate measurements of uncertainty 
(Baker et al. 2016), and its inclusion as an unobservable factor enhances 
our understanding of banking sector behavior during episodes of syste-
mic stress in the financial markets. We report that for most of the banks 
analyzed, especially over the last decade, uncertainty is indeed a rele-
vant consideration. As expected, more uncertainty leads to a reduction 
in equity prices in the banking industry, and this behavior has become 
more pronounced in the last few years, especially when compared to the 
situation 15 years ago. 

Finally, we emphasize the vulnerability of each institution to systemic 
shocks (either EMU or systemic risk factors), rather than the vulnera-
bility of the system as a whole to the failure of one specific, perhaps 
important, financial institution. The perspective we adopt has received 
considerably less attention in the literature27. By implementing our mo-
del, we are able to rank banks in accordance with their vulnerability 
to two common shocks: an unobservable systemic risk factor and the 
equity market uncertainty shock. Thus, we seek to identify systemically 
vulnerable financial institutions under scenarios of financial distress. 
Notice that the two factors in our model were selected as to measure 
two main different sources of vulnerability in the global banking sector. 
While the systemic risk indicator may be interpreted as a “financial” risk 
shock, the EMU index quantifies “economic” uncertainty related with 
equity markets. This theoretical separation allows us to interpret our 
main findings as arising from the financial and macroeconomic (real) 
sides of the economic system. This distinction and the importance of 
its inclusion in the empirical exercise that we conduct in what follows 
are crucial to achieving a deeper understanding of the way in which 

27.  Some noticeable recent examples given by Hartmann et al. (2006), Jonghe (2010) and Straetmans and 
Chaudhry (2015).
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the propagation of shocks occurs within and between financial and real 
markets28.

Our model involves combining dynamic factor models with quantile 
regressions, in line with Ando and Tsay (2011) and White et al. (2015)29. 
Yet, unlike Ando and Tsay (2011), who are not concerned with systemic 
risk but rather with forecasting asset returns, we construct the factors 
for inclusion in the factor-augmented quantile regression by differen-
tiating between a traditional systemic risk factor and an equity market 
uncertainty factor. Similar to White et al. (2015), we consider the sys-
temic factor as being contemporaneously exogenous from the point of 
view of each bank. In contrast with them, we do not construct (pseudo) 
quantile impulse response functions, and this allows us to expand the 
analysis by including more relevant factors (e.g., the uncertainty factor). 
That is, our model lacks dynamics, and therefore it may exist additio-
nal feedback beyond the first period going from the idiosyncratic bank 
dynamics to the system dynamics. This can conduce to a total impact 
of the systemic shock higher than the one observed in the first period, 
which we report here. Nevertheless, we restrict our attention to the effect 
observed when the systemic shock first arises, which is the most relevant 
point in the total dynamic impact30. This contemporaneous reaction is 
crucial in terms of systemic risk and we aim at examining its stability 
through time. To this end we test for the stability of the quantile coeffi-
cients in an endogenous fashion, following the proposals made by Oka 
and Qu (2011). This last step allows us to determine whether there were 
changes in the propagation of systemic risk in the global banking in-
dustry during and after the crisis. The outcome we report is, in general, 
negative in this regard.

In sum, we measure, by the first time, the role of equity market uncer-
tainty as a systemic risk factor for the global banking sector. We test 
whether the relationship between economic uncertainty and banks’ re-
turns, and a previously identified systemic risk factor and banks’ returns 

28.  See for example the theoretical by Brunnermeier and Sannikov (2014) to motivate the importance of 
considering the interplay between macro and financial markets.
29.  Factor models are popular in the asset pricing literature (Fama and French, 1993; Cochrane, 2005), while 
quantile regressions have gained considerable impetus in the financial branch in recent years (Engle and 
Manganelli, 2004; Li and Miu, 2010; Ciner et al. 2013; Mensi et al., 2014; among others).
30.  See for example Figures 2 to 4 in White et al. (2015) in which the first effect is always the maximum 
of the pseudo impulse responses.
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is stable during the sample period, which includes the global financial 
crisis, in an endogenous fashion, which is also new for the literatu-
re. We employed a methodology that allows us to focus on a specific 
quantile of interest, conditional on the systemic risk factors that we 
identified. This is also new, given that in the systemic risk exercises 
that have used quantiles so far, systemic risk factors are omitted and 
the estimates refer to unconditional quantiles of the dynamic distribu-
tion of returns (or to estimates conditional on certain observation as 
opposed to quantiles). Finally, we also provide a ranking of systemica-
lly vulnerable financial institutions that focuses on the vulnerability of 
each institution to the systemic risk factors, as opposed to the extant 
literature that has mainly focused on the effect of each institution on 
the rest of the system.

The rest of this paper is organized as follows. In the next section we 
undertake a general review of the literature examining systemic risk, so 
as to place our study in a broader context and to illustrate just where 
our contribution fits in the field. The third section provides a detailed 
explanation of our methodology. In the fourth section we present our 
main results and, finally, in the fifth section we conclude and discuss the 
limitations of this study and identify future lines of research.

4.2. Related literature

Systemic risk is traditionally considered as comprising various pheno-
mena that represent substantial costs to the real economy and which, 
as such, have attracted significant research efforts. Allen and Carletti 
(2013) summarize these phenomena as panics (associated with banking 
crises due to multiple equilibria); banking crises due to asset price falls; 
contagion; and, foreign exchange mismatches in the banking system. 
The authors stress the historical importance of panics in accounting 
for systemic risk. Panics, they argue, are self-fulfilling events that arise 
because agents have uncertain consumption patterns and, consequently, 
uncertain investment plans, which are costly to implement. In a scena-
rio in which depositors believe that other depositors will withdraw their 
funds prematurely, then all agents find it optimal to redeem their claims, 
sending the market into panic (see the seminal works by Bryant, 1980, 
and Diamond and Dybvig, 1983).
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In the case of banking crises, Allen and Carletti (2013) identify several 
possible reasons as to why the prices of assets held by banks might 
drop, generating the appearance of systemic risk in the real economy. 
They include, but are not limited to, the business cycle dynamics, the 
bursting of real estate bubbles, mispricing due to inefficient liquidity 
provision and limits to arbitrage, sovereign defaults and interest rate 
increases. In each of these cases, whether they are related to natu-
ral economic dynamics (for instance the real cycles of the economy, 
as reviewed by Allen et al., 2009) or to behavioral biases in agent 
decision-making (Allen and Gale, 2007), when asset prices fall, this 
might result in significant solvency problems for banks and, hence, in 
systemic risk. 

Contagion is another important source of systemic risk that seems to 
have been particularly relevant in the most recent global financial crisis. 
This phenomenon refers to the possibility that the distress of one finan-
cial institution propagates to others in the system and, thus, leads to a 
systemic crisis (Allen et al., 2009, provide a survey of this literature). 
Finally, Allen and Moessner (2010) describe currency mismatches in the 
banking system, created by banks lending in a low interest rate foreign 
currency, and then funding these loans in domestic currency. When 
exchange rate reversals are made, as occurred during the Asian crisis in 
1997, the solvency and liquidity of the whole banking system may be 
compromised. 

More recently, systemic risk has received considerable attention from 
both academics and regulators, since it is thought to lie at the core of the 
2007-2009 crisis and to be a key factor in understanding crisis propaga-
tion to the real economy. In the main, research has explored data series 
from the US and the Eurozone and has analyzed systemic risk from a 
range of perspectives. 

One strand of this literature has analyzed the systemic risk arising from 
individual financial institution spillovers, i.e., it has focused on mea-
suring the impact that individual shocks attributable to specific insti-
tutions may have on the system as a whole. For example, Avramidis 
and Pasiouras (2015), using factor models and multivariate extreme de-
pendency statistics, study spillovers between individual financial ins-
titutions. They highlight the significant underestimation of the capital 
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requirements of financial institutions if extreme event dependence is 
ignored when estimating solvency ratios. Kanno (2015) and Cont and 
Minca (2016) undertake network analyses to explore interbank bilateral 
exposures and over-the-counter credit default swaps, respectively, and 
report large spillovers during the global financial crisis. In the same line 
of research, Bongini et al. (2015) and Castro and Ferrari (2014) analy-
ze systemically important financial institutions (SIFIs) and their market 
effects. While the former apply event study methodology to determine 
the impact of inclusion as a SIFI on market prices, the latter explore the 
use of CoVaR (Conditional Value at Risk) as a measure of an institution’s 
systemic importance31. 

Alternative measures, including V-Lab stress tests, designed to account 
for ‘the risk that risk itself may change’, have been compared with the 
stress test indicators used by the Supervisory Capital Assessment Pro-
gram in the US and by the European Banking Authority (which replaced 
the Committee of European Banking Supervisors) in the EU (see Acharya 
et al., 2012; Acharya et al., 2014). In the same vein, nonlinear models 
using flexible parameterizations, such as those allowed by vine copulas, 
have been analyzed for example in Brechmann et al. (2013), with em-
pirical applications to both the insurance and banking sectors. Finally, 
Singh et al. (2015) analyze the risk behavior of the banking sector at 
the individual level and then scale these outcomes at the EMU-country 
level, using distance-to-default models and vector autoregression esti-
mates.

Another strand of the literature has analyzed the systemic risk arising 
from extreme market scenarios in an aggregate fashion. In other words, 
it has explored the sensitivity of financial institutions to ‘systemic fac-
tors’, which can be treated as observable or unobservable. The former 
are related, for example, to liquidity considerations, as studied by Pie-
rret (2015) and Jobst (2014b). While the first of these authors constructs 
a model that blends questions of liquidity and solvency, the second 
proposes adjusting traditional systemic risk indicators using liquidity 
constraints. Other observable factors include disruptions in economic 

31.  CoVaR was originally proposed by Adrian and Brunnermeier (2014) for the estimation of increments 
in a firm’s marginal expected shortfall, under a scenario of financial turmoil. It has been extended to the 
bivariate setting, for example, by Lopéz-Espinosa et al., 2015. 
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conditions, as studied for example by Calmès and Théoret (2014), and 
such factors as interbank exposures, asset prices, and sovereign credit 
risks (Paltalidis et al., 2015).

In contrast, a number of studies have preferred to focus on unobser-
vable factors. For example, Kim and Kim (2014) estimate a ‘systemic 
bubble index’ to determine the investment dynamics of stock investors 
for financial institutions, and which should serve as an early warning 
signal of systemic fragility. Alter and Beyer (2014) quantify spillovers 
between sovereign credit markets and banks in the euro area, but they 
treat the factors as exogenous-unobservable forces affecting the dy-
namics of CDSs. 

Finally, a new branch of the systemic risk literature has started to 
explore the evolving nature of systemic risk. This branch (implicitly 
or explicitly) considers systemic risk as a policy regime-dependent 
problem. As such, it seeks to take into account changes in terms of the 
regulatory framework (i.e., Basel III, the Dodd-Frank reform), macro-
prudential regulation, and individual risk preferences. Claessens et al. 
(2013) investigate the efficacy of macro-prudential policy for preven-
ting systemic risk and report that such measures have helped miti-
gate bank leverage and exposure to the volatility of financial assets. 
However, others, such as Calluzzo and Dong (2015), question whether 
the reduction in risk faced by individual institutions correlates with a 
decrease in systemic risk. They conclude that it does not, and indeed, 
using a quasi-experimental design, they document an increment in the 
amount of contagion in the post-crisis financial system, and hence in 
the vulnerability of the financial market to systemic risk. 

Similarly, Straetmans and Chaudhry (2015) evaluate multiple market-
based measures for US and eurozone individual bank tail risk and 
bank systemic risk, and report results that suggest that both are higher 
in the US than in the eurozone regardless of the sample period (pre- 
and post-crisis). They also find that the magnitude of the two risk 
types increased in both samples, taking the crisis as a threshold. This 
contribution can be seen as the closest to ours. The authors analyze 
systemic spillovers using extreme value theory and they aim to test 
for the stability of the results. They do both an analysis of the whole 
system sensitiveness to each financial institution, and of each bank 
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to aggregate systemic factors (such as stock market indices, sectorial 
world-wide and regional indices and housing prices). Nevertheless, 
their systemic factors are different to ours and their estimates corres-
pond to co-crash probabilities of banks, conditioning on sharp drops 
on the non-diversifiable factors. To do the latter they need to focus on 
particular dates at witch the systemic risk indicators drop in a signi-
ficant magnitude. By the contrary, we use our full sample to estima-
te the conditional quantiles of the banks’ return distributions. These 
quantiles are by construction conditional on our systemic factors and 
in this way we manage to use the information more efficiently. More 
importantly, we test for the stability of the estimates describing the 
propagation mechanism, but different from Straetmans and Chaudhry 
(2015) who impose ad hoc the possible structural change of the series, 
we do so in an endogenous fashion, following the proposal by Oka 
and Qu (2011). The latter approach has several advantages, which have 
been extensively documented in the literature of structural changes 
in time series analysis (see Perron (2006) for a survey). Basically, im-
posing the break dates might derive in spurious detection of changes 
in the data generating process. Therefore the search should be ideally 
carried up in an endogenous fashion.

The selection of our systemic factors and our quantile regression 
methodology, unable us to obtain stable model coefficients, before 
and after the global financial crisis. This means that our factors suffi-
ce to explain the quantile variations before and after the crisis, while 
Straetmans and Chaudry (2015) estimates experience a great amount 
of variation (with marked jumps of the “tail-betas” that they calcula-
te). This is an advantage, because our model does not become invalid 
once the systemic risk factors achieve a certain threshold.

The present study is related to all three branches of the literature out-
lined above, but primarily with the last two. It is closely associated 
with the second group of studies because we are concerned with the 
sensitivity of individual institutions to factors of systemic risk. In line 
with Kim and Kim (2014) and White et al. (2015), we treat these factors 
as unobservable in nature and, in line with Calmès and Théoret (2014), 
Alter and Beyer (2014), and Paltalidis et al. (2015), we treat them as 
exogenous from the point of view of each financial institution. It is 
also closely associated with the third group because it focuses on the 
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dynamics of systemic risk. We explicitly test for the stability of the pa-
rameters in our factor quantile model, seeking to identify any possible 
structural changes in the shape of risk transmission during the sample 
period, in an endogenous fashion. Finally, in relation to the first set of 
papers, our study can be considered as providing a tool to account for 
the ‘risk that risk itself may change’, in line with the V-Lab stress test 
(although using different methodologies). 

Kolari and Sanz (2017) utilize neural network mapping technology to 
assess the dynamic nature of systemic risk over time in the banking 
industry. They report informal graphical evidence suggesting that sys-
temic risk peaked in 2009 and remained thereafter. Their strategy con-
sists of a visual inspection of the changes in the network’s maps of 
the 16 main commercial banks in the US during the crisis period. The 
changes reported by the authors are gradual, so they are not related 
to dramatic changes or structural breaks from one year to another. 
Different to these authors we focus here in permanent changes of the 
systemic risk propagation mechanisms following the global finan-
cial crisis and we provide statistical tests of such changes. We also  
analyze a longer period of time and a considerable greater number of 
banks.

Notice that different to ours, other measures of systemic risk, based on 
quantiles, such as the marginal expected shortfall (MES) of Acharya 
et al. (2017) estimate the stock return reaction of bank i to bad market 
outcomes. They are intended to provide a measure of the resilience of 
each individual institution to systemic distress scenarios. In this way, 
they aim to estimate the marginal contribution of each bank to sys-
temic financial distress: The more negative the outcome of a particu-
lar bank is, the more this institution will contribute to destabilize the 
system during periods of generalized distress. You can notice that 
the emphasis of the exercise using MES is precisely on how much the 
system will be affected by the idiosyncratic bank performance during 
bad market times. On the contrary, our definition of SVFIs emphasizes 
on how the system impacts on the bank i, at any time, which is a com-
plementary approach. For this reason, we do not restrict our attention 
to bad market outcomes, but to bad individual stock realizations of the 
financial institutions (i.e. to the lowest quantiles of the banks’ return 
distribution).
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4.3. Methodology

As discussed, our methodological proposal involves combining dynamic 
factor models with quantile regression. Thus, we construct the factors to 
be included in the factor-augmented quantile regression, differentiating 
between a traditional, systemic risk factor affecting the global financial 
sector and an equity market uncertainty factor. We conduct the estima-
tion in a three-step approach: first, we construct the systemic factor; 
second, we use this and the EMU factor provided by Baker et al. (2016) 
as explanatory variables in a traditional quantile regression; and, third, 
we test the stability of the parameters, seeking to identify changes in 
factor load coefficients that might be attributable to the crisis. 

Following Bai and Ng (2008), let N be the number of cross-sectional 
units, that is, the number of banks in our sample, and let T be the 
number of time series observations. For 
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individual stock realizations of the financial institutions (i.e. to the lowest 
quantiles of the banks’ return distribution). 
4.3. Methodology 

As discussed, our methodological proposal involves combining dynamic factor 
models with quantile regression. Thus, we construct the factors to be included 
in the factor-augmented quantile regression, differentiating between a 
traditional, systemic risk factor affecting the global financial sector and an 
equity market uncertainty factor. We conduct the estimation in a three-step 
approach: first, we construct the systemic factor; second, we use this and the 
EMU factor provided by Baker et al. (2016) as explanatory variables in a 
traditional quantile regression; and, third, we test the stability of the 
parameters, seeking to identify changes in factor load coefficients that might 
be attributable to the crisis.  

Following Bai and Ng (2008), let A be the number of cross-sectional units, 
that is, the number of banks in our sample, and let ] be the number of time 
series observations. For K = 1…A and ! = 1…], our factor model can be 
defined as: 

∆à) = 	 §i,àci,) + §ã,àcã,) + Gà) ,  (4.1) 

or more compactly as fi) = fl‡) + ·)  with fi) = (∆i), … , ∆>))′ ,  ‡) =
(ci), cã))′ , ·) = (Gi), … , G>))′  . fi)  is a N-dimensional observable random 
vector of stock returns of the banks in our sample, ‡)  is a 2-dimensional 
vector of latent factors.  

ci,)  is an unobservable systemic risk factor that impacts the N financial 
institutions in our sample via coefficients §i,à. Thus, it can be estimated using 
the first principal component of the (A × ]) matrix of financial institutions’ 
stock returns in the cross-sectional dimension. This procedure enables us to 
treat the consistently estimated factors as non-generated regressors in 
subsequent stages of our procedure (Bai and Ng, 2002; Stock and Watson, 
2002), which is important for inference.32  

cã,) is a general equity market uncertainty factor that may potentially impact 
the banks via	§ã,à . This uncertainty factor is, in principle, unobservable, as 
well. However, recent advances in the discipline mean we can construct 
indices of economic uncertainty that impact the equity market. Specifically, 

	
32 We construct the systemic risk measure in line with White et al. (2015). Unlike us, they 
estimated the principal components of each financial sector (banks, insurers and others) and 
then aggregated the factors using the market capitalization of each sector as weights. We also 
tried estimating the factors that affect each sector separately, and included all three in the 
estimations, but the amount of multicollinearity among the three factors, indicated that they 
were likely to be measuring the same unobservable shocks. For this reason, we preferred to 
include only one general factor as we explain in the main text. 
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here, we use the equity market uncertainty factor proposed by Baker et al. 
(2016). These authors construct their measure of uncertainty by searching each 
paper in the NewsBank database looking for terms related to economic and 
policy uncertainty.33 This direct measure of equity market uncertainty allows us 
to trace the dynamic of this unobservable and systemic factor.  
The first unobservable factor was previously identified in the literature by 
White et al. (2015), as we already emphasized. Moreover, it is naturally related 
to a market factor, because it summarizes the common variation in all the 
series of stock returns in the financial sector in a CAPM’ style, and therefore, 
it should be the starting point of any factor analysis about systemic risk (or 
asset pricing).  
The inclusion of EMU requires a more detailed explanation. We need a factor 
that helps to identify recessionary states in the market, and that provides new 
information additional to the market factor. We ideally require a variable with 
predictive power on the state of the economy and at the same time with a 
theoretical justification to support its inclusion. Indeed, this is the case of very 
few factors in the literature and uncertainty is one of them. Balcilar et al. 
(2016) and Segnon et al. (2016) provide evidence of the predictive power of 
uncertainty in the GDP forecast and Balcilar and Gupta (2016) provide 
evidence of the prediction power of uncertainty in inflation. On the other side, 
Bansal and Yaron (2004), Bloom et al. (2007), Bloom (2009), Jurado et al. 
(2015) and Chuliá et al. (2017), to name just a few, have extensively 
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Finally, one could argue that while the market factor is more related to 
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more related to unexpected movements in the time series returns, related to 
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ci,)  is an unobservable systemic risk factor that impacts the N financial 
institutions in our sample via coefficients §i,à. Thus, it can be estimated using 
the first principal component of the (A × ]) matrix of financial institutions’ 
stock returns in the cross-sectional dimension. This procedure enables us to 
treat the consistently estimated factors as non-generated regressors in 
subsequent stages of our procedure (Bai and Ng, 2002; Stock and Watson, 
2002), which is important for inference.32  

cã,) is a general equity market uncertainty factor that may potentially impact 
the banks via	§ã,à . This uncertainty factor is, in principle, unobservable, as 
well. However, recent advances in the discipline mean we can construct 
indices of economic uncertainty that impact the equity market. Specifically, 
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here, we use the equity market uncertainty factor proposed by Baker et al. 
(2016). These authors construct their measure of uncertainty by searching each 
paper in the NewsBank database looking for terms related to economic and 
policy uncertainty.33 This direct measure of equity market uncertainty allows us 
to trace the dynamic of this unobservable and systemic factor.  
The first unobservable factor was previously identified in the literature by 
White et al. (2015), as we already emphasized. Moreover, it is naturally related 
to a market factor, because it summarizes the common variation in all the 
series of stock returns in the financial sector in a CAPM’ style, and therefore, 
it should be the starting point of any factor analysis about systemic risk (or 
asset pricing).  
The inclusion of EMU requires a more detailed explanation. We need a factor 
that helps to identify recessionary states in the market, and that provides new 
information additional to the market factor. We ideally require a variable with 
predictive power on the state of the economy and at the same time with a 
theoretical justification to support its inclusion. Indeed, this is the case of very 
few factors in the literature and uncertainty is one of them. Balcilar et al. 
(2016) and Segnon et al. (2016) provide evidence of the predictive power of 
uncertainty in the GDP forecast and Balcilar and Gupta (2016) provide 
evidence of the prediction power of uncertainty in inflation. On the other side, 
Bansal and Yaron (2004), Bloom et al. (2007), Bloom (2009), Jurado et al. 
(2015) and Chuliá et al. (2017), to name just a few, have extensively 
documented, and modeled, how uncertainty may affect price formation in the 
market, or how it may shape the dynamics of the economic activity as a whole.  
Finally, one could argue that while the market factor is more related to 
expected variations within the financial system, equity market uncertainty is 
more related to unexpected movements in the time series returns, related to 
the economic system. Therefore they are complementary and hence natural 
candidates to construct our factor model (see for example Chuliá et al. (2017) 
for an extensive discussion of the differences between expected and 
unexpected shocks). 
Here we keep the focus on the systemic risk interpretations accompanying our 
factors, but we acknowledge that this exercise is much related to those 
performed within the asset pricing literature aiming to explain the equity 
premium, and therefore, other factors such as size, book to market ratios, 
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EMU factor provided by Baker et al. (2016) as explanatory variables in a 
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be attributable to the crisis.  
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documented, and modeled, how uncertainty may affect price formation in the 
market, or how it may shape the dynamics of the economic activity as a whole.  
Finally, one could argue that while the market factor is more related to 
expected variations within the financial system, equity market uncertainty is 
more related to unexpected movements in the time series returns, related to 
the economic system. Therefore they are complementary and hence natural 
candidates to construct our factor model (see for example Chuliá et al. (2017) 
for an extensive discussion of the differences between expected and 
unexpected shocks). 
Here we keep the focus on the systemic risk interpretations accompanying our 
factors, but we acknowledge that this exercise is much related to those 
performed within the asset pricing literature aiming to explain the equity 
premium, and therefore, other factors such as size, book to market ratios, 
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in the factor-augmented quantile regression, differentiating between a 
traditional, systemic risk factor affecting the global financial sector and an 
equity market uncertainty factor. We conduct the estimation in a three-step 
approach: first, we construct the systemic factor; second, we use this and the 
EMU factor provided by Baker et al. (2016) as explanatory variables in a 
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parameters, seeking to identify changes in factor load coefficients that might 
be attributable to the crisis.  
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stock returns in the cross-sectional dimension. This procedure enables us to 
treat the consistently estimated factors as non-generated regressors in 
subsequent stages of our procedure (Bai and Ng, 2002; Stock and Watson, 
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it should be the starting point of any factor analysis about systemic risk (or 
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uncertainty in the GDP forecast and Balcilar and Gupta (2016) provide 
evidence of the prediction power of uncertainty in inflation. On the other side, 
Bansal and Yaron (2004), Bloom et al. (2007), Bloom (2009), Jurado et al. 
(2015) and Chuliá et al. (2017), to name just a few, have extensively 
documented, and modeled, how uncertainty may affect price formation in the 
market, or how it may shape the dynamics of the economic activity as a whole.  
Finally, one could argue that while the market factor is more related to 
expected variations within the financial system, equity market uncertainty is 
more related to unexpected movements in the time series returns, related to 
the economic system. Therefore they are complementary and hence natural 
candidates to construct our factor model (see for example Chuliá et al. (2017) 
for an extensive discussion of the differences between expected and 
unexpected shocks). 
Here we keep the focus on the systemic risk interpretations accompanying our 
factors, but we acknowledge that this exercise is much related to those 
performed within the asset pricing literature aiming to explain the equity 
premium, and therefore, other factors such as size, book to market ratios, 
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individual stock realizations of the financial institutions (i.e. to the lowest 
quantiles of the banks’ return distribution). 
4.3. Methodology 

As discussed, our methodological proposal involves combining dynamic factor 
models with quantile regression. Thus, we construct the factors to be included 
in the factor-augmented quantile regression, differentiating between a 
traditional, systemic risk factor affecting the global financial sector and an 
equity market uncertainty factor. We conduct the estimation in a three-step 
approach: first, we construct the systemic factor; second, we use this and the 
EMU factor provided by Baker et al. (2016) as explanatory variables in a 
traditional quantile regression; and, third, we test the stability of the 
parameters, seeking to identify changes in factor load coefficients that might 
be attributable to the crisis.  

Following Bai and Ng (2008), let A be the number of cross-sectional units, 
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the first principal component of the (A × ]) matrix of financial institutions’ 
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(2016). These authors construct their measure of uncertainty by searching each 
paper in the NewsBank database looking for terms related to economic and 
policy uncertainty.33 This direct measure of equity market uncertainty allows us 
to trace the dynamic of this unobservable and systemic factor.  
The first unobservable factor was previously identified in the literature by 
White et al. (2015), as we already emphasized. Moreover, it is naturally related 
to a market factor, because it summarizes the common variation in all the 
series of stock returns in the financial sector in a CAPM’ style, and therefore, 
it should be the starting point of any factor analysis about systemic risk (or 
asset pricing).  
The inclusion of EMU requires a more detailed explanation. We need a factor 
that helps to identify recessionary states in the market, and that provides new 
information additional to the market factor. We ideally require a variable with 
predictive power on the state of the economy and at the same time with a 
theoretical justification to support its inclusion. Indeed, this is the case of very 
few factors in the literature and uncertainty is one of them. Balcilar et al. 
(2016) and Segnon et al. (2016) provide evidence of the predictive power of 
uncertainty in the GDP forecast and Balcilar and Gupta (2016) provide 
evidence of the prediction power of uncertainty in inflation. On the other side, 
Bansal and Yaron (2004), Bloom et al. (2007), Bloom (2009), Jurado et al. 
(2015) and Chuliá et al. (2017), to name just a few, have extensively 
documented, and modeled, how uncertainty may affect price formation in the 
market, or how it may shape the dynamics of the economic activity as a whole.  
Finally, one could argue that while the market factor is more related to 
expected variations within the financial system, equity market uncertainty is 
more related to unexpected movements in the time series returns, related to 
the economic system. Therefore they are complementary and hence natural 
candidates to construct our factor model (see for example Chuliá et al. (2017) 
for an extensive discussion of the differences between expected and 
unexpected shocks). 
Here we keep the focus on the systemic risk interpretations accompanying our 
factors, but we acknowledge that this exercise is much related to those 
performed within the asset pricing literature aiming to explain the equity 
premium, and therefore, other factors such as size, book to market ratios, 

	
33  Specifically, they search for articles containing the words 'uncertainty' or 'uncertain'; 
'economic' or 'economy'; and, one or more of the following terms: 'equity market', 'equity 
price', 'stock market', or 'stock price'. Thus, to satisfy their criteria for inclusion, the article 
must include a term from each of the three categories (that is, uncertainty, the economy, and 
the stock market). Further details about the construction of the index can be found at 
www.policyuncertainty.com and in Baker et al. (2016). 
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individual stock realizations of the financial institutions (i.e. to the lowest 
quantiles of the banks’ return distribution). 
4.3. Methodology 
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∆à) = 	 §i,àci,) + §ã,àcã,) + Gà) ,  (4.1) 

or more compactly as fi) = fl‡) + ·)  with fi) = (∆i), … , ∆>))′ ,  ‡) =
(ci), cã))′ , ·) = (Gi), … , G>))′  . fi)  is a N-dimensional observable random 
vector of stock returns of the banks in our sample, ‡)  is a 2-dimensional 
vector of latent factors.  
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institutions in our sample via coefficients §i,à. Thus, it can be estimated using 
the first principal component of the (A × ]) matrix of financial institutions’ 
stock returns in the cross-sectional dimension. This procedure enables us to 
treat the consistently estimated factors as non-generated regressors in 
subsequent stages of our procedure (Bai and Ng, 2002; Stock and Watson, 
2002), which is important for inference.32  

cã,) is a general equity market uncertainty factor that may potentially impact 
the banks via	§ã,à . This uncertainty factor is, in principle, unobservable, as 
well. However, recent advances in the discipline mean we can construct 
indices of economic uncertainty that impact the equity market. Specifically, 

	
32 We construct the systemic risk measure in line with White et al. (2015). Unlike us, they 
estimated the principal components of each financial sector (banks, insurers and others) and 
then aggregated the factors using the market capitalization of each sector as weights. We also 
tried estimating the factors that affect each sector separately, and included all three in the 
estimations, but the amount of multicollinearity among the three factors, indicated that they 
were likely to be measuring the same unobservable shocks. For this reason, we preferred to 
include only one general factor as we explain in the main text. 
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Finally, one could argue that while the market factor is more related 
to expected variations within the financial system, equity market un-
certainty is more related to unexpected movements in the time series 
returns, related to the economic system. Therefore they are complemen-
tary and hence natural candidates to construct our factor model (see for 
example Chuliá et al. (2017) for an extensive discussion of the differenc-
es between expected and unexpected shocks).

Here we keep the focus on the systemic risk interpretations accompany-
ing our factors, but we acknowledge that this exercise is much related to 
those performed within the asset pricing literature aiming to explain the 
equity premium, and therefore, other factors such as size, book to mar-
ket ratios, momentum, etc. might be explored in future exercises. Nev-
ertheless, the theoretical constructs that underlie uncertainty are very 
appealing and for this reason we consider that it remains an attractive 
starting point for systemic risk analysis.

The model in Eq. 1 relates the ‘average’ scenarios for the bank stock 
returns distribution to the systemic factors. However, our definition of 
systemic risk means we need to focus on the shocks that occur during 
extreme negative scenarios. To this end we expand regression (4.1) as:
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 

…à
‚(∆à)|‡Q; fl) = fl(„)′‡Q,   (4.2) 

where α(τ)  is a vector of coefficients that depends on the quantile „ , …à‚ . 
Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  
For the purposes of estimation, we assume the conditional quantile function in 
Eq. 2 to be linear in parameters and to be affected by u structural changes, as 
follows: 

…à
‚(∆à)|‡Q; fl) =

⎩
⎨

⎧
fli(„)

X‡),																				! = 1,… , ]i
¢										

flã(„)
X‡),																			! = ]i

¢ + 1,… , ]ã
¢

⋮
flÍji(„)

X‡),														! = ]Í
¢ + 1,… , ]		

	,  (4.3) 

where „ denotes the quantile of interest, and where, as stated before, flè(„) 
(Î = 1,… ,u + 1) are the unknown parameters that are quantile dependent, 
and ]è¢ (Î = 1,… ,u)  (Î = 1,… ,u)  are the unknown break dates. In the 
absence of structural change, the model in Eq. 3 can be estimated by solving: 

min
fl ∈ ℝ> ∑ °‚(∆à) − fl′‡Q)

∞
)êi ,    (4.4) 

where ℝ>	are N-dimensional Real, for each cross-sectional unit in the factor 
model, but we eliminate the sub-index in K = 1,… , A to avoid unnecessary 
notation. °‚(S) is the check function given °‚(S) = SN„ − 1(S < 0)V (see 
Oka and Qu, 2011, and Koenker, 2005, for further details). Now suppose that 
the „th quantile (in our case a low quantile, such as the 10th percentile) is 
affected by u  structural changes, occurring at unknown dates (]i¢, … , ]Í

¢) . 
Then, we can define the following function for a set of feasible break dates 
]Ú = (]i, … , ]Í): 

6∞(„, fl(„), ]
Ú) = ∑ ∑ °‚N∆à) − flèji

X („)‡QV
∞çù�
)ê∞çji

Í
èê¢ ,     (4.5) 

where fl(„) = Nfli(„), … . , flÍji(„)V, ]¢ = 0 and 	]Íji = ]. Following Bai 
(1995, 1998), Oka and Qu (2011) propose estimating the break dates and 
coefficients fl(„) jointly by solving the following minimization problem: 

Nflö(„), ]ÙÚV = argminfl(‚),∞˜∈¯6∞(„, fl(„), ]
Ú),     (4.6) 

where flö(„) = Nflöi(„), … , flöÍji(„)V and 	]ÙÚ = N]Ùi, … , ]ÙÍV. Specifically, for 
a given partition of the sample, the coefficients are estimated by 
minimizing 	6∞(„, fl(„), ]Ú) . Then a search has to be conducted over all 
permissible partitions to find the break dates that achieve the global minimum. 
In Eq. 4.6, ¯ denotes this set of possible partitions and ensures that each 
estimated regime is a positive fraction of the sample. This is what we referred 
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 
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Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  
For the purposes of estimation, we assume the conditional quantile function in 
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account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 
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scenarios. To this end we expand regression (4.1) as: 
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Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  
For the purposes of estimation, we assume the conditional quantile function in 
Eq. 2 to be linear in parameters and to be affected by u structural changes, as 
follows: 
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coefficients fl(„) jointly by solving the following minimization problem: 
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where flö(„) = Nflöi(„), … , flöÍji(„)V and 	]ÙÚ = N]Ùi, … , ]ÙÍV. Specifically, for 
a given partition of the sample, the coefficients are estimated by 
minimizing 	6∞(„, fl(„), ]Ú) . Then a search has to be conducted over all 
permissible partitions to find the break dates that achieve the global minimum. 
In Eq. 4.6, ¯ denotes this set of possible partitions and ensures that each 
estimated regime is a positive fraction of the sample. This is what we referred 
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 

…à
‚(∆à)|‡Q; fl) = fl(„)′‡Q,   (4.2) 

where α(τ)  is a vector of coefficients that depends on the quantile „ , …à‚ . 
Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  
For the purposes of estimation, we assume the conditional quantile function in 
Eq. 2 to be linear in parameters and to be affected by u structural changes, as 
follows: 
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(2011) involves constructing a break estimator that is the global minimizer of 
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absence of structural change, the model in Eq. 3 can be estimated by solving: 
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where ℝ>	are N-dimensional Real, for each cross-sectional unit in the factor 
model, but we eliminate the sub-index in K = 1,… , A to avoid unnecessary 
notation. °‚(S) is the check function given °‚(S) = SN„ − 1(S < 0)V (see 
Oka and Qu, 2011, and Koenker, 2005, for further details). Now suppose that 
the „th quantile (in our case a low quantile, such as the 10th percentile) is 
affected by u  structural changes, occurring at unknown dates (]i¢, … , ]Í

¢) . 
Then, we can define the following function for a set of feasible break dates 
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where fl(„) = Nfli(„), … . , flÍji(„)V, ]¢ = 0 and 	]Íji = ]. Following Bai 
(1995, 1998), Oka and Qu (2011) propose estimating the break dates and 
coefficients fl(„) jointly by solving the following minimization problem: 

Nflö(„), ]ÙÚV = argminfl(‚),∞˜∈¯6∞(„, fl(„), ]
Ú),     (4.6) 

where flö(„) = Nflöi(„), … , flöÍji(„)V and 	]ÙÚ = N]Ùi, … , ]ÙÍV. Specifically, for 
a given partition of the sample, the coefficients are estimated by 
minimizing 	6∞(„, fl(„), ]Ú) . Then a search has to be conducted over all 
permissible partitions to find the break dates that achieve the global minimum. 
In Eq. 4.6, ¯ denotes this set of possible partitions and ensures that each 
estimated regime is a positive fraction of the sample. This is what we referred 
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 

…à
‚(∆à)|‡Q; fl) = fl(„)′‡Q,   (4.2) 

where α(τ)  is a vector of coefficients that depends on the quantile „ , …à‚ . 
Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  
For the purposes of estimation, we assume the conditional quantile function in 
Eq. 2 to be linear in parameters and to be affected by u structural changes, as 
follows: 
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where „ denotes the quantile of interest, and where, as stated before, flè(„) 
(Î = 1,… ,u + 1) are the unknown parameters that are quantile dependent, 
and ]è¢ (Î = 1,… ,u)  (Î = 1,… ,u)  are the unknown break dates. In the 
absence of structural change, the model in Eq. 3 can be estimated by solving: 
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where ℝ>	are N-dimensional Real, for each cross-sectional unit in the factor 
model, but we eliminate the sub-index in K = 1,… , A to avoid unnecessary 
notation. °‚(S) is the check function given °‚(S) = SN„ − 1(S < 0)V (see 
Oka and Qu, 2011, and Koenker, 2005, for further details). Now suppose that 
the „th quantile (in our case a low quantile, such as the 10th percentile) is 
affected by u  structural changes, occurring at unknown dates (]i¢, … , ]Í
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where fl(„) = Nfli(„), … . , flÍji(„)V, ]¢ = 0 and 	]Íji = ]. Following Bai 
(1995, 1998), Oka and Qu (2011) propose estimating the break dates and 
coefficients fl(„) jointly by solving the following minimization problem: 

Nflö(„), ]ÙÚV = argminfl(‚),∞˜∈¯6∞(„, fl(„), ]
Ú),     (4.6) 

where flö(„) = Nflöi(„), … , flöÍji(„)V and 	]ÙÚ = N]Ùi, … , ]ÙÍV. Specifically, for 
a given partition of the sample, the coefficients are estimated by 
minimizing 	6∞(„, fl(„), ]Ú) . Then a search has to be conducted over all 
permissible partitions to find the break dates that achieve the global minimum. 
In Eq. 4.6, ¯ denotes this set of possible partitions and ensures that each 
estimated regime is a positive fraction of the sample. This is what we referred 
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 
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where α(τ)  is a vector of coefficients that depends on the quantile „ , …à‚ . 
Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  
For the purposes of estimation, we assume the conditional quantile function in 
Eq. 2 to be linear in parameters and to be affected by u structural changes, as 
follows: 
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where „ denotes the quantile of interest, and where, as stated before, flè(„) 
(Î = 1,… ,u + 1) are the unknown parameters that are quantile dependent, 
and ]è¢ (Î = 1,… ,u)  (Î = 1,… ,u)  are the unknown break dates. In the 
absence of structural change, the model in Eq. 3 can be estimated by solving: 
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where ℝ>	are N-dimensional Real, for each cross-sectional unit in the factor 
model, but we eliminate the sub-index in K = 1,… , A to avoid unnecessary 
notation. °‚(S) is the check function given °‚(S) = SN„ − 1(S < 0)V (see 
Oka and Qu, 2011, and Koenker, 2005, for further details). Now suppose that 
the „th quantile (in our case a low quantile, such as the 10th percentile) is 
affected by u  structural changes, occurring at unknown dates (]i¢, … , ]Í
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where fl(„) = Nfli(„), … . , flÍji(„)V, ]¢ = 0 and 	]Íji = ]. Following Bai 
(1995, 1998), Oka and Qu (2011) propose estimating the break dates and 
coefficients fl(„) jointly by solving the following minimization problem: 

Nflö(„), ]ÙÚV = argminfl(‚),∞˜∈¯6∞(„, fl(„), ]
Ú),     (4.6) 

where flö(„) = Nflöi(„), … , flöÍji(„)V and 	]ÙÚ = N]Ùi, … , ]ÙÍV. Specifically, for 
a given partition of the sample, the coefficients are estimated by 
minimizing 	6∞(„, fl(„), ]Ú) . Then a search has to be conducted over all 
permissible partitions to find the break dates that achieve the global minimum. 
In Eq. 4.6, ¯ denotes this set of possible partitions and ensures that each 
estimated regime is a positive fraction of the sample. This is what we referred 
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 
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where α(τ)  is a vector of coefficients that depends on the quantile „ , …à‚ . 
Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  
For the purposes of estimation, we assume the conditional quantile function in 
Eq. 2 to be linear in parameters and to be affected by u structural changes, as 
follows: 
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where „ denotes the quantile of interest, and where, as stated before, flè(„) 
(Î = 1,… ,u + 1) are the unknown parameters that are quantile dependent, 
and ]è¢ (Î = 1,… ,u)  (Î = 1,… ,u)  are the unknown break dates. In the 
absence of structural change, the model in Eq. 3 can be estimated by solving: 
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where ℝ>	are N-dimensional Real, for each cross-sectional unit in the factor 
model, but we eliminate the sub-index in K = 1,… , A to avoid unnecessary 
notation. °‚(S) is the check function given °‚(S) = SN„ − 1(S < 0)V (see 
Oka and Qu, 2011, and Koenker, 2005, for further details). Now suppose that 
the „th quantile (in our case a low quantile, such as the 10th percentile) is 
affected by u  structural changes, occurring at unknown dates (]i¢, … , ]Í
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where fl(„) = Nfli(„), … . , flÍji(„)V, ]¢ = 0 and 	]Íji = ]. Following Bai 
(1995, 1998), Oka and Qu (2011) propose estimating the break dates and 
coefficients fl(„) jointly by solving the following minimization problem: 

Nflö(„), ]ÙÚV = argminfl(‚),∞˜∈¯6∞(„, fl(„), ]
Ú),     (4.6) 

where flö(„) = Nflöi(„), … , flöÍji(„)V and 	]ÙÚ = N]Ùi, … , ]ÙÍV. Specifically, for 
a given partition of the sample, the coefficients are estimated by 
minimizing 	6∞(„, fl(„), ]Ú) . Then a search has to be conducted over all 
permissible partitions to find the break dates that achieve the global minimum. 
In Eq. 4.6, ¯ denotes this set of possible partitions and ensures that each 
estimated regime is a positive fraction of the sample. This is what we referred 
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 
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where α(τ)  is a vector of coefficients that depends on the quantile „ , …à‚ . 
Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  
For the purposes of estimation, we assume the conditional quantile function in 
Eq. 2 to be linear in parameters and to be affected by u structural changes, as 
follows: 
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where „ denotes the quantile of interest, and where, as stated before, flè(„) 
(Î = 1,… ,u + 1) are the unknown parameters that are quantile dependent, 
and ]è¢ (Î = 1,… ,u)  (Î = 1,… ,u)  are the unknown break dates. In the 
absence of structural change, the model in Eq. 3 can be estimated by solving: 
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where ℝ>	are N-dimensional Real, for each cross-sectional unit in the factor 
model, but we eliminate the sub-index in K = 1,… , A to avoid unnecessary 
notation. °‚(S) is the check function given °‚(S) = SN„ − 1(S < 0)V (see 
Oka and Qu, 2011, and Koenker, 2005, for further details). Now suppose that 
the „th quantile (in our case a low quantile, such as the 10th percentile) is 
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¢) . 
Then, we can define the following function for a set of feasible break dates 
]Ú = (]i, … , ]Í): 

6∞(„, fl(„), ]
Ú) = ∑ ∑ °‚N∆à) − flèji

X („)‡QV
∞çù�
)ê∞çji

Í
èê¢ ,     (4.5) 

where fl(„) = Nfli(„), … . , flÍji(„)V, ]¢ = 0 and 	]Íji = ]. Following Bai 
(1995, 1998), Oka and Qu (2011) propose estimating the break dates and 
coefficients fl(„) jointly by solving the following minimization problem: 
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where flö(„) = Nflöi(„), … , flöÍji(„)V and 	]ÙÚ = N]Ùi, … , ]ÙÍV. Specifically, for 
a given partition of the sample, the coefficients are estimated by 
minimizing 	6∞(„, fl(„), ]Ú) . Then a search has to be conducted over all 
permissible partitions to find the break dates that achieve the global minimum. 
In Eq. 4.6, ¯ denotes this set of possible partitions and ensures that each 
estimated regime is a positive fraction of the sample. This is what we referred 
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 
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where α(τ)  is a vector of coefficients that depends on the quantile „ , …à‚ . 
Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
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quantiles of interest, which makes it a suitable tool for our purposes.  
In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  
For the purposes of estimation, we assume the conditional quantile function in 
Eq. 2 to be linear in parameters and to be affected by u structural changes, as 
follows: 
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where „ denotes the quantile of interest, and where, as stated before, flè(„) 
(Î = 1,… ,u + 1) are the unknown parameters that are quantile dependent, 
and ]è¢ (Î = 1,… ,u)  (Î = 1,… ,u)  are the unknown break dates. In the 
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where ℝ>	are N-dimensional Real, for each cross-sectional unit in the factor 
model, but we eliminate the sub-index in K = 1,… , A to avoid unnecessary 
notation. °‚(S) is the check function given °‚(S) = SN„ − 1(S < 0)V (see 
Oka and Qu, 2011, and Koenker, 2005, for further details). Now suppose that 
the „th quantile (in our case a low quantile, such as the 10th percentile) is 
affected by u  structural changes, occurring at unknown dates (]i¢, … , ]Í
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Then, we can define the following function for a set of feasible break dates 
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where fl(„) = Nfli(„), … . , flÍji(„)V, ]¢ = 0 and 	]Íji = ]. Following Bai 
(1995, 1998), Oka and Qu (2011) propose estimating the break dates and 
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where flö(„) = Nflöi(„), … , flöÍji(„)V and 	]ÙÚ = N]Ùi, … , ]ÙÍV. Specifically, for 
a given partition of the sample, the coefficients are estimated by 
minimizing 	6∞(„, fl(„), ]Ú) . Then a search has to be conducted over all 
permissible partitions to find the break dates that achieve the global minimum. 
In Eq. 4.6, ¯ denotes this set of possible partitions and ensures that each 
estimated regime is a positive fraction of the sample. This is what we referred 
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momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 
The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 
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where α(τ)  is a vector of coefficients that depends on the quantile „ , …à‚ . 
Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 
corresponding for example to setting	„ = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix flö(„), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  
Finally, we use recent advances in the econometrics literature to test the 
stability of the load coefficients in the matrix	flö(„). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
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the check function over all permissible break dates. The underlying 
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 denotes this set of possible partitions and ensures that 
each estimated regime is a positive fraction of the sample. This is what we 
referred to above when discussing the feasible break date.
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In our empirical application, we permit a maximum number of regimes 
m = 3, corresponding to two structural changes, so as to limit compu-
tational costs. This means our break dates should be interpreted as the 
“biggest” structural changes in the sample. Nevertheless, we used the 
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to above when discussing the feasible break date. 

In our empirical application, we permit a maximum number of regimes u =
3, corresponding to two structural changes, so as to limit computational costs. 
This means our break dates should be interpreted as the “biggest” structural 
changes in the sample. Nevertheless, we used the 6˘‚	statistic proposed by 
Qu (2008) to determine the optimal number of breaks in case it was less than 
three. The 6˘‚ test is designed to detect structural changes in a given quantile 
„, and is defined as: 

6˘‚ =
sup

§ ∈ [0,1] ˝N„(1 − „)V
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®:˛,∞Nflö(„)V − §:i,∞Nflö(„)V©˝
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where, 

:˛,∞Nflö(„)V = (∑ ‡Q
∞
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⌊˛∞⌋
)êi #‚(∆à) − flö′(„)‡Q),          (4.8) 

flö′(„)  is the estimate using the whole sample and assuming no structural 
change. ‖∙‖ˇ	 is the sup norm. We also require the test labeled 6˘‚(& + 1|&) 
in case we detect more than one break. This test is employed as follows: 
suppose a model with & breaks has been estimated with the estimates denoted 
by  ]Ùi, … , ]Ù' . We proceed by testing each of the & + 1  segments for the 
presence of an additional break. We let 6˘‚,è denote the 6˘‚ test applied to 
the Îth segment as follows: 

6˘‚,è =
sup

§ ∈ [0,1]˝N„(1 − „)V
{i/ã (:˛,∞Ùçl�,∞Ùç )flöè(„)* − §:i,,∞Ùçl�,∞Ùç )flöè(„)*+˝ˇ

,  (4.9) 

and analogous definitions for :˛,∞Ùçl�,∞Ùç  and :i,,∞Ùçl�,∞Ùç  to those presented in 
Eq. 8. In this case 6˘‚(& + 1|&) is equal to the maximum of the 6˘‚,è over 
& + 1 segments: 

6˘‚(& + 1|&) = max
1 ≤ Î ≤ & + 16˘‚,è.   (4.10) 

We reject this in favor of a model with & + 1 breaks if the resulting value is 
sufficiently large and provided	& < 2, so as to keep the computational costs to 
a minimum. The critical values for performing these comparisons are provided 
by Oka and Qu (2011), while their construction is in line with the logic 
underpinning the work by Bai and Perron (1998). 
4.4. Data 

To construct the systemic risk factor affecting the financial institutions in our 
sample we used 113 banks, 59 insurance companies (life, non-life and 
reinsurance), and 50 firms providing other financial services (i.e., asset 
management, specialty finance, financial administration, and investment 
services). All 222 financial institutions are listed in Table 4.1 (banks) and Table 
A in the appendix. Our sample resembles that employed by White et al. 
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(2015). Those authors used in their estimations firms belonging to three main 
global sub-indices: banks, financial services and insurance, according to the 
firms’ market capitalization. We do so seeking for some comparability between 
our results, in terms of the stability of the quantile coefficients, and the main 
findings of White et al. (2015). Their data set include the biggest institutions in 
terms of market capitalization in each region and therefore we expect them to 
be the most relevant ones in terms of global financial stability. We eliminated 
from our original sample companies with a large number of missing 
observations at the beginning or the end of the sample period. All data were 
taken from Datastream. The sample includes weekly closing prices, for each 
Friday, from 21 July 2000 to 20 November 2015. Prices were transformed into 
continuously compounded log- returns, giving an estimation sample size of 
800 weeks in total.  
The equity market uncertainty index was retrieved from the webpage 
www.policyuncertainty.com. We aggregated this daily index over the week to 
obtain a weekly index. In this way, we avoided excluding any uncertainty 
episodes that occur on days of the week other than Friday. We transformed 
the original index to natural logarithms and performed two unit root tests (the 
augmented Dickey-Fuller test and the Dickey-Fuller generalized least squares 
test) on the series. In both cases, we rejected the null of a unit root with 
statistics equal to -4.52 and -6.48, respectively, and associated critical values at 
the 1% significance level: 2.58 and -2.57. This means that the equity market 
uncertainty index can be included without differentiating it in the quantile 
regressions that we present in what follows. This eases the explanation of the 
results, as the estimated effects will be directly attributable to the impact of 
log-uncertainty variations on the banks’ returns.  
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We reject this in favor of a model with & + 1 breaks if the resulting value is 
sufficiently large and provided	& < 2, so as to keep the computational costs to 
a minimum. The critical values for performing these comparisons are provided 
by Oka and Qu (2011), while their construction is in line with the logic 
underpinning the work by Bai and Perron (1998). 
4.4. Data 

To construct the systemic risk factor affecting the financial institutions in our 
sample we used 113 banks, 59 insurance companies (life, non-life and 
reinsurance), and 50 firms providing other financial services (i.e., asset 
management, specialty finance, financial administration, and investment 
services). All 222 financial institutions are listed in Table 4.1 (banks) and Table 
A in the appendix. Our sample resembles that employed by White et al. 
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(2015). Those authors used in their estimations firms belonging to three main 
global sub-indices: banks, financial services and insurance, according to the 
firms’ market capitalization. We do so seeking for some comparability between 
our results, in terms of the stability of the quantile coefficients, and the main 
findings of White et al. (2015). Their data set include the biggest institutions in 
terms of market capitalization in each region and therefore we expect them to 
be the most relevant ones in terms of global financial stability. We eliminated 
from our original sample companies with a large number of missing 
observations at the beginning or the end of the sample period. All data were 
taken from Datastream. The sample includes weekly closing prices, for each 
Friday, from 21 July 2000 to 20 November 2015. Prices were transformed into 
continuously compounded log- returns, giving an estimation sample size of 
800 weeks in total.  
The equity market uncertainty index was retrieved from the webpage 
www.policyuncertainty.com. We aggregated this daily index over the week to 
obtain a weekly index. In this way, we avoided excluding any uncertainty 
episodes that occur on days of the week other than Friday. We transformed 
the original index to natural logarithms and performed two unit root tests (the 
augmented Dickey-Fuller test and the Dickey-Fuller generalized least squares 
test) on the series. In both cases, we rejected the null of a unit root with 
statistics equal to -4.52 and -6.48, respectively, and associated critical values at 
the 1% significance level: 2.58 and -2.57. This means that the equity market 
uncertainty index can be included without differentiating it in the quantile 
regressions that we present in what follows. This eases the explanation of the 
results, as the estimated effects will be directly attributable to the impact of 
log-uncertainty variations on the banks’ returns.  
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the 1% significance level: 2.58 and -2.57. This means that the equity market 
uncertainty index can be included without differentiating it in the quantile 
regressions that we present in what follows. This eases the explanation of the 
results, as the estimated effects will be directly attributable to the impact of 
log-uncertainty variations on the banks’ returns.  
 
  

	  (4.8)

	 81	

to above when discussing the feasible break date. 

In our empirical application, we permit a maximum number of regimes u =
3, corresponding to two structural changes, so as to limit computational costs. 
This means our break dates should be interpreted as the “biggest” structural 
changes in the sample. Nevertheless, we used the 6˘‚	statistic proposed by 
Qu (2008) to determine the optimal number of breaks in case it was less than 
three. The 6˘‚ test is designed to detect structural changes in a given quantile 
„, and is defined as: 

6˘‚ =
sup

§ ∈ [0,1] ˝N„(1 − „)V
{i/ã

®:˛,∞Nflö(„)V − §:i,∞Nflö(„)V©˝
ˇ

,      (4.7) 

where, 

:˛,∞Nflö(„)V = (∑ ‡Q
∞
)êi ‡Q

X){i/ã ∑ ‡Q
⌊˛∞⌋
)êi #‚(∆à) − flö′(„)‡Q),          (4.8) 

flö′(„)  is the estimate using the whole sample and assuming no structural 
change. ‖∙‖ˇ	 is the sup norm. We also require the test labeled 6˘‚(& + 1|&) 
in case we detect more than one break. This test is employed as follows: 
suppose a model with & breaks has been estimated with the estimates denoted 
by  ]Ùi, … , ]Ù' . We proceed by testing each of the & + 1  segments for the 
presence of an additional break. We let 6˘‚,è denote the 6˘‚ test applied to 
the Îth segment as follows: 

6˘‚,è =
sup

§ ∈ [0,1]˝N„(1 − „)V
{i/ã (:˛,∞Ùçl�,∞Ùç )flöè(„)* − §:i,,∞Ùçl�,∞Ùç )flöè(„)*+˝ˇ

,  (4.9) 

and analogous definitions for :˛,∞Ùçl�,∞Ùç  and :i,,∞Ùçl�,∞Ùç  to those presented in 
Eq. 8. In this case 6˘‚(& + 1|&) is equal to the maximum of the 6˘‚,è over 
& + 1 segments: 

6˘‚(& + 1|&) = max
1 ≤ Î ≤ & + 16˘‚,è.   (4.10) 

We reject this in favor of a model with & + 1 breaks if the resulting value is 
sufficiently large and provided	& < 2, so as to keep the computational costs to 
a minimum. The critical values for performing these comparisons are provided 
by Oka and Qu (2011), while their construction is in line with the logic 
underpinning the work by Bai and Perron (1998). 
4.4. Data 

To construct the systemic risk factor affecting the financial institutions in our 
sample we used 113 banks, 59 insurance companies (life, non-life and 
reinsurance), and 50 firms providing other financial services (i.e., asset 
management, specialty finance, financial administration, and investment 
services). All 222 financial institutions are listed in Table 4.1 (banks) and Table 
A in the appendix. Our sample resembles that employed by White et al. 

	 82	

(2015). Those authors used in their estimations firms belonging to three main 
global sub-indices: banks, financial services and insurance, according to the 
firms’ market capitalization. We do so seeking for some comparability between 
our results, in terms of the stability of the quantile coefficients, and the main 
findings of White et al. (2015). Their data set include the biggest institutions in 
terms of market capitalization in each region and therefore we expect them to 
be the most relevant ones in terms of global financial stability. We eliminated 
from our original sample companies with a large number of missing 
observations at the beginning or the end of the sample period. All data were 
taken from Datastream. The sample includes weekly closing prices, for each 
Friday, from 21 July 2000 to 20 November 2015. Prices were transformed into 
continuously compounded log- returns, giving an estimation sample size of 
800 weeks in total.  
The equity market uncertainty index was retrieved from the webpage 
www.policyuncertainty.com. We aggregated this daily index over the week to 
obtain a weekly index. In this way, we avoided excluding any uncertainty 
episodes that occur on days of the week other than Friday. We transformed 
the original index to natural logarithms and performed two unit root tests (the 
augmented Dickey-Fuller test and the Dickey-Fuller generalized least squares 
test) on the series. In both cases, we rejected the null of a unit root with 
statistics equal to -4.52 and -6.48, respectively, and associated critical values at 
the 1% significance level: 2.58 and -2.57. This means that the equity market 
uncertainty index can be included without differentiating it in the quantile 
regressions that we present in what follows. This eases the explanation of the 
results, as the estimated effects will be directly attributable to the impact of 
log-uncertainty variations on the banks’ returns.  
 
  

 is the estimate using the whole sample and assuming no struc-
tural change. 

	 81	

to above when discussing the feasible break date. 

In our empirical application, we permit a maximum number of regimes u =
3, corresponding to two structural changes, so as to limit computational costs. 
This means our break dates should be interpreted as the “biggest” structural 
changes in the sample. Nevertheless, we used the 6˘‚	statistic proposed by 
Qu (2008) to determine the optimal number of breaks in case it was less than 
three. The 6˘‚ test is designed to detect structural changes in a given quantile 
„, and is defined as: 

6˘‚ =
sup

§ ∈ [0,1] ˝N„(1 − „)V
{i/ã

®:˛,∞Nflö(„)V − §:i,∞Nflö(„)V©˝
ˇ

,      (4.7) 

where, 

:˛,∞Nflö(„)V = (∑ ‡Q
∞
)êi ‡Q

X){i/ã ∑ ‡Q
⌊˛∞⌋
)êi #‚(∆à) − flö′(„)‡Q),          (4.8) 

flö′(„)  is the estimate using the whole sample and assuming no structural 
change. ‖∙‖ˇ	 is the sup norm. We also require the test labeled 6˘‚(& + 1|&) 
in case we detect more than one break. This test is employed as follows: 
suppose a model with & breaks has been estimated with the estimates denoted 
by  ]Ùi, … , ]Ù' . We proceed by testing each of the & + 1  segments for the 
presence of an additional break. We let 6˘‚,è denote the 6˘‚ test applied to 
the Îth segment as follows: 

6˘‚,è =
sup

§ ∈ [0,1]˝N„(1 − „)V
{i/ã (:˛,∞Ùçl�,∞Ùç )flöè(„)* − §:i,,∞Ùçl�,∞Ùç )flöè(„)*+˝ˇ

,  (4.9) 

and analogous definitions for :˛,∞Ùçl�,∞Ùç  and :i,,∞Ùçl�,∞Ùç  to those presented in 
Eq. 8. In this case 6˘‚(& + 1|&) is equal to the maximum of the 6˘‚,è over 
& + 1 segments: 

6˘‚(& + 1|&) = max
1 ≤ Î ≤ & + 16˘‚,è.   (4.10) 

We reject this in favor of a model with & + 1 breaks if the resulting value is 
sufficiently large and provided	& < 2, so as to keep the computational costs to 
a minimum. The critical values for performing these comparisons are provided 
by Oka and Qu (2011), while their construction is in line with the logic 
underpinning the work by Bai and Perron (1998). 
4.4. Data 

To construct the systemic risk factor affecting the financial institutions in our 
sample we used 113 banks, 59 insurance companies (life, non-life and 
reinsurance), and 50 firms providing other financial services (i.e., asset 
management, specialty finance, financial administration, and investment 
services). All 222 financial institutions are listed in Table 4.1 (banks) and Table 
A in the appendix. Our sample resembles that employed by White et al. 

	 82	

(2015). Those authors used in their estimations firms belonging to three main 
global sub-indices: banks, financial services and insurance, according to the 
firms’ market capitalization. We do so seeking for some comparability between 
our results, in terms of the stability of the quantile coefficients, and the main 
findings of White et al. (2015). Their data set include the biggest institutions in 
terms of market capitalization in each region and therefore we expect them to 
be the most relevant ones in terms of global financial stability. We eliminated 
from our original sample companies with a large number of missing 
observations at the beginning or the end of the sample period. All data were 
taken from Datastream. The sample includes weekly closing prices, for each 
Friday, from 21 July 2000 to 20 November 2015. Prices were transformed into 
continuously compounded log- returns, giving an estimation sample size of 
800 weeks in total.  
The equity market uncertainty index was retrieved from the webpage 
www.policyuncertainty.com. We aggregated this daily index over the week to 
obtain a weekly index. In this way, we avoided excluding any uncertainty 
episodes that occur on days of the week other than Friday. We transformed 
the original index to natural logarithms and performed two unit root tests (the 
augmented Dickey-Fuller test and the Dickey-Fuller generalized least squares 
test) on the series. In both cases, we rejected the null of a unit root with 
statistics equal to -4.52 and -6.48, respectively, and associated critical values at 
the 1% significance level: 2.58 and -2.57. This means that the equity market 
uncertainty index can be included without differentiating it in the quantile 
regressions that we present in what follows. This eases the explanation of the 
results, as the estimated effects will be directly attributable to the impact of 
log-uncertainty variations on the banks’ returns.  
 
  

 is the sup norm. We also require the test labeled 

	 81	

to above when discussing the feasible break date. 

In our empirical application, we permit a maximum number of regimes u =
3, corresponding to two structural changes, so as to limit computational costs. 
This means our break dates should be interpreted as the “biggest” structural 
changes in the sample. Nevertheless, we used the 6˘‚	statistic proposed by 
Qu (2008) to determine the optimal number of breaks in case it was less than 
three. The 6˘‚ test is designed to detect structural changes in a given quantile 
„, and is defined as: 

6˘‚ =
sup

§ ∈ [0,1] ˝N„(1 − „)V
{i/ã

®:˛,∞Nflö(„)V − §:i,∞Nflö(„)V©˝
ˇ

,      (4.7) 

where, 

:˛,∞Nflö(„)V = (∑ ‡Q
∞
)êi ‡Q

X){i/ã ∑ ‡Q
⌊˛∞⌋
)êi #‚(∆à) − flö′(„)‡Q),          (4.8) 

flö′(„)  is the estimate using the whole sample and assuming no structural 
change. ‖∙‖ˇ	 is the sup norm. We also require the test labeled 6˘‚(& + 1|&) 
in case we detect more than one break. This test is employed as follows: 
suppose a model with & breaks has been estimated with the estimates denoted 
by  ]Ùi, … , ]Ù' . We proceed by testing each of the & + 1  segments for the 
presence of an additional break. We let 6˘‚,è denote the 6˘‚ test applied to 
the Îth segment as follows: 

6˘‚,è =
sup

§ ∈ [0,1]˝N„(1 − „)V
{i/ã (:˛,∞Ùçl�,∞Ùç )flöè(„)* − §:i,,∞Ùçl�,∞Ùç )flöè(„)*+˝ˇ

,  (4.9) 

and analogous definitions for :˛,∞Ùçl�,∞Ùç  and :i,,∞Ùçl�,∞Ùç  to those presented in 
Eq. 8. In this case 6˘‚(& + 1|&) is equal to the maximum of the 6˘‚,è over 
& + 1 segments: 

6˘‚(& + 1|&) = max
1 ≤ Î ≤ & + 16˘‚,è.   (4.10) 

We reject this in favor of a model with & + 1 breaks if the resulting value is 
sufficiently large and provided	& < 2, so as to keep the computational costs to 
a minimum. The critical values for performing these comparisons are provided 
by Oka and Qu (2011), while their construction is in line with the logic 
underpinning the work by Bai and Perron (1998). 
4.4. Data 
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(2015). Those authors used in their estimations firms belonging to three main 
global sub-indices: banks, financial services and insurance, according to the 
firms’ market capitalization. We do so seeking for some comparability between 
our results, in terms of the stability of the quantile coefficients, and the main 
findings of White et al. (2015). Their data set include the biggest institutions in 
terms of market capitalization in each region and therefore we expect them to 
be the most relevant ones in terms of global financial stability. We eliminated 
from our original sample companies with a large number of missing 
observations at the beginning or the end of the sample period. All data were 
taken from Datastream. The sample includes weekly closing prices, for each 
Friday, from 21 July 2000 to 20 November 2015. Prices were transformed into 
continuously compounded log- returns, giving an estimation sample size of 
800 weeks in total.  
The equity market uncertainty index was retrieved from the webpage 
www.policyuncertainty.com. We aggregated this daily index over the week to 
obtain a weekly index. In this way, we avoided excluding any uncertainty 
episodes that occur on days of the week other than Friday. We transformed 
the original index to natural logarithms and performed two unit root tests (the 
augmented Dickey-Fuller test and the Dickey-Fuller generalized least squares 
test) on the series. In both cases, we rejected the null of a unit root with 
statistics equal to -4.52 and -6.48, respectively, and associated critical values at 
the 1% significance level: 2.58 and -2.57. This means that the equity market 
uncertainty index can be included without differentiating it in the quantile 
regressions that we present in what follows. This eases the explanation of the 
results, as the estimated effects will be directly attributable to the impact of 
log-uncertainty variations on the banks’ returns.  
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(2015). Those authors used in their estimations firms belonging to three main 
global sub-indices: banks, financial services and insurance, according to the 
firms’ market capitalization. We do so seeking for some comparability between 
our results, in terms of the stability of the quantile coefficients, and the main 
findings of White et al. (2015). Their data set include the biggest institutions in 
terms of market capitalization in each region and therefore we expect them to 
be the most relevant ones in terms of global financial stability. We eliminated 
from our original sample companies with a large number of missing 
observations at the beginning or the end of the sample period. All data were 
taken from Datastream. The sample includes weekly closing prices, for each 
Friday, from 21 July 2000 to 20 November 2015. Prices were transformed into 
continuously compounded log- returns, giving an estimation sample size of 
800 weeks in total.  
The equity market uncertainty index was retrieved from the webpage 
www.policyuncertainty.com. We aggregated this daily index over the week to 
obtain a weekly index. In this way, we avoided excluding any uncertainty 
episodes that occur on days of the week other than Friday. We transformed 
the original index to natural logarithms and performed two unit root tests (the 
augmented Dickey-Fuller test and the Dickey-Fuller generalized least squares 
test) on the series. In both cases, we rejected the null of a unit root with 
statistics equal to -4.52 and -6.48, respectively, and associated critical values at 
the 1% significance level: 2.58 and -2.57. This means that the equity market 
uncertainty index can be included without differentiating it in the quantile 
regressions that we present in what follows. This eases the explanation of the 
results, as the estimated effects will be directly attributable to the impact of 
log-uncertainty variations on the banks’ returns.  
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results, as the estimated effects will be directly attributable to the impact of 
log-uncertainty variations on the banks’ returns.  
 
  

 over 

	 81	

to above when discussing the feasible break date. 

In our empirical application, we permit a maximum number of regimes u =
3, corresponding to two structural changes, so as to limit computational costs. 
This means our break dates should be interpreted as the “biggest” structural 
changes in the sample. Nevertheless, we used the 6˘‚	statistic proposed by 
Qu (2008) to determine the optimal number of breaks in case it was less than 
three. The 6˘‚ test is designed to detect structural changes in a given quantile 
„, and is defined as: 

6˘‚ =
sup

§ ∈ [0,1] ˝N„(1 − „)V
{i/ã

®:˛,∞Nflö(„)V − §:i,∞Nflö(„)V©˝
ˇ

,      (4.7) 

where, 

:˛,∞Nflö(„)V = (∑ ‡Q
∞
)êi ‡Q

X){i/ã ∑ ‡Q
⌊˛∞⌋
)êi #‚(∆à) − flö′(„)‡Q),          (4.8) 

flö′(„)  is the estimate using the whole sample and assuming no structural 
change. ‖∙‖ˇ	 is the sup norm. We also require the test labeled 6˘‚(& + 1|&) 
in case we detect more than one break. This test is employed as follows: 
suppose a model with & breaks has been estimated with the estimates denoted 
by  ]Ùi, … , ]Ù' . We proceed by testing each of the & + 1  segments for the 
presence of an additional break. We let 6˘‚,è denote the 6˘‚ test applied to 
the Îth segment as follows: 

6˘‚,è =
sup

§ ∈ [0,1]˝N„(1 − „)V
{i/ã (:˛,∞Ùçl�,∞Ùç )flöè(„)* − §:i,,∞Ùçl�,∞Ùç )flöè(„)*+˝ˇ

,  (4.9) 

and analogous definitions for :˛,∞Ùçl�,∞Ùç  and :i,,∞Ùçl�,∞Ùç  to those presented in 
Eq. 8. In this case 6˘‚(& + 1|&) is equal to the maximum of the 6˘‚,è over 
& + 1 segments: 

6˘‚(& + 1|&) = max
1 ≤ Î ≤ & + 16˘‚,è.   (4.10) 

We reject this in favor of a model with & + 1 breaks if the resulting value is 
sufficiently large and provided	& < 2, so as to keep the computational costs to 
a minimum. The critical values for performing these comparisons are provided 
by Oka and Qu (2011), while their construction is in line with the logic 
underpinning the work by Bai and Perron (1998). 
4.4. Data 

To construct the systemic risk factor affecting the financial institutions in our 
sample we used 113 banks, 59 insurance companies (life, non-life and 
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comparisons are provided by Oka and Qu (2011), while their construc-
tion is in line with the logic underpinning the work by Bai and Perron 
(1998).

4.4. Data

To construct the systemic risk factor affecting the financial institutions 
in our sample we used 113 banks, 59 insurance companies (life, non-life 
and reinsurance), and 50 firms providing other financial services (i.e., 
asset management, specialty finance, financial administration, and in-
vestment services). All 222 financial institutions are listed in Table 4.1 
(banks) and Table A in the appendix. Our sample resembles that emplo-
yed by White et al. (2015). Those authors used in their estimations firms 
belonging to three main global sub-indices: banks, financial services 
and insurance, according to the firms’ market capitalization. We do so 
seeking for some comparability between our results, in terms of the sta-
bility of the quantile coefficients, and the main findings of White et al. 
(2015). Their data set include the biggest institutions in terms of market 
capitalization in each region and therefore we expect them to be the 
most relevant ones in terms of global financial stability. We eliminated 
from our original sample companies with a large number of missing 
observations at the beginning or the end of the sample period. All data 
were taken from Datastream. The sample includes weekly closing prices, 
for each Friday, from 21 July 2000 to 20 November 2015. Prices were 
transformed into continuously compounded log-returns, giving an esti-
mation sample size of 800 weeks in total. 

The equity market uncertainty index was retrieved from the webpage 
www.policyuncertainty.com. We aggregated this daily index over the 
week to obtain a weekly index. In this way, we avoided excluding any 
uncertainty episodes that occur on days of the week other than Friday. 
We transformed the original index to natural logarithms and performed 
two unit root tests (the augmented Dickey-Fuller test and the Dickey-
Fuller generalized least squares test) on the series. In both cases, we 
rejected the null of a unit root with statistics equal to -4.52 and -6.48, 
respectively, and associated critical values at the 1% significance level: 
2.58 and -2.57. This means that the equity market uncertainty index can 
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be included without differentiating it in the quantile regressions that 
we present in what follows. This eases the explanation of the results, as 
the estimated effects will be directly attributable to the impact of log-
uncertainty variations on the banks’ returns. 

Table 4. 1. Banks in our Sample

NAME MNE NAME MNEM NAME MNEM NAME MNEM

77 BANK SSBK COMMERZ-
BANK (XET) CBKX HUNTING-

TON BCSH. HBAN
PEOPLES 
UNITED 
FINANCIAL

PBCT

ALLIED IRISH 
BANKS ALBK CREDIT SUISSE 

GROUP N CSGN HYAKUGO 
BANK OBAN ROYAL BANK 

OF SCTL.GP. RBS

ALPHA BANK PIST BCA.PICCOLO 
CDT.VALTELL CVAL HYAKUJUSHI 

BANK OFBK REGIONS 
FINL.NEW RF

AUS.AND 
NZ.BANKING 
GP.

ANZX CANADIAN 
IMP.BK.COM. CM IYO BANK ISP RESONA 

HOLDINGS DBHI

AWA BANK AWAT CHIBA BANK CHBK INTESA 
SANPAOLO IYOT ROYAL BANK 

OF CANADA RY

BANK OF 
IRELAND BKIR CHUGOKU 

BANK CHUT JP MORGAN 
CHASE & CO. ISP SEB ‘A’ SEA

BANKINTER 
‘R’ BKT

SUMITOMO 
MITSUI TST.
HDG.

SMTH JYSKE BANK JYS STANDARD 
CHARTERED STAN

BARCLAYS BARC CITIGROUP C JOYO BANK JOYO SVENSKA 
HANDBKN.’A’ SVK

BB&T BBT COMERICA CMA JUROKU 
BANK JURT SWEDBANK 

‘A’ SWED

BANCA 
CARIGE CRG

COMMON-
WEALTH 
BK.OF AUS.

CBAX KBC GROUP KB SYDBANK SYD

BANCA 
MONTE DEI 
PASCHI

BMPS DANSKE BANK DAB KAGOSHIMA 
BANK KABK SAN-IN 

GODO BANK SIGB

BANCA 
POPOLARE DI 
MILANO

PMI DBS GROUP 
HOLDINGS DBSS KEIYO BANK CSOG SHIGA BANK SHIG

BANCA PPO.
DI SONDRIO BPSO DEUTSCHE 

BANK (XET) DBKX KEYCORP KEY
SHINKIN 
CENTRAL 
BANK PF.

SKCB

BANCA PPO.
EMILIA 
ROMAGNA

BPE DEXIA DEX
LLOYDS 
BANKING 
GROUP

LLOY
SUMITOMO 
MITSUI FINL.
GP.

SMFI

BBV.
ARGENTARIA BBVA DNB NOR 

(FRA) DNB M&T BANK MTB SUNTRUST 
BANKS STI
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NAME MNE NAME MNEM NAME MNEM NAME MNEM

BANCO 
COMR.
PORTUGUES 
‘R’

BCP DAISHI BANK DANK MEDIOBAN-
CA (FRA) MB SURUGA 

BANK SURB

BANCO 
ESPIRITO 
SANTO SUSP

BES EUROBANK 
ERGASIAS EFG

NATIONAL 
BK.OF 
GREECE

ETE
TORONTO-
DOMINION 
BANK

TD

BANCO 
POPOLARE BP ERSTE GROUP 

BANK ERS NATIXIS KN@F US BANCORP USB

BANCO 
POPULAR 
ESPANOL

POP FIFTH THIRD 
BANCORP FITB NORDEA 

BANK NDA UBS ‘R’ UBSN

BANCO 
SANTANDER SCH

FUKUOKA 
FINANCIAL 
GP.

FUKU NANTO 
BANK NANT UNICREDIT UCG

BNP PARIBAS BNP SOCIETE 
GENERALE SGE NATIONAL 

AUS.BANK NABX
UNITED 
OVERSEAS 
BANK

UOBS

BANK OF 
AMERICA BAC GUNMA BANK GMAB NAT.BK.OF 

CANADA NA VALIANT ‘R’ VATN

BANK OF 
EAST ASIA BEAA HSBC 

HOLDINGS HSBC
NEW YORK 
COMMUNITY 
BANC.

NYCB WELLS 
FARGO & CO WFC

BANK OF 
KYOTO KYTB HACHIJUNI 

BANK HABT
NISHI-
NIPPON CITY 
BANK

NSHI WESTPAC 
BANKING WBCX

BANK OF 
MONTREAL BMO HANG SENG 

BANK HSBA
OGAKI 
KYORITSU 
BANK

OKBT WING HANG 
BANK DEAD WHBK

BK.OF NOVA 
SCOTIA BNS HIGO BANK 

DEAD HIGO
OVERSEA-
CHINESE 
BKG.

OCBC YAMAGUCHI 
FINL.GP. YMCB

BANK OF 
QLND. BOQX HIROSHIMA 

BANK HRBK BANK OF 
PIRAEUS PEIR

BANK OF 
YOKOHAMA YOKO HOKUHOKU 

FINL. GP. HFIN PNC FINL.
SVS.GP. PNC

BENDIGO & 
ADELAIDE 
BANK

BENX HUDSON CITY 
BANC. HCBK POHJOLA 

PANKKI A POH

Note: The other financial institutions included in our sample are listed in Table A in the ap-
pendix and adhere to the following sector classification: Asset Management, Specialty Finance, 
Investment Service, Consumer Finance, Financial Administration, Life Insurance, Property and 
Casualty Insurance, Full Line Insurance, Insurance Broker, and Reinsurance. Although we used 
all the institutions to estimate the systemic factor, we only employed the banks to estimate the 
systemic risk models. Data and classification were taken from Datastream. 
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4.5. Results and discussion

In this section we present our main results, including, the number of 
break dates in the empirical model for Eq. 2 for each of the 113 banks 
in our sample, and a summary of the coefficients associated with each 
regime, which relate equity market uncertainty and systemic risk fac-
tor to the banks’ returns. We imposed a maximum number of breaks 
equal to 2, in the interests of reducing computational costs. As we al-
ready mentioned in the methodology, we permit a maximum number 
of structural breaks equal to 2. This means our break dates should be 
interpreted as the biggest structural changes in the sample. In principle, 
it would be possible to find more breaks (although not many of them, 
because only 40.71% of the sample presents at least two breaks), but in 
any case, such breaks would be smaller than the ones reported here. We 
emphasize that the reported break dates would not change if we allow 
for a greater number of breaks, because the estimation procedure is recur-
sive: only after one statistically significant break has been detected, the 
algorithm searches for a new break point. Therefore our results are robust, 
by construction, to setting a higher upper bound for the number of breaks. 
This strategy would not change our conclusions and instead would com-
plicate, not only the estimation, but also the presentation of our results.

A. The stable nature of systemic risk

Figure 4.1 shows our main results. For the 10th percentile we plotted 
each bank and its corresponding estimated break dates (the latter only 
when the null of no breaks is rejected and, therefore, at least one break 
is identified during the sample). A summary of the SQ statistics asso-
ciated with these dates and the critical values are provided in Table 4.2. 
From these estimates, we find that 30 of the 113 banks (26.54% of the 
sample) did not present any structural breaks during the sample period; 
37 (32.74%) presented only one statistically significant break; and 46 
banks (40.71% of the sample) achieved the maximum number of breaks 
allowed (i.e., 2). 

When structural breaks were present, they tended to concentrate on two 
dates: the first corresponded to weeks 27-28 (26 January 2001) and the se-
cond to week 55 (10 August 2001). The institution that houses a break date 
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furthest from the sample origin was Deutsche Bank, with a break located 
at week 213 (20 August 2004). The estimations of the first break dates, 
however, might be biased, since our sample partition started in the 27th 
week, which means this first break date might be earlier. However, this 
does not change our main finding, namely, in none of the 10th percentile 
cases (corresponding to the worst scenarios in terms of market returns for 
the banking industry) were we able to detect a structural change in the 
model’s parameters at a date close to that of the global financial crisis 
(2007-2009). Most of the banking returns that presented structural chan-
ges did so during a short interval, usually less than a year, corresponding 
roughly to 2001-2002 (though perhaps commencing a little earlier). 

The period spanning 2000-2001 was associated with the dotcom crisis. 
This crisis had more pronounced effects in North America and its main fi-
nancial partners than in other markets (and the break points tend to con-
centrate in a greater proportion in these markets). The period 2001-2004 
was also related to a change in the monetary policy posture of the US’ Fed 
and some regulatory changes in the main financial markets. The burst of 
the dotcom bubble had small effects on the real economy, which could 
have contributed to a change in the parameters relating the individual 
returns of some banks and the systemic factors, rather than to a change 
in the systemic factors themselves. Indeed, if the shocks witnessed by the 
markets during those years (2001-2004) had been more associated with 
the state of the economy, the model would have likely captured them, 
via the systemic factor that is calculated as the first principal component 
of the system. Indeed, the latter was probably the case during the global 
financial crisis in which there was not change in the parameters relating 
the factors and the banks. Nevertheless, as we emphasize in what fo-
llows, after analyzing the results in Table 4.3 we observe that, considering 
these breaks, the empirical distribution of the model’s parameters seems 
remarkably stable, when we compare the beginning with the end of the 
sample. This stability prevents us from pursuing a more detailed expla-
nation of these particular break dates at the beginning of the sample, or 
to overemphasize the statistical regimes that we found, even though they 
are practically equivalent in economic terms. In any case, our intuition 
points more to idiosyncratic factors explaining the breaks in 2000-2001 
and 2004, than to a dramatic change in the market conditions or in terms 
of the way in which systemic risk propagates during the sample.
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Table 4.2. Summary Statistics of the Estimated (SQ (τ = 0.1) Statistics

Number of Breaks SQ1 SQ 2

25th percentile 0.00 1.496 1.45

50th percentile 1.00 1.871 1.70

75th percentile 2.00 2.345 2.27

Average 1.14 2.093 1.833

Critical value - 1.624 1.521

Note: In the first column, we present summary statistics of the number of breaks detected (the 
maximum allowed being 2). In columns 2 and 3, we present the same information, plus the crit-
ical values for each SQ statistic at a 5% significance level. If the null is rejected, the associated 
break is statistically significant.

The results may appear somewhat surprising at first glance, given that 
they point to the relative stability of systemic risk transmission over 
the last decade –i.e., the coefficients describing the relationship bet-
ween the common shocks affecting the financial institutions around 
the globe and the financial returns of those firms did not experience 
significant changes after (or during) the global financial crisis. Yet, our 
results are in line with previous findings in the macroeconomics litera-
ture. Stock and Watson (2012), seeking to elucidate the macroeconomic 
dynamics of the 2007-2009 Great Recession in the United States and 
the subsequent slow recovery, use a dynamic factor model with 200 va-
riables. They draw two general conclusions: first, that the macroecono-
mic effects of many of the events that occurred during the 2007-2009 
collapse were just larger versions of shocks previously experienced, 
and, as such, the economy responded in an historically predictable 
fashion; and second, that uncertainty and financial disruptions were 
two major forces behind the macro shocks that hit the economy during 
the crisis. 

These two main conclusions concern us here. First, we also found that 
the shocks to the financial industry during the crisis did not give rise 
to effects beyond those expected prior to the crisis. On the contrary, 
the banks’ financial returns responded in a predictable way to the same 
shocks (uncertainty and the common shock). Stock and Watson’s (2012)
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Figure 4.1. Structural Changes in Quantile Coefficients
Each horizontal bar represents a bank. The first regime in the sample is blue, the sec-
ond regime is white and the third regime is grey. Only 30 banks display one regime, 37 
two regimes and 46 three regimes (the maximum allowed). The regimes were identified 
endogenously, using a quantile regression with breaks. The model included two sys-
temic factors: one common unobservable shock and equity market uncertainty.
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These two main conclusions concern us here. First, we also found that the 
shocks to the financial industry during the crisis did not give rise to effects 
beyond those expected prior to the crisis. On the contrary, the banks’ financial 
returns responded in a predictable way to the same shocks (uncertainty and 
the common shock). Stock and Watson’s (2012) second conclusion also seems 
particularly relevant in this context. To understand why this is so, we first 
present (see Table 4.3) the summary statistics describing the set of coefficients 
for the “first” and “last” regimes in our sample. In other words, to make the 
estimations for the 113 banks comparable, we grouped the institutions’ first 
and last regime coefficients, respectively. Note that the first regime for the 30 
banks with no breaks is equal to the second and third regimes, given that there 
are no structural breaks in their models. For a further 37 banks (those with 
one break), these estimates correspond to the first and second regimes, and, 
finally, for the remaining 46 banks (those with two breaks), they correspond to 
the first and third regimes.  
 

Table 4.3. First and Last Regime Summary Statistics of the Coefficients 

 First regime Last regime 

 -¢ -i -ã -¢ -i -ã 
Average -0.27 0.13 -0.32 -0.37 0.15 -0.41 
Std. Dev. 1.76 0.06 0.43 1.13 0.06 0.37 
Median -0.31 0.12 -0.25 -0.31 0.13 -0.37 
75th perc. 0.40 0.17 -0.11 0.25 0.19 -0.20 
25th perc. 0.39 0.17 -0.11 0.26 0.19 -0.20 
Max 7.22 0.39 0.72 4.02 0.32 0.41 
Min -5.72 0.00 -2.44 -4.04 0.02 -2.18 

Note: We present the summary statistics for the estimated coefficients for the first 
and last regimes in our sample: intercept, α1 (τ=0.1) and α2 (τ=0.1).  

 
Note that in most instances the coefficients accompanying the uncertainty 
factor display a negative sign. Indeed in 84.07% of cases during the first 
regime, these coefficients are negative, and only in 15.93% are they positive 
and in no instances are they statistically significant. The same is true for the 
last regime, where only 8.77% of the coefficients are positive, but none are 
statistically significant. 
In Table 4.4, we also report the percentage of coefficients that are statistically 
different from zero -i(„ = 0.1), at the 95% confidence level, which relate the 
returns of each bank and the common components of the system at the 10th 
percentile, and -ã(„ = 0.1) , which relates the returns and the market 
uncertainty factor, also at the 10th percentile. Table 4.4 also discriminates 
between the banks with no breaks, and banks with at least one break.  



Essays on Risk and Uncertainty in Economics and Finance

115

second conclusion also seems particularly relevant in this context. To 
understand why this is so, we first present (see Table 4.3) the summary 
statistics describing the set of coefficients for the “first” and “last” regi-
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Note: We present the summary statistics for the estimated coefficients for the first and last 
regimes in our sample: intercept, α1 (τ=0.1) and α2 (τ=0.1). 

Note that in most instances the coefficients accompanying the uncer-
tainty factor display a negative sign. Indeed in 84.07% of cases during 
the first regime, these coefficients are negative, and only in 15.93% are 
they positive and in no instances are they statistically significant. The 
same is true for the last regime, where only 8.77% of the coefficients are 
positive, but none are statistically significant.

In Table 4.4, we also report the percentage of coefficients that are sta-
tistically different from zero 
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These two main conclusions concern us here. First, we also found that the 
shocks to the financial industry during the crisis did not give rise to effects 
beyond those expected prior to the crisis. On the contrary, the banks’ financial 
returns responded in a predictable way to the same shocks (uncertainty and 
the common shock). Stock and Watson’s (2012) second conclusion also seems 
particularly relevant in this context. To understand why this is so, we first 
present (see Table 4.3) the summary statistics describing the set of coefficients 
for the “first” and “last” regimes in our sample. In other words, to make the 
estimations for the 113 banks comparable, we grouped the institutions’ first 
and last regime coefficients, respectively. Note that the first regime for the 30 
banks with no breaks is equal to the second and third regimes, given that there 
are no structural breaks in their models. For a further 37 banks (those with 
one break), these estimates correspond to the first and second regimes, and, 
finally, for the remaining 46 banks (those with two breaks), they correspond to 
the first and third regimes.  
 

Table 4.3. First and Last Regime Summary Statistics of the Coefficients 

 First regime Last regime 

 -¢ -i -ã -¢ -i -ã 
Average -0.27 0.13 -0.32 -0.37 0.15 -0.41 
Std. Dev. 1.76 0.06 0.43 1.13 0.06 0.37 
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Note: We present the summary statistics for the estimated coefficients for the first 
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Note that in most instances the coefficients accompanying the uncertainty 
factor display a negative sign. Indeed in 84.07% of cases during the first 
regime, these coefficients are negative, and only in 15.93% are they positive 
and in no instances are they statistically significant. The same is true for the 
last regime, where only 8.77% of the coefficients are positive, but none are 
statistically significant. 
In Table 4.4, we also report the percentage of coefficients that are statistically 
different from zero -i(„ = 0.1), at the 95% confidence level, which relate the 
returns of each bank and the common components of the system at the 10th 
percentile, and -ã(„ = 0.1) , which relates the returns and the market 
uncertainty factor, also at the 10th percentile. Table 4.4 also discriminates 
between the banks with no breaks, and banks with at least one break.  
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the system at the 10th percentile, and  
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These two main conclusions concern us here. First, we also found that the 
shocks to the financial industry during the crisis did not give rise to effects 
beyond those expected prior to the crisis. On the contrary, the banks’ financial 
returns responded in a predictable way to the same shocks (uncertainty and 
the common shock). Stock and Watson’s (2012) second conclusion also seems 
particularly relevant in this context. To understand why this is so, we first 
present (see Table 4.3) the summary statistics describing the set of coefficients 
for the “first” and “last” regimes in our sample. In other words, to make the 
estimations for the 113 banks comparable, we grouped the institutions’ first 
and last regime coefficients, respectively. Note that the first regime for the 30 
banks with no breaks is equal to the second and third regimes, given that there 
are no structural breaks in their models. For a further 37 banks (those with 
one break), these estimates correspond to the first and second regimes, and, 
finally, for the remaining 46 banks (those with two breaks), they correspond to 
the first and third regimes.  
 

Table 4.3. First and Last Regime Summary Statistics of the Coefficients 

 First regime Last regime 

 -¢ -i -ã -¢ -i -ã 
Average -0.27 0.13 -0.32 -0.37 0.15 -0.41 
Std. Dev. 1.76 0.06 0.43 1.13 0.06 0.37 
Median -0.31 0.12 -0.25 -0.31 0.13 -0.37 
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25th perc. 0.39 0.17 -0.11 0.26 0.19 -0.20 
Max 7.22 0.39 0.72 4.02 0.32 0.41 
Min -5.72 0.00 -2.44 -4.04 0.02 -2.18 

Note: We present the summary statistics for the estimated coefficients for the first 
and last regimes in our sample: intercept, α1 (τ=0.1) and α2 (τ=0.1).  

 
Note that in most instances the coefficients accompanying the uncertainty 
factor display a negative sign. Indeed in 84.07% of cases during the first 
regime, these coefficients are negative, and only in 15.93% are they positive 
and in no instances are they statistically significant. The same is true for the 
last regime, where only 8.77% of the coefficients are positive, but none are 
statistically significant. 
In Table 4.4, we also report the percentage of coefficients that are statistically 
different from zero -i(„ = 0.1), at the 95% confidence level, which relate the 
returns of each bank and the common components of the system at the 10th 
percentile, and -ã(„ = 0.1) , which relates the returns and the market 
uncertainty factor, also at the 10th percentile. Table 4.4 also discriminates 
between the banks with no breaks, and banks with at least one break.  

, which relates the re-
turns and the market uncertainty factor, also at the 10th percentile. Table 
4.4 also discriminates between the banks with no breaks, and banks with 
at least one break. 

Table 4.4. Percentage of Statistically Significant Coefficients

First regime Last regime

α1 α2 α1 α2

Total 76.99% 35.40% 99.12% 56.64%

No breaks 100.00% 56.67% 100.00% 56.67%

At least one break 68.67% 27.71% 98.80% 56.63%

Note: We present the percentage of statistically significant coefficients at the 95% confidence 
level. We discriminated between banks with at least one break and banks with no breaks dur-
ing the full period.

Several conclusions can be drawn from Tables 4.3 and 4.4. First, as 
expected, most of the time, α1 is statistically significant at the 95% 
confidence level –that is, for 76.99% of the banks, the systemic shock 
(estimated as the first principal component of the system) matters during 
the first regime in the sample. The sign of the coefficient does not pro-
vide any information, because the factors are identified up to a column 
sign change when estimated using principal components (Bai and Ng, 
2008). The number of significant relationships increases during the last 
regime when 99.12% of the institutions respond to this systemic factor 
in a statistically significant way. 

Second, the uncertainty factor also seems relatively important as a sys-
temic factor. During the first regime, 35.40% of the banks respond to 
this factor, and the proportion increases notably during the last regime, 
when 56.64% of the banks are affected by this equity market uncertain-
ty factor in a statistically significant fashion. When we split the sample 
between those banks that faced no structural changes during the period 
analyzed, and those that faced at least one, we found that the equity 
market uncertainty factor was more important for banks with no breaks 
(56.67% of the times α2 was significant at the 95% level) than it was 
for banks with breaks (27.71% in the first regime vs 56.63% in the last 
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regime). Notice that the number of banks with a significant uncertainty-
driven relationship may be even higher, because uncertainty and the 
unobservable component are likely to be correlated, and, moreover, for 
the first regime, the number of observation is considerably lower than 
for the second regime, which has well-documented effects on the esti-
mated statistics for measuring significance. 

All in all, equity market uncertainty is an important determinant of 
global banking system performance, and this importance seems to have 
increased after 2002. However, it remained equally important during 
and after the 2007-2009 global financial crisis, and it experienced no 
change after, for instance, the European debt crisis. The considerable 
shocks to the system during these episodes of crisis had predictable 
consequences on the banks’ performance, but they did not change the 
nature or the shape of systemic risk. Notice that the two factors in our 
model measure two different sources of vulnerability in the global ban-
king sector and for this reason, as expected, they both are significant. 
While the systemic risk indicator is to be interpreted as a “financial” risk 
shock, the EMU index quantifies “economic” uncertainty related with 
equity markets. This theoretical separation allows us to interpret our 
main findings as arising from the financial and macroeconomic (real) 
sides of the economic system. 

We can also conclude that the impact of equity market uncertainty on 
the financial returns of the global banking sector is negative. This result 
is novel to the literature, but it is well grounded on theoretical pre-
conceptions concerning uncertainty. Specifically, aggregate uncertainty 
shocks are thought to be preceded by a reduction in investment and, 
possibly, in labor, and, consequently, by a deterioration in real activity 
(Bernanke, 1983; Bertola and Caballero, 1994; Abel and Eberly, 1996; 
Leahy and Whited, 1996; Caballero and Pindyck, 1996; Bloom et al., 
2007; Bachmann and Bayer, 2013), which in turn has obvious conse-
quences for banking. Moreover, this impact on macroeconomic varia-
bles may be amplified as a result of financial market frictions (Arellano 
et al., 2012; Christiano et al., 2014; Gilchrist et al., 2014). In the case of 
financial markets, Bansal and Yaron (2004) explain why markets dislike 
uncertainty and how more uncertainty leads to worse long-run growth 
prospects, thus reducing equity prices. Basically, the intuition is linked 
to the fact that markets do not like uncertainty and after an increment 
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in uncertainty, the discount of the expected cash flows is higher, which 
leads the market to reduce the price of the stock. Here we find that hig-
her levels of uncertainty impact negatively and significantly on the fi-
nancial performance of the global banking system. We believe therefore, 
that market uncertainty should be included as a major force behind the 
systemic shocks faced by financial institutions in the global financial 
markets, and that it should be consistently monitored by regulators and 
supervisors. 

B. Systemically vulnerable financial institutions

The previous literature has routinely explored the case of systemically 
important financial institutions or SIFIs (FSB, 2011; 2012; 2013; IAIS, 
2009; 2012; 2013). Here, in contrast, we have focused on systemica-
lly vulnerable financial institutions (SVFIs), which while not unrelated, 
respond to a different logic. The ranking we present is constructed by 
taking into account the magnitude of the responses of each bank to the 
two systemic shocks analyzed here, which is not the same as considering 
which institutions are more likely to disrupt the financial system after 
experiencing a sizeable loss. As such, SVFIs should be seen as comple-
menting SIFIs.

Our ranking is bi-dimensional: on the one hand, it measures the sensi-
tivity of each bank to the unobservable systemic risk factor and, on the 
other, it measures their response to the equity market uncertainty factor. 
The responses to the former were transformed using absolute values, 
because the principal component estimates do not allow us to interpret 
the sign of the factor. In Figure 4.2, we present a scattergram of the 
coefficients 
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measures their response to the equity market uncertainty factor. The responses 
to the former were transformed using absolute values, because the principal 
component estimates do not allow us to interpret the sign of the factor. In 
Figure 4.2, we present a scattergram of the coefficients |-i|(„ = 0.1) plotted 
against the coefficients -ã(„ = 0.1) , where |∙|  denotes the absolute value 
function.  
The banks were then sorted on the basis of these values and classified into 
quartiles – that is, the banks in quadrant IV (bottom-right) are our first SVFIs 
candidates. These banks are the ones that respond most to both the systemic 
traditional shock and to the uncertainty shock. In other words, the respective 
coefficient for each institution in quadrant IV is lower than the vertical median 
of -ã and higher than the horizontal median of  -i . In contrast, the more 
resilient institutions lie in quadrant I (top-left), where the responses to both 
economic uncertainty and the systemic risk factor are the smallest in the 
sample.  
The further a bank is from the origin in both directions considered here, the 
more vulnerable it is to the shocks. For instance, if we take the banks that lie 
above the 90th percentile in terms of -i and below the 10th percentile in terms 
of	-ã, we find the most vulnerable financial institutions, namely, Allied Irish 
Bank, Bank of Ireland, Barclays, Mediobanca (France) and Royal Bank of 
Scotland. In contrast, the most resilient institutions are: Bank of Montreal, 
Bank of Nova Scotia, Canadian Imperial Bank of Commerce and Valiant ‘R’. 
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Figure 4.2. Sensitivity to the two risk factors: uncertainty and common 
componentFor each of the 113 banks making up our sample, we plotted α2 (τ=0.1) against 
α1 (τ=0.1). The banks located in quadrant I (top-left) are the least vulnerable to the risk 
factors: ci (common unobservable shock – horizontal axis) and  cã (market uncertainty – 
vertical axis). In contrast, the banks in quadrant IV (bottom-right) are the most vulnerable 
following exposure to the two risk factors. 

 
In Table 4.5, we provide a full ranking for the two dimensions. Notice that the 
differences between the institutions are marked. For example, if we consider a 
shock to (log) uncertainty of one standard deviation in the market, the most 
vulnerable institution in our sample, Dexia, would experience a reduction in 
the 10th percentile of its weekly returns distribution of around 1.77 percentage 
points (Dexia’s average weekly return during the sample was -0.33%), while 
the impact is practically negligible for institutions in the fourth quartile. The 
median impact is around -0.30 percentage points.  
The same holds for the systemic factor retrieved as an unobservable and 
common component of the system. In this case, the most vulnerable 
institution is the Bank of Ireland, and a one standard deviation shock to the 
systemic factor would increase its weekly VaR in the 90th percentile by 2.80 
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Figure 4.1. Structural Changes in Quantile Coefficients: Each horizontal bar represents 
a bank. The first regime in the sample is blue, the second regime is white and the third 
regime is grey. Only 30 banks display one regime, 37 two regimes and 46 three regimes (the 
maximum allowed). The regimes were identified endogenously, using a quantile regression 
with breaks. The model included two systemic factors: one common unobservable shock 
and equity market uncertainty. 
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These two main conclusions concern us here. First, we also found that the 
shocks to the financial industry during the crisis did not give rise to effects 
beyond those expected prior to the crisis. On the contrary, the banks’ financial 
returns responded in a predictable way to the same shocks (uncertainty and 
the common shock). Stock and Watson’s (2012) second conclusion also seems 
particularly relevant in this context. To understand why this is so, we first 
present (see Table 4.3) the summary statistics describing the set of coefficients 
for the “first” and “last” regimes in our sample. In other words, to make the 
estimations for the 113 banks comparable, we grouped the institutions’ first 
and last regime coefficients, respectively. Note that the first regime for the 30 
banks with no breaks is equal to the second and third regimes, given that there 
are no structural breaks in their models. For a further 37 banks (those with 
one break), these estimates correspond to the first and second regimes, and, 
finally, for the remaining 46 banks (those with two breaks), they correspond to 
the first and third regimes.  
 

Table 4.3. First and Last Regime Summary Statistics of the Coefficients 

 First regime Last regime 

 -¢ -i -ã -¢ -i -ã 
Average -0.27 0.13 -0.32 -0.37 0.15 -0.41 
Std. Dev. 1.76 0.06 0.43 1.13 0.06 0.37 
Median -0.31 0.12 -0.25 -0.31 0.13 -0.37 
75th perc. 0.40 0.17 -0.11 0.25 0.19 -0.20 
25th perc. 0.39 0.17 -0.11 0.26 0.19 -0.20 
Max 7.22 0.39 0.72 4.02 0.32 0.41 
Min -5.72 0.00 -2.44 -4.04 0.02 -2.18 

Note: We present the summary statistics for the estimated coefficients for the first 
and last regimes in our sample: intercept, α1 (τ=0.1) and α2 (τ=0.1).  

 
Note that in most instances the coefficients accompanying the uncertainty 
factor display a negative sign. Indeed in 84.07% of cases during the first 
regime, these coefficients are negative, and only in 15.93% are they positive 
and in no instances are they statistically significant. The same is true for the 
last regime, where only 8.77% of the coefficients are positive, but none are 
statistically significant. 
In Table 4.4, we also report the percentage of coefficients that are statistically 
different from zero -i(„ = 0.1), at the 95% confidence level, which relate the 
returns of each bank and the common components of the system at the 10th 
percentile, and -ã(„ = 0.1) , which relates the returns and the market 
uncertainty factor, also at the 10th percentile. Table 4.4 also discriminates 
between the banks with no breaks, and banks with at least one break.  

, 
where 
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measures their response to the equity market uncertainty factor. The responses 
to the former were transformed using absolute values, because the principal 
component estimates do not allow us to interpret the sign of the factor. In 
Figure 4.2, we present a scattergram of the coefficients |-i|(„ = 0.1) plotted 
against the coefficients -ã(„ = 0.1) , where |∙|  denotes the absolute value 
function.  
The banks were then sorted on the basis of these values and classified into 
quartiles – that is, the banks in quadrant IV (bottom-right) are our first SVFIs 
candidates. These banks are the ones that respond most to both the systemic 
traditional shock and to the uncertainty shock. In other words, the respective 
coefficient for each institution in quadrant IV is lower than the vertical median 
of -ã and higher than the horizontal median of  -i . In contrast, the more 
resilient institutions lie in quadrant I (top-left), where the responses to both 
economic uncertainty and the systemic risk factor are the smallest in the 
sample.  
The further a bank is from the origin in both directions considered here, the 
more vulnerable it is to the shocks. For instance, if we take the banks that lie 
above the 90th percentile in terms of -i and below the 10th percentile in terms 
of	-ã, we find the most vulnerable financial institutions, namely, Allied Irish 
Bank, Bank of Ireland, Barclays, Mediobanca (France) and Royal Bank of 
Scotland. In contrast, the most resilient institutions are: Bank of Montreal, 
Bank of Nova Scotia, Canadian Imperial Bank of Commerce and Valiant ‘R’. 
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Figure 4.2. Sensitivity to the two risk factors: uncertainty and common 
componentFor each of the 113 banks making up our sample, we plotted α2 (τ=0.1) against 
α1 (τ=0.1). The banks located in quadrant I (top-left) are the least vulnerable to the risk 
factors: ci (common unobservable shock – horizontal axis) and  cã (market uncertainty – 
vertical axis). In contrast, the banks in quadrant IV (bottom-right) are the most vulnerable 
following exposure to the two risk factors. 

 
In Table 4.5, we provide a full ranking for the two dimensions. Notice that the 
differences between the institutions are marked. For example, if we consider a 
shock to (log) uncertainty of one standard deviation in the market, the most 
vulnerable institution in our sample, Dexia, would experience a reduction in 
the 10th percentile of its weekly returns distribution of around 1.77 percentage 
points (Dexia’s average weekly return during the sample was -0.33%), while 
the impact is practically negligible for institutions in the fourth quartile. The 
median impact is around -0.30 percentage points.  
The same holds for the systemic factor retrieved as an unobservable and 
common component of the system. In this case, the most vulnerable 
institution is the Bank of Ireland, and a one standard deviation shock to the 
systemic factor would increase its weekly VaR in the 90th percentile by 2.80 
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 denotes the absolute value function. 

The banks were then sorted on the basis of these values and classified 
into quartiles – that is, the banks in quadrant IV (bottom-right) are our 
first SVFIs candidates. These banks are the ones that respond most to 
both the systemic traditional shock and to the uncertainty shock. In 
other words, the respective coefficient for each institution in quadrant 
IV is lower than the vertical median of α2 and higher than the horizontal 
median of α1. In contrast, the more resilient institutions lie in quadrant 
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I (top-left), where the responses to both economic uncertainty and the 
systemic risk factor are the smallest in the sample. 

The further a bank is from the origin in both directions considered here, 
the more vulnerable it is to the shocks. For instance, if we take the 
banks that lie above the 90th percentile in terms of α1 and below the 10th 
percentile in terms of α2, we find the most vulnerable financial institu-
tions, namely, Allied Irish Bank, Bank of Ireland, Barclays, Mediobanca 
(France) and Royal Bank of Scotland. In contrast, the most resilient 
institutions are: Bank of Montreal, Bank of Nova Scotia, Canadian Im-
perial Bank of Commerce and Valiant ‘R’.

Figure 4.2. Sensitivity to the two risk factors: uncertainty and common component
For each of the 113 banks making up our sample, we plotted α2 (τ=0.1) against α1 
(τ=0.1). The banks located in quadrant I (top-left) are the least vulnerable to the risk 
factors: 
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measures their response to the equity market uncertainty factor. The responses 
to the former were transformed using absolute values, because the principal 
component estimates do not allow us to interpret the sign of the factor. In 
Figure 4.2, we present a scattergram of the coefficients |-i|(„ = 0.1) plotted 
against the coefficients -ã(„ = 0.1) , where |∙|  denotes the absolute value 
function.  
The banks were then sorted on the basis of these values and classified into 
quartiles – that is, the banks in quadrant IV (bottom-right) are our first SVFIs 
candidates. These banks are the ones that respond most to both the systemic 
traditional shock and to the uncertainty shock. In other words, the respective 
coefficient for each institution in quadrant IV is lower than the vertical median 
of -ã and higher than the horizontal median of  -i . In contrast, the more 
resilient institutions lie in quadrant I (top-left), where the responses to both 
economic uncertainty and the systemic risk factor are the smallest in the 
sample.  
The further a bank is from the origin in both directions considered here, the 
more vulnerable it is to the shocks. For instance, if we take the banks that lie 
above the 90th percentile in terms of -i and below the 10th percentile in terms 
of	-ã, we find the most vulnerable financial institutions, namely, Allied Irish 
Bank, Bank of Ireland, Barclays, Mediobanca (France) and Royal Bank of 
Scotland. In contrast, the most resilient institutions are: Bank of Montreal, 
Bank of Nova Scotia, Canadian Imperial Bank of Commerce and Valiant ‘R’. 
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Figure 4.2. Sensitivity to the two risk factors: uncertainty and common 
componentFor each of the 113 banks making up our sample, we plotted α2 (τ=0.1) against 
α1 (τ=0.1). The banks located in quadrant I (top-left) are the least vulnerable to the risk 
factors: ci (common unobservable shock – horizontal axis) and  cã (market uncertainty – 
vertical axis). In contrast, the banks in quadrant IV (bottom-right) are the most vulnerable 
following exposure to the two risk factors. 

 
In Table 4.5, we provide a full ranking for the two dimensions. Notice that the 
differences between the institutions are marked. For example, if we consider a 
shock to (log) uncertainty of one standard deviation in the market, the most 
vulnerable institution in our sample, Dexia, would experience a reduction in 
the 10th percentile of its weekly returns distribution of around 1.77 percentage 
points (Dexia’s average weekly return during the sample was -0.33%), while 
the impact is practically negligible for institutions in the fourth quartile. The 
median impact is around -0.30 percentage points.  
The same holds for the systemic factor retrieved as an unobservable and 
common component of the system. In this case, the most vulnerable 
institution is the Bank of Ireland, and a one standard deviation shock to the 
systemic factor would increase its weekly VaR in the 90th percentile by 2.80 
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measures their response to the equity market uncertainty factor. The responses 
to the former were transformed using absolute values, because the principal 
component estimates do not allow us to interpret the sign of the factor. In 
Figure 4.2, we present a scattergram of the coefficients |-i|(„ = 0.1) plotted 
against the coefficients -ã(„ = 0.1) , where |∙|  denotes the absolute value 
function.  
The banks were then sorted on the basis of these values and classified into 
quartiles – that is, the banks in quadrant IV (bottom-right) are our first SVFIs 
candidates. These banks are the ones that respond most to both the systemic 
traditional shock and to the uncertainty shock. In other words, the respective 
coefficient for each institution in quadrant IV is lower than the vertical median 
of -ã and higher than the horizontal median of  -i . In contrast, the more 
resilient institutions lie in quadrant I (top-left), where the responses to both 
economic uncertainty and the systemic risk factor are the smallest in the 
sample.  
The further a bank is from the origin in both directions considered here, the 
more vulnerable it is to the shocks. For instance, if we take the banks that lie 
above the 90th percentile in terms of -i and below the 10th percentile in terms 
of	-ã, we find the most vulnerable financial institutions, namely, Allied Irish 
Bank, Bank of Ireland, Barclays, Mediobanca (France) and Royal Bank of 
Scotland. In contrast, the most resilient institutions are: Bank of Montreal, 
Bank of Nova Scotia, Canadian Imperial Bank of Commerce and Valiant ‘R’. 
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Figure 4.2. Sensitivity to the two risk factors: uncertainty and common 
componentFor each of the 113 banks making up our sample, we plotted α2 (τ=0.1) against 
α1 (τ=0.1). The banks located in quadrant I (top-left) are the least vulnerable to the risk 
factors: ci (common unobservable shock – horizontal axis) and  cã (market uncertainty – 
vertical axis). In contrast, the banks in quadrant IV (bottom-right) are the most vulnerable 
following exposure to the two risk factors. 

 
In Table 4.5, we provide a full ranking for the two dimensions. Notice that the 
differences between the institutions are marked. For example, if we consider a 
shock to (log) uncertainty of one standard deviation in the market, the most 
vulnerable institution in our sample, Dexia, would experience a reduction in 
the 10th percentile of its weekly returns distribution of around 1.77 percentage 
points (Dexia’s average weekly return during the sample was -0.33%), while 
the impact is practically negligible for institutions in the fourth quartile. The 
median impact is around -0.30 percentage points.  
The same holds for the systemic factor retrieved as an unobservable and 
common component of the system. In this case, the most vulnerable 
institution is the Bank of Ireland, and a one standard deviation shock to the 
systemic factor would increase its weekly VaR in the 90th percentile by 2.80 
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 (market uncertain-
ty – vertical axis). In contrast, the banks in quadrant IV (bottom-right) are the most 
vulnerable following exposure to the two risk factors.
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measures their response to the equity market uncertainty factor. The responses 
to the former were transformed using absolute values, because the principal 
component estimates do not allow us to interpret the sign of the factor. In 
Figure 4.2, we present a scattergram of the coefficients |-i|(„ = 0.1) plotted 
against the coefficients -ã(„ = 0.1) , where |∙|  denotes the absolute value 
function.  
The banks were then sorted on the basis of these values and classified into 
quartiles – that is, the banks in quadrant IV (bottom-right) are our first SVFIs 
candidates. These banks are the ones that respond most to both the systemic 
traditional shock and to the uncertainty shock. In other words, the respective 
coefficient for each institution in quadrant IV is lower than the vertical median 
of -ã and higher than the horizontal median of  -i . In contrast, the more 
resilient institutions lie in quadrant I (top-left), where the responses to both 
economic uncertainty and the systemic risk factor are the smallest in the 
sample.  
The further a bank is from the origin in both directions considered here, the 
more vulnerable it is to the shocks. For instance, if we take the banks that lie 
above the 90th percentile in terms of -i and below the 10th percentile in terms 
of	-ã, we find the most vulnerable financial institutions, namely, Allied Irish 
Bank, Bank of Ireland, Barclays, Mediobanca (France) and Royal Bank of 
Scotland. In contrast, the most resilient institutions are: Bank of Montreal, 
Bank of Nova Scotia, Canadian Imperial Bank of Commerce and Valiant ‘R’. 
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Figure 4.2. Sensitivity to the two risk factors: uncertainty and common 
componentFor each of the 113 banks making up our sample, we plotted α2 (τ=0.1) against 
α1 (τ=0.1). The banks located in quadrant I (top-left) are the least vulnerable to the risk 
factors: ci (common unobservable shock – horizontal axis) and  cã (market uncertainty – 
vertical axis). In contrast, the banks in quadrant IV (bottom-right) are the most vulnerable 
following exposure to the two risk factors. 

 
In Table 4.5, we provide a full ranking for the two dimensions. Notice that the 
differences between the institutions are marked. For example, if we consider a 
shock to (log) uncertainty of one standard deviation in the market, the most 
vulnerable institution in our sample, Dexia, would experience a reduction in 
the 10th percentile of its weekly returns distribution of around 1.77 percentage 
points (Dexia’s average weekly return during the sample was -0.33%), while 
the impact is practically negligible for institutions in the fourth quartile. The 
median impact is around -0.30 percentage points.  
The same holds for the systemic factor retrieved as an unobservable and 
common component of the system. In this case, the most vulnerable 
institution is the Bank of Ireland, and a one standard deviation shock to the 
systemic factor would increase its weekly VaR in the 90th percentile by 2.80 
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In Table 4.5, we provide a full ranking for the two dimensions. Notice 
that the differences between the institutions are marked. For example, 
if we consider a shock to (log) uncertainty of one standard deviation in 
the market, the most vulnerable institution in our sample, Dexia, would 
experience a reduction in the 10th percentile of its weekly returns distri-
bution of around 1.77 percentage points (Dexia’s average weekly return 
during the sample was -0.33%), while the impact is practically negligi-
ble for institutions in the fourth quartile. The median impact is around 
-0.30 percentage points. 

The same holds for the systemic factor retrieved as an unobservable and 
common component of the system. In this case, the most vulnerable 
institution is the Bank of Ireland, and a one standard deviation shock to 
the systemic factor would increase its weekly VaR in the 90th percentile 
by 2.80 percentage points. In this case, the median impact is around 
1.09 and the impact for the least vulnerable institution is around 0.18 
percentage point.

We believe this ranking of SVFIs should be useful for regulators as well 
as for bank administrators since it provides new information when mea-
suring the resilience of institutions to systemic shocks.

C. Comparisons with marginal expected shortfall (MES)

In this section we compare our two dimensions of systemic risk with the 
MES proposed by Achayra et al. (2016). Recall that MES is defined as 
the bank’s losses in the tail of the system’s loss distribution and as such 
it is intended to measure the expected contribution to systemic risk of 
a particular bank, during episodes of financial distress. Therefore, our 
estimates, which are based on the quantiles of the banks’ return distri-
butions, instead of those of the system, can be thought of as natural 
complements in the analysis of systemic risk. Notice that in our case we 
have a direct estimation of the system’s outcome, namely, the common 
unobservable market factor, calculated as the first principal compo-
nent of our data set. Therefore, the construction of the MSE is straight-
forward: We average the banks’ returns observed at the 5% lower tail of 
the market factor distribution. 
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Table 4.5. SVFIs’ ranking 

Common unobservable factor Market uncertainty factor

Q1 Q 2 Q 3 Q4 Q 1 Q 2 Q 3 Q 4

BKIR 0.32 CSGN 0.19 CVAL 0.13 CHUT 0.10 DEX -2.18 BP -0.55 HRBK -0.37 BENX -0.19

KB 0.30 DAB 0.19 BPE 0.12 NA 0.10 ALBK -1.76 HIGO -0.54 PBCT -0.36 CVAL -0.19

UCG 0.29 SCH 0.18 POH 0.12 USB 0.10 BKIR -1.63 HBAN -0.53 UOBS -0.36 JOYO -0.19

ERS 0.27 SWED 0.18 HFIN 0.12 BEAA 0.10 RBS -1.22 YMCB -0.53 ETE -0.35 CBAX -0.19

FITB 0.27 POP 0.18 YOKO 0.12 NSHI 0.10 PIST -0.98 DNB -0.53 BEAA -0.35 PNC -0.19

ALBK 0.26 EFG 0.17 HIGO 0.12 BOQX 0.10 DAB -0.97 C -0.52 FUKU -0.35 SMFI -0.17

BARC 0.25 SMTH 0.17 HABT 0.12 SIGB 0.10 LLOY -0.95 CSGN -0.5 PMI -0.35 JURT -0.16

BAC 0.24 WFC 0.17 OKBT 0.12 KABK 0.10 MB -0.93 HFIN -0.5 SVK -0.35 YOKO -0.16

BBVA 0.24 CMA 0.17 SVK 0.11 GMAB 0.09 JYS -0.84 MTB -0.49 ERS -0.33 GMAB -0.15

RBS 0.24 PMI 0.17 YMCB 0.11 SHIG 0.09 BARC -0.78 KB -0.49 BCP -0.33 USB -0.14

MB 0.24 SMFI 0.17 MTB 0.11 HCBK 0.09 KEY -0.75 BOQX -0.47 TD -0.32 KABK -0.12

BP 0.23 PIST 0.17 OFBK 0.11 SSBK 0.09 SGE -0.75 SWED -0.47 CHBK -0.32 NA -0.1

IYOT 0.23 DNB 0.17 HSBC 0.11 DBHI 0.09 STI -0.74 BNP -0.46 NABX -0.31 BPSO -0.1

LLOY 0.23 DEX 0.16 SURB 0.11 BPSO 0.09 BKT -0.71 BAC -0.45 SCH -0.31 WBCX -0.1

C 0.22 BES 0.16 ANZX 0.11 TD 0.09 RF -0.7 ISP -0.45 NSHI -0.3 KYTB -0.07

BMPS 0.22 BCP 0.16 HRBK 0.11 RY 0.09 FITB -0.69 WFC -0.44 CHUT -0.29 CSOG -0.07

KEY 0.22 DBKX 0.16 OBAN 0.11 AWAT 0.08 IYOT -0.69 NDA -0.44 AWAT -0.29 HSBA -0.06

CBKX 0.22 PNC 0.15 CSOG 0.11 DBSS 0.08 CBKX -0.69 BBT -0.43 DANK -0.28 NANT -0.05

STI 0.22 SYD 0.14 JURT 0.11 BENX 0.08 HCBK -0.68 OKBT -0.43 SSBK -0.26 OBAN -0.03

SGE 0.21 BKT 0.14 KYTB 0.11 ISP 0.08 CMA -0.66 SIGB -0.43 SURB -0.26 VATN 0.01

ETE 0.21 NDA 0.14 WBCX 0.11 UOBS 0.08 EFG -0.66 OFBK -0.42 POH -0.26 BMPS 0.08

KN@F0.20 BBT 0.14 JOYO 0.11 BNS 0.07 SYD -0.66 NYCB -0.41 SKCB -0.25 SHIG 0.09

HBAN 0.20 FUKU 0.14 NABX 0.10 BMO 0.07 SEA -0.66 SMTH -0.4 HABT -0.25 CM 0.1

BNP 0.20 CRG 0.13 NANT 0.10 OCBC 0.07 KN@F-0.62 UBSN -0.38 PEIR -0.24 BNS 0.11

RF 0.19 JYS 0.13 DANK 0.10 PBCT 0.07 DBSS -0.62 UCG -0.38 HSBC -0.24 CRG 0.14

PEIR 0.19 ISP 0.13 NYCB 0.10 CM 0.06 BES -0.6 BPE -0.37 ANZX -0.23 BMO 0.14

SEA 0.19 STAN 0.13 WHBK 0.10 HSBA 0.05 WHBK -0.6 OCBC -0.37 RY -0.22 ISP 0.16

UBSN 0.19 CHBK 0.13 CBAX 0.10 VATN 0.04 POP -0.57 DBHI -0.37 BBVA -0.2 STAN 0.28

            SKCB 0.02             DBKX 0.41

Note: In the first eight columns we provided the ranking of the institutions according to factor 
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measures their response to the equity market uncertainty factor. The responses 
to the former were transformed using absolute values, because the principal 
component estimates do not allow us to interpret the sign of the factor. In 
Figure 4.2, we present a scattergram of the coefficients |-i|(„ = 0.1) plotted 
against the coefficients -ã(„ = 0.1) , where |∙|  denotes the absolute value 
function.  
The banks were then sorted on the basis of these values and classified into 
quartiles – that is, the banks in quadrant IV (bottom-right) are our first SVFIs 
candidates. These banks are the ones that respond most to both the systemic 
traditional shock and to the uncertainty shock. In other words, the respective 
coefficient for each institution in quadrant IV is lower than the vertical median 
of -ã and higher than the horizontal median of  -i . In contrast, the more 
resilient institutions lie in quadrant I (top-left), where the responses to both 
economic uncertainty and the systemic risk factor are the smallest in the 
sample.  
The further a bank is from the origin in both directions considered here, the 
more vulnerable it is to the shocks. For instance, if we take the banks that lie 
above the 90th percentile in terms of -i and below the 10th percentile in terms 
of	-ã, we find the most vulnerable financial institutions, namely, Allied Irish 
Bank, Bank of Ireland, Barclays, Mediobanca (France) and Royal Bank of 
Scotland. In contrast, the most resilient institutions are: Bank of Montreal, 
Bank of Nova Scotia, Canadian Imperial Bank of Commerce and Valiant ‘R’. 
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Figure 4.2. Sensitivity to the two risk factors: uncertainty and common 
componentFor each of the 113 banks making up our sample, we plotted α2 (τ=0.1) against 
α1 (τ=0.1). The banks located in quadrant I (top-left) are the least vulnerable to the risk 
factors: ci (common unobservable shock – horizontal axis) and  cã (market uncertainty – 
vertical axis). In contrast, the banks in quadrant IV (bottom-right) are the most vulnerable 
following exposure to the two risk factors. 

 
In Table 4.5, we provide a full ranking for the two dimensions. Notice that the 
differences between the institutions are marked. For example, if we consider a 
shock to (log) uncertainty of one standard deviation in the market, the most 
vulnerable institution in our sample, Dexia, would experience a reduction in 
the 10th percentile of its weekly returns distribution of around 1.77 percentage 
points (Dexia’s average weekly return during the sample was -0.33%), while 
the impact is practically negligible for institutions in the fourth quartile. The 
median impact is around -0.30 percentage points.  
The same holds for the systemic factor retrieved as an unobservable and 
common component of the system. In this case, the most vulnerable 
institution is the Bank of Ireland, and a one standard deviation shock to the 
systemic factor would increase its weekly VaR in the 90th percentile by 2.80 
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 , the common unobservable shock (in absolute values). We discriminated in each couple of 
columns between the quartiles of the ranking. In last eight columns we ordered from most sen-
sitive to least sensitive the banks in our sample, according to 
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percentage points. In this case, the median impact is around 1.09 and the 
impact for the least vulnerable institution is around 0.18 percentage point 
 

Table 4.5. SVFIs’ ranking  

Common unobservable factor   Market uncertainty factor 

Q1 Q 2 Q 3 Q4   Q 1 Q 2 Q 3 Q 4 
BKIR 0.32 CSGN 0.19 CVAL 0.13 CHUT 0.10   DEX -2.18 BP -0.55 HRBK -0.37 BENX -0.19 

KB 0.30 DAB 0.19 BPE 0.12 NA 0.10   ALBK -1.76 HIGO -0.54 PBCT -0.36 CVAL -0.19 

UCG 0.29 SCH 0.18 POH 0.12 USB 0.10   BKIR -1.63 HBAN -0.53 UOBS -0.36 JOYO -0.19 

ERS 0.27 SWED 0.18 HFIN 0.12 BEAA 0.10   RBS -1.22 YMCB -0.53 ETE -0.35 CBAX -0.19 

FITB 0.27 POP 0.18 YOKO 0.12 NSHI 0.10   PIST -0.98 DNB -0.53 BEAA -0.35 PNC -0.19 

ALBK 0.26 EFG 0.17 HIGO 0.12 BOQX 0.10   DAB -0.97 C -0.52 FUKU -0.35 SMFI -0.17 

BARC 0.25 SMTH 0.17 HABT 0.12 SIGB 0.10   LLOY -0.95 CSGN -0.5 PMI -0.35 JURT -0.16 

BAC 0.24 WFC 0.17 OKBT 0.12 KABK 0.10   MB -0.93 HFIN -0.5 SVK -0.35 YOKO -0.16 

BBVA 0.24 CMA 0.17 SVK 0.11 GMAB 0.09   JYS -0.84 MTB -0.49 ERS -0.33 GMAB -0.15 

RBS 0.24 PMI 0.17 YMCB 0.11 SHIG 0.09   BARC -0.78 KB -0.49 BCP -0.33 USB -0.14 

MB 0.24 SMFI 0.17 MTB 0.11 HCBK 0.09   KEY -0.75 BOQX -0.47 TD -0.32 KABK -0.12 

BP 0.23 PIST 0.17 OFBK 0.11 SSBK 0.09   SGE -0.75 SWED -0.47 CHBK -0.32 NA -0.1 

IYOT 0.23 DNB 0.17 HSBC 0.11 DBHI 0.09   STI -0.74 BNP -0.46 NABX -0.31 BPSO -0.1 

LLOY 0.23 DEX 0.16 SURB 0.11 BPSO 0.09   BKT -0.71 BAC -0.45 SCH -0.31 WBCX -0.1 

C 0.22 BES 0.16 ANZX 0.11 TD 0.09   RF -0.7 ISP -0.45 NSHI -0.3 KYTB -0.07 

BMPS 0.22 BCP 0.16 HRBK 0.11 RY 0.09   FITB -0.69 WFC -0.44 CHUT -0.29 CSOG -0.07 

KEY 0.22 DBKX 0.16 OBAN 0.11 AWAT 0.08   IYOT -0.69 NDA -0.44 AWAT -0.29 HSBA -0.06 

CBKX 0.22 PNC 0.15 CSOG 0.11 DBSS 0.08   CBKX -0.69 BBT -0.43 DANK -0.28 NANT -0.05 

STI 0.22 SYD 0.14 JURT 0.11 BENX 0.08   HCBK -0.68 OKBT -0.43 SSBK -0.26 OBAN -0.03 

SGE 0.21 BKT 0.14 KYTB 0.11 ISP 0.08   CMA -0.66 SIGB -0.43 SURB -0.26 VATN 0.01 

ETE 0.21 NDA 0.14 WBCX 0.11 UOBS 0.08   EFG -0.66 OFBK -0.42 POH -0.26 BMPS 0.08 

KN@F 0.20 BBT 0.14 JOYO 0.11 BNS 0.07   SYD -0.66 NYCB -0.41 SKCB -0.25 SHIG 0.09 

HBAN 0.20 FUKU 0.14 NABX 0.10 BMO 0.07   SEA -0.66 SMTH -0.4 HABT -0.25 CM 0.1 

BNP 0.20 CRG 0.13 NANT 0.10 OCBC 0.07   KN@F -0.62 UBSN -0.38 PEIR -0.24 BNS 0.11 

RF 0.19 JYS 0.13 DANK 0.10 PBCT 0.07   DBSS -0.62 UCG -0.38 HSBC -0.24 CRG 0.14 

PEIR 0.19 ISP 0.13 NYCB 0.10 CM 0.06   BES -0.6 BPE -0.37 ANZX -0.23 BMO 0.14 

SEA 0.19 STAN 0.13 WHBK 0.10 HSBA 0.05   WHBK -0.6 OCBC -0.37 RY -0.22 ISP 0.16 

UBSN 0.19 CHBK 0.13 CBAX 0.10 VATN 0.04   POP -0.57 DBHI -0.37 BBVA -0.2 STAN 0.28 

            SKCB 0.02               DBKX 0.41 

Note: In the first eight columns we provided the ranking of the institutions according to 
factor ci, the common unobservable shock (in absolute values). We discriminated in each 
couple of columns between the quartiles of the ranking.  In last eight columns we ordered 
from most sensitive to least sensitive the banks in our sample, according to cã , the 
uncertainty factor. Again we separated in quartiles of 28-29 banks.  
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We believe this ranking of SVFIs should be useful for regulators as well as for 
bank administrators since it provides new information when measuring the 
resilience of institutions to systemic shocks. 
C. Comparisons with marginal expected shortfall (MES) 

In this section we compare our two dimensions of systemic risk with the MES 
proposed by Achayra et al. (2016). Recall that MES is defined as the bank’s 
losses in the tail of the system’s loss distribution and as such it is intended to 
measure the expected contribution to systemic risk of a particular bank, during 
episodes of financial distress. Therefore, our estimates, which are based on the 
quantiles of the banks’ return distributions, instead of those of the system, can 
be thought of as natural complements in the analysis of systemic risk. Notice 
that in our case we have a direct estimation of the system’s outcome, namely, 
the common unobservable market factor, calculated as the first principal 
component of our data set. Therefore, the construction of the MSE is 
straightforward: We average the banks’ returns observed at the 5% lower tail 
of the market factor distribution.   
In Figure 4.3 we plot the MES against the market factor (left) and the 
economic uncertainty factor (right). As it can be seen, the market factor and 
MES display a negative and clear relationship. Indeed, the coefficient of 
determination when we regress the market factor slopes on MES, is equal to 
79.6%, and the slope of the regression (-3.8) is statistically significant at 99% 
level of confidence. This strong relationship is expectable although is not 
obvious. On the one hand MES is conditioned on the quantiles of the system, 
while in the other hand the market factor slopes are conditioned on the banks’ 
quantiles. Also, there is around 20% of the variation in our measure that is not 
captured by the MSE.  
The case for the uncertainty factor is even clearer. There is a positive 
relationship between the slopes associated to uncertainty and MES. In this 
case we document, once again, a statistically significant slope (12.9) at 99% of 
confidence, but now 2ã = 25.1%. Thus, more or less 75% of the information 
provided by the uncertainty factor is not captured by MES.  

 

, the uncertainty factor. Again 
we separated in quartiles of 28-29 banks. 
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In Figure 4.3 we plot the MES against the market factor (left) and the 
economic uncertainty factor (right). As it can be seen, the market factor 
and MES display a negative and clear relationship. Indeed, the coe-
fficient of determination when we regress the market factor slopes on 
MES, is equal to 79.6%, and the slope of the regression (-3.8) is statisti-
cally significant at 99% level of confidence. This strong relationship is 
expectable although is not obvious. On the one hand MES is conditioned 
on the quantiles of the system, while in the other hand the market factor 
slopes are conditioned on the banks’ quantiles. Also, there is around 
20% of the variation in our measure that is not captured by the MSE. 

The case for the uncertainty factor is even clearer. There is a positive re-
lationship between the slopes associated to uncertainty and MES. In this 
case we document, once again, a statistically significant slope (12.9) at 
99% of confidence, but now 
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percentage points. In this case, the median impact is around 1.09 and the 
impact for the least vulnerable institution is around 0.18 percentage point 
 

Table 4.5. SVFIs’ ranking  

Common unobservable factor   Market uncertainty factor 

Q1 Q 2 Q 3 Q4   Q 1 Q 2 Q 3 Q 4 
BKIR 0.32 CSGN 0.19 CVAL 0.13 CHUT 0.10   DEX -2.18 BP -0.55 HRBK -0.37 BENX -0.19 

KB 0.30 DAB 0.19 BPE 0.12 NA 0.10   ALBK -1.76 HIGO -0.54 PBCT -0.36 CVAL -0.19 

UCG 0.29 SCH 0.18 POH 0.12 USB 0.10   BKIR -1.63 HBAN -0.53 UOBS -0.36 JOYO -0.19 

ERS 0.27 SWED 0.18 HFIN 0.12 BEAA 0.10   RBS -1.22 YMCB -0.53 ETE -0.35 CBAX -0.19 

FITB 0.27 POP 0.18 YOKO 0.12 NSHI 0.10   PIST -0.98 DNB -0.53 BEAA -0.35 PNC -0.19 

ALBK 0.26 EFG 0.17 HIGO 0.12 BOQX 0.10   DAB -0.97 C -0.52 FUKU -0.35 SMFI -0.17 

BARC 0.25 SMTH 0.17 HABT 0.12 SIGB 0.10   LLOY -0.95 CSGN -0.5 PMI -0.35 JURT -0.16 

BAC 0.24 WFC 0.17 OKBT 0.12 KABK 0.10   MB -0.93 HFIN -0.5 SVK -0.35 YOKO -0.16 

BBVA 0.24 CMA 0.17 SVK 0.11 GMAB 0.09   JYS -0.84 MTB -0.49 ERS -0.33 GMAB -0.15 

RBS 0.24 PMI 0.17 YMCB 0.11 SHIG 0.09   BARC -0.78 KB -0.49 BCP -0.33 USB -0.14 

MB 0.24 SMFI 0.17 MTB 0.11 HCBK 0.09   KEY -0.75 BOQX -0.47 TD -0.32 KABK -0.12 

BP 0.23 PIST 0.17 OFBK 0.11 SSBK 0.09   SGE -0.75 SWED -0.47 CHBK -0.32 NA -0.1 

IYOT 0.23 DNB 0.17 HSBC 0.11 DBHI 0.09   STI -0.74 BNP -0.46 NABX -0.31 BPSO -0.1 

LLOY 0.23 DEX 0.16 SURB 0.11 BPSO 0.09   BKT -0.71 BAC -0.45 SCH -0.31 WBCX -0.1 

C 0.22 BES 0.16 ANZX 0.11 TD 0.09   RF -0.7 ISP -0.45 NSHI -0.3 KYTB -0.07 

BMPS 0.22 BCP 0.16 HRBK 0.11 RY 0.09   FITB -0.69 WFC -0.44 CHUT -0.29 CSOG -0.07 

KEY 0.22 DBKX 0.16 OBAN 0.11 AWAT 0.08   IYOT -0.69 NDA -0.44 AWAT -0.29 HSBA -0.06 

CBKX 0.22 PNC 0.15 CSOG 0.11 DBSS 0.08   CBKX -0.69 BBT -0.43 DANK -0.28 NANT -0.05 

STI 0.22 SYD 0.14 JURT 0.11 BENX 0.08   HCBK -0.68 OKBT -0.43 SSBK -0.26 OBAN -0.03 

SGE 0.21 BKT 0.14 KYTB 0.11 ISP 0.08   CMA -0.66 SIGB -0.43 SURB -0.26 VATN 0.01 

ETE 0.21 NDA 0.14 WBCX 0.11 UOBS 0.08   EFG -0.66 OFBK -0.42 POH -0.26 BMPS 0.08 

KN@F 0.20 BBT 0.14 JOYO 0.11 BNS 0.07   SYD -0.66 NYCB -0.41 SKCB -0.25 SHIG 0.09 

HBAN 0.20 FUKU 0.14 NABX 0.10 BMO 0.07   SEA -0.66 SMTH -0.4 HABT -0.25 CM 0.1 

BNP 0.20 CRG 0.13 NANT 0.10 OCBC 0.07   KN@F -0.62 UBSN -0.38 PEIR -0.24 BNS 0.11 

RF 0.19 JYS 0.13 DANK 0.10 PBCT 0.07   DBSS -0.62 UCG -0.38 HSBC -0.24 CRG 0.14 

PEIR 0.19 ISP 0.13 NYCB 0.10 CM 0.06   BES -0.6 BPE -0.37 ANZX -0.23 BMO 0.14 

SEA 0.19 STAN 0.13 WHBK 0.10 HSBA 0.05   WHBK -0.6 OCBC -0.37 RY -0.22 ISP 0.16 

UBSN 0.19 CHBK 0.13 CBAX 0.10 VATN 0.04   POP -0.57 DBHI -0.37 BBVA -0.2 STAN 0.28 

            SKCB 0.02               DBKX 0.41 

Note: In the first eight columns we provided the ranking of the institutions according to 
factor ci, the common unobservable shock (in absolute values). We discriminated in each 
couple of columns between the quartiles of the ranking.  In last eight columns we ordered 
from most sensitive to least sensitive the banks in our sample, according to cã , the 
uncertainty factor. Again we separated in quartiles of 28-29 banks.  
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We believe this ranking of SVFIs should be useful for regulators as well as for 
bank administrators since it provides new information when measuring the 
resilience of institutions to systemic shocks. 
C. Comparisons with marginal expected shortfall (MES) 

In this section we compare our two dimensions of systemic risk with the MES 
proposed by Achayra et al. (2016). Recall that MES is defined as the bank’s 
losses in the tail of the system’s loss distribution and as such it is intended to 
measure the expected contribution to systemic risk of a particular bank, during 
episodes of financial distress. Therefore, our estimates, which are based on the 
quantiles of the banks’ return distributions, instead of those of the system, can 
be thought of as natural complements in the analysis of systemic risk. Notice 
that in our case we have a direct estimation of the system’s outcome, namely, 
the common unobservable market factor, calculated as the first principal 
component of our data set. Therefore, the construction of the MSE is 
straightforward: We average the banks’ returns observed at the 5% lower tail 
of the market factor distribution.   
In Figure 4.3 we plot the MES against the market factor (left) and the 
economic uncertainty factor (right). As it can be seen, the market factor and 
MES display a negative and clear relationship. Indeed, the coefficient of 
determination when we regress the market factor slopes on MES, is equal to 
79.6%, and the slope of the regression (-3.8) is statistically significant at 99% 
level of confidence. This strong relationship is expectable although is not 
obvious. On the one hand MES is conditioned on the quantiles of the system, 
while in the other hand the market factor slopes are conditioned on the banks’ 
quantiles. Also, there is around 20% of the variation in our measure that is not 
captured by the MSE.  
The case for the uncertainty factor is even clearer. There is a positive 
relationship between the slopes associated to uncertainty and MES. In this 
case we document, once again, a statistically significant slope (12.9) at 99% of 
confidence, but now 2ã = 25.1%. Thus, more or less 75% of the information 
provided by the uncertainty factor is not captured by MES.  

 

. Thus, more or less 75% of the 
information provided by the uncertainty factor is not captured by MES.

Figure 4.3: Relationship between the market factor and MES (left) and the un-
certainty factor and MES (right)

For each of the 113 banks making up our sample, we plotted α2 (τ=0.1) against MES 
and α1 (τ=0.1) against MES. The banks located in quadrant I (top-left) are the least 
vulnerable to the risk factors. In contrast, the banks in quadrant IV (bottom-right) are 
the most vulnerable following exposure to the two risk factors. 
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Figure 4.3: Relationship between the market factor and MES (left) and the 
uncertainty factor and MES (right). For each of the 113 banks making up our 
sample, we plotted α2 (τ=0.1) against MES and α1 (τ=0.1) against MES. The banks 
located in quadrant I (top-left) are the least vulnerable to the risk factors. In 
contrast, the banks in quadrant IV (bottom-right) are the most vulnerable following 
exposure to the two risk factors. 
Regulators are generally interested not only on the level of exposure to 
the systemic risk factors, but also in generating rankings among the 
institutions on these grounds. Once again, there is more information, 
otherwise absent, that we can assess using our proposed systemic 
factors. In Table 4.6 we present the first 11 institutions in each 
ranking, according to the three factors. That is, the 10% most 
vulnerable institutions. As can be noted, only 3 institutions belong to 
the three sets. Also the order is different in each ranking, indeed, not 
single bank in Table 4.5 remains in the same position of the three 
rankings. When we expand the analysis to the first quartile of the 
banks (28 institutions), 85.7% of those banks that belong to the first 
quartile of the MES’ ranking also belong to the first quartile according 
to the market factor sensitivity; on the other side, 57.1% of those in 
the uncertainty ranking belong as well to the most vulnerable 
institutions according to MES. 
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Table 4.5 

Institutions’ ranking according to different criteria 

Market Uncertainty MSE 
BKIR DEX KB 

KB ALBK ALBK 

UCG BKIR RBS 
ERS RBS C 
FITB PIST FITB 
ALBK DAB BARC 

BARC LLOY BKIR 

BAC MB BAC 
BBVA JYS LLOY 
RBS BARC PEIR 
MB KEY BP 

Note: In the columns we provided the ranking of the institutions according to 
the market factor, the uncertainty factor and the MES. The bolded institutions 
belong to the 10% most vulnerable set according to the three measures.  

 

4.6. Conclusions  

We measure systemic risk in the global banking sector attributable to two main 
sources: an unobservable common shock to the market, previously identified 
in the literature as a financial systemic shock, and an economic uncertainty 
factor in the equity market. The two measures are, in most instances, 
statistically significant in terms of explaining systemic risk, above all during the 
final regime of our sample. The two factors in our model measure two 
different sources of vulnerability in the global banking sector and for this 
reason, as expected, they both remain significant within the model. While the 
systemic risk indicator is to be interpreted as a “financial” risk shock, the 
economic equity market uncertainty index reflects  "economic" uncertainty 
related with the equity market. This theoretical separation allows us to 
interpret our main findings as arising from the financial and macroeconomic 
(real) sides of the economic system. 
We are able to identify regimes after conducting a recursive search for 
structural changes in the model’s parameters. This allows us to test explicitly 
for the stability of systemic risk propagation in the global banking sector. We 
found that the parameters containing the expected impact of a given shock to 
the system on the financial institutions have not experienced any significant 
changes over the last decade, above all after and during the 2007-2009 global 
financial crisis. We interpret this as evidence of claims that during the financial 
crisis the economy was not affected by a new type of shock, but rather the 
shocks were of the same nature, albeit of an unusually high magnitude.  
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Regulators are generally interested not only on the level of exposure 
to the systemic risk factors, but also in generating rankings among the 
institutions on these grounds. Once again, there is more information, 
otherwise absent, that we can assess using our proposed systemic fac-
tors. In Table 4.6 we present the first 11 institutions in each ranking, 
according to the three factors. That is, the 10% most vulnerable institu-
tions. As can be noted, only 3 institutions belong to the three sets. Also 
the order is different in each ranking, indeed, not single bank in Table 
4.5 remains in the same position of the three rankings. When we expand 
the analysis to the first quartile of the banks (28 institutions), 85.7% of 
those banks that belong to the first quartile of the MES’ ranking also 
belong to the first quartile according to the market factor sensitivity; on 
the other side, 57.1% of those in the uncertainty ranking belong as well 
to the most vulnerable institutions according to MES.

Table 4.5. Institutions’ ranking according to different criteria

Market Uncertainty MSE

BKIR DEX KB

KB ALBK ALBK

UCG BKIR RBS

ERS RBS C

FITB PIST FITB

ALBK DAB BARC

BARC LLOY BKIR

BAC MB BAC

BBVA JYS LLOY

RBS BARC PEIR

MB KEY BP

Note: In the columns we provided the ranking of the institutions according to the market factor, 
the uncertainty factor and the MES. The bolded institutions belong to the 10% most vulnerable 
set according to the three measures. 
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4.6. Conclusions 

We measure systemic risk in the global banking sector attributable to 
two main sources: an unobservable common shock to the market, pre-
viously identified in the literature as a financial systemic shock, and an 
economic uncertainty factor in the equity market. The two measures 
are, in most instances, statistically significant in terms of explaining 
systemic risk, above all during the final regime of our sample. The two 
factors in our model measure two different sources of vulnerability in 
the global banking sector and for this reason, as expected, they both 
remain significant within the model. While the systemic risk indicator is 
to be interpreted as a “financial” risk shock, the economic equity market 
uncertainty index reflects “economic” uncertainty related with the equi-
ty market. This theoretical separation allows us to interpret our main 
findings as arising from the financial and macroeconomic (real) sides of 
the economic system.

We are able to identify regimes after conducting a recursive search for 
structural changes in the model’s parameters. This allows us to test 
explicitly for the stability of systemic risk propagation in the global 
banking sector. We found that the parameters containing the expected 
impact of a given shock to the system on the financial institutions have 
not experienced any significant changes over the last decade, above all 
after and during the 2007-2009 global financial crisis. We interpret this 
as evidence of claims that during the financial crisis the economy was 
not affected by a new type of shock, but rather the shocks were of the 
same nature, albeit of an unusually high magnitude. 

We also provide a ranking of systemically vulnerable financial institu-
tions, which serves to complement existing alternatives in the literature 
and allows regulators and administrators alike to identify the banks that 
are most vulnerable to the types of shock analyzed here. 

Yet, inevitably, further research is required. Here, for example, we only 
consider the impact of contemporaneous systemic shocks on the system 
– that is, we do not estimate a dynamic model for each financial insti-
tution, which would clearly help enrich any description of the system’s 
dynamics. The construction of dynamic lagged functions in this regard 
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is critical, but the approach has yet to be resolved when employing 
quantile regressions. We leave this for future research.

Note, that it is always possible to include other candidates as systemic 
shocks, in addition to that of equity market uncertainty. For example, 
traditional proxies based on CDS, sovereign credit risk, interbank expo-
sures, liquidity ratios, or even other indices of policy uncertainty could 
be explored. We consider our proposal as representing one step in the 
direction of explaining systemic risk, and believe uncertainty to be one 
of the first natural candidates for consideration as a systemic shock. 
Eventually, any unobservable factor should optimally be replaced by 
more clearly identifiable factors identified in the literature. 

Appendix to Chapter 4

Table A. Non-banking firms in the sample

INSURANCE OTHER

NAME NAME NAME NAME

ACE MANULIFE 
FINANCIAL 3I GROUP MAN GROUP

AEGON MAPFRE ABERDEEN ASSET 
MAN.

MARFIN INV.
GP.HDG.

AFLAC MARKEL ACKERMANS & VAN 
HAAREN

MITSUB.UFJ LSE.& 
FINANCE

AGEAS (EX-FORTIS) MARSH & 
MCLENNAN ACOM MOODY’S

ALLIANZ (XET) MS&AD INSURANCE 
GP.HDG. AMERICAN EXPRESS MORGAN STANLEY

ALLSTATE MUENCHENER RUCK. 
(XET) ASX NOMURA HDG.

AMERICAN INTL.GP. OLD MUTUAL BANK OF NEW YORK 
MELLON NORTHERN TRUST

AMLIN PARTNERRE BLACKROCK ORIX

AMP POWER CORP.
CANADA CHARLES SCHWAB PARGESA ‘B’

AON CLASS A POWER FINL. CHINA EVERBRIGHT PERPETUAL

ARCH CAP.GP. PROGRESSIVE OHIO CI FINANCIAL PROVIDENT 
FINANCIAL
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INSURANCE OTHER

NAME NAME NAME NAME

ASSICURAZIONI 
GENERALI PRUDENTIAL CLOSE BROTHERS 

GROUP RATOS ‘B’

AVIVA QBE INSURANCE 
GROUP COMPUTERSHARE SCHRODERS

AXA RENAISSANCERE 
HDG. CREDIT SAISON SLM

AXA ASIA PACIFIC 
HDG.

RSA INSURANCE 
GROUP

DAIWA SECURITIES 
GROUP SOFINA

CHALLENGER SAMPO ‘A’ EATON VANCE NV. STATE STREET

CHUBB SCOR SE EQUIFAX SUNCORP GROUP

CINCINNATI FINL. STOREBRAND EURAZEO T ROWE PRICE 
GROUP

CNP ASSURANCES SWISS LIFE 
HOLDING

FRANKLIN 
RESOURCES

TD AMERITRADE 
HOLDING

EVEREST RE GP. SWISS RE ‘R’ GAM HOLDING WENDEL

FAIRFAX FINL.HDG. TOPDANMARK GBL NEW  

GREAT WEST LIFECO TORCHMARK GOLDMAN SACHS 
GP.  

HANNOVER RUCK. 
(XET) TRAVELERS COS. ICAP  

HARTFORD FINL.
SVS.GP. UNUM GROUP IGM FINL.  

HELVETIA HOLDING 
N

VIENNA INSURANCE 
GROUP A INDUSTRIVARDEN ‘A’  

ING GROEP GDR W R BERKLEY INTERMEDIATE 
CAPITAL GP.  

JARDINE LLOYD 
THOMPSON XL GROUP INVESTOR ‘B’  

LEGAL & GENERAL ZURICH FINL.SVS. 
(IRS) KINNEVIK ‘B’  

LINCOLN NATIONAL ZURICH INSURANCE 
GROUP LEGG MASON  

LOEWS   MACQUARIE GROUP  

Note: The sector classification used in the sample includes Banks, Asset Management, Specialty 
Finance, Investment Service, Consumer Finance, Financial Administration, Life Insurance, Prop-
erty and Casualty Insurance, Full Line Insurance, Insurance Broker, and Reinsurance. Although 
all the institutions were used to estimate the systemic factor, only the banks were used to esti-
mate the systemic risk models. Data and classification were taken from Datastream.
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CHAPTER 5: CURRENCY DOWNSIDE RISK, LIQUIDITY, AND 
FINANCIAL STABILITY

5.1. Introduction

Currency crises have been of particular concern for policy-makers, regu-
lators, practitioners and academics since at least the post-Bretton Woods 
era (Krugman, 2000). In the intervening years, one of the most frequently 
examined –albeit one of the least understood– issues related to such 
crises have been the mechanisms of propagation of currency shocks, 
be they a consequence of macro-fundamentals, coordinated polices, 
common-lenders, speculative attacks or simply a result of unexpected 
(or unexplained) mechanisms (pure-contagion)34. Yet, co-movements 
and risk spillovers in currency markets can have an enormous econo-
mic and social impact on financial and macroeconomic stability and, 
hence, on wellbeing35. Currency shock spillovers have been shown to be 
closely linked to global imbalances, investor speculation, sovereign debt 
concerns (Chen, 2014), sudden stops, sharp real depreciations and as-
set price crashes (Apostolakis and Papadopoulos, 2015; Korinek and 
Mendoza, 2014) and, therefore, to financial collapses. Currency trading, 
measured in dollar volume, represents the largest financial market on 
the planet: an average of $5.1 trillion each day according to the latest 
Triennial Central Bank Survey conducted by the Bank for International 
Settlements (Bank of International Settlements, 2016). Hence, unders-
tanding spillovers in foreign exchange (FX) markets is critical for main-
taining financial stability.

There is a well-established branch of the macro-financial literature that 
empirically studies spillovers in FX markets (Hong, 2001; Melvin and 
Peiers, 2003; Cai et al., 2008; Bekiros and Diks, 2008; Bubák et al., 2011; 
Li, 2011; Antonakakis, 2012; Kavli and Kotzé, 2014; Diebold and Yilmaz, 

34.  See Rigobon (2002) and references therein for a discussion about contagion, including currency markets.
35.  See Krugman (2000) and references therein.
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2015; Greenwood-Nimmo et al., 2016). Some of these studies focus spe-
cifically on spillovers between highly traded currencies (for instance, 
Greenwood-Nimmo et al., 2016) while others also include emerging 
market currencies with lower trade volumes (e.g. Kavli and Kotzé, 2014).

The study of return and volatility spillovers in currency markets impo-
ses its own symmetry on the analysis, by implicitly assuming that for 
any given country that the situation is roughly the equivalent of facing 
depreciation or appreciation pressures36. This assumption is at the very 
least controversial. In the worst-case scenario, central banks may lean 
against the wind when appreciation pressures emerge on the horizon, 
to the degree that they are willing (or politically allowed) to do so. On 
the other hand, their response is much more restricted when faced by an 
episode of depreciation. Here, in the worst case they are bound by the 
(frighteningly) lower limit of the FX reserves. 

The aim of this paper is to analyze downside risk propagation across 
global currency markets and the ways in which it is related to liquidity. 
We make two primary contributions to the literature. First, we estimate 
tail-spillovers between currencies in the global FX market. Unlike pre-
vious studies that focus on return co-movements and volatility spillo-
vers in currency markets, we directly address the issue of risk spillovers 
in the left tail of the daily variations in currency prices (depreciations). 
We do so by closely adhering to what we consider a key element in the 
definition of a currency crisis proposed by Paul Krugman: “[it] is a sort 
of circular logic, in which investors flee a currency because they fear 
that it might be devalued, and in which much (though not necessarily 
all) of the pressure for such a devaluation comes precisely from that 
capital flight” (Krugman, 2000, p 1. The emphasis is ours). Notice that 
by definition currency crises are related to periods of depreciation (or 
devaluation), and not to episodes of appreciation (or revaluation). Thus, 
in terms of financial stability, episodes of depreciation are more sig-
nificant than those of appreciation. Our strategy allows us to consider 
specifically downside risk in currency markets, corresponding in this 

36.  The importance, on empirical grounds, of considering asymmetries when modeling exchange rate 
variations has been documented for instance by Patton (2006) and Reboredo et al. (2016). Unlike the analysis 
reported herein, these studies neither consider dynamic spillovers nor focus on currency crises and systemic 
risk, rather they model pairs of series –the Deutsche Mark and US Dollar in the former case and stock returns 
against exchange rates for emerging economies in the latter.
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instance to episodes of depreciation of the global currencies against the 
US dollar. This is more consistent with the definition of a currency 
crisis. Moreover, our tail-spillover estimates can be used to construct a 
new financial stability index for the FX market. This index is easy to 
build and does not require intraday data, which constitutes an impor-
tant advantage. Our second contribution is that we explore whether 
turnover is related to risk spillovers in global currency markets. In this 
respect we draw inspiration from Mancini et al. (2013) and Karnaukh 
et al. (2015), who document a significant relationship between curren-
cy liquidities (i.e. commonality). Our intuition is that liquidity matters 
for spillovers. World currencies can be expected to behave differently 
depending on how much investors trade them and, in turn, commo-
nality may become evident by examining the dynamic spillovers in 
worldwide FX markets.

In line with Diebold and Yilmaz (2015), we opted to include in our 
sample of 20 currencies against the US dollar those with high trading 
volume ratios (Euro, Yen, British Pound, Australian Dollar, Canadian 
Dollar, Swiss Franc, Swedish Krona, Mexican Peso, New Zealand Do-
llar, Singapore Dollar, and Norwegian Krone) as well as those with 
considerably lower market transaction levels (South Korean Won, Tur-
kish Lira, Indian Rupiah, Brazilian Real, South African Rand, Polish 
Zloty, Thai Baht, Colombian and Philippine Pesos). In this way, we 
seek to provide a more comprehensive panorama of global FX market 
dynamics. 

Our methodology consists of two steps. First, we estimate intraday range 
volatilities and conditional quantiles. Then we use these series as input 
to construct traditional Diebold and Yilmaz (2012, 2014) statistics, net 
pairwise statistics and networks. Obvious alternatives for constructing 
asymmetric spillovers are semi-variances, as performed by Barndorff-
Nielsen et al. (2010). However, these semi-variances, especially the mea-
sure of ‘bad volatility’, are based on ‘fill-in asymptotics’, and require 
intraday prices to be constructed on a daily basis. Our measure is based 
on conditional quantiles and does not require this level of detailed in-
formation. Second, our measure focuses specifically on a high quantile 
(95th percentile), as opposed to the full spectrum of ‘bad volatility’, 
which refers approximately to 50% of the variations. It is our contention 
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that the two steps outlined above represent compelling advantages of 
our proposal. 

We document significant asymmetries in terms of risk propagation that 
become evident after comparing volatility-based and quantile-based 
spillover measures. The quantile-based statistic reacts more significant-
ly to events that have a sizable impact on FX markets (e.g. the Brexit 
vote and the FX crash following the subprime crisis), and which are 
missed by the volatility- and return-based statistics. We also gain in-
sights into the relation between liquidity and spillovers. For example, 
while Karnaukh et al. (2015) document that the most liquid currencies 
are more strongly affected by global risk factors during turbulent times, 
we complement this analysis by showing that during the subprime crisis 
and its aftermath (between 2008 and 2012) the most liquid currencies 
not only behaved as net-receivers of volatility shocks (in this respect in 
line with Karnaukh et al., 2015), but also that this pattern is reversed 
for the period 2012-2016, indicating that the most liquid currencies are 
also able to destabilize the rest of the market during episodes of relative 
calm. Interestingly, the shocks propagate as in a cascade: the more liq-
uid a set of currencies is, the more likely it affects all the other curren-
cies, during periods of depreciation (against the USD). Conversely, the 
more liquid it is, the more likely it is affected by all the other currencies 
during turbulent periods that lack a clear trend in terms of appreciation 
or depreciation. 

Our analyses provide new perspectives on the relation between liquidity 
and volatility (quantile) spillovers. In the case of tail-spillovers, most 
liquid currencies are, by rule, net-receivers and the least liquid curren-
cies are net-transmitters. However, in the case of volatility spillovers, 
the (receiving or transmitting) role of the currencies is sorted by liquid-
ity changes during periods of depreciation, appreciation or turbulence. 

The significant asymmetries that we reveal by contrasting quantile- and 
volatility-based measures of spillovers are critical for financial stability, 
and should be taken into consideration when conducting exercises that 
seek to monitor financial fragility around the world. Our findings are 
also relevant for designing the hedging mechanisms that are of such 
instrumental importance for international investors. 
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The rest of the paper is organized as follows. Section 2 presents the meth-
odological approach we adopt and section 3 describes our data. The 
results of the spillover analysis are discussed in section 4 and section 5 
concludes. 

5.2. Methodology

We used variance decomposition of forecast errors, as proposed by 
Diebold and Yilmaz (2012), to analyze spillovers between range-based 
volatilities and between quantiles of daily log-variations in foreign 
exchange markets. To estimate the latter, we employed an asymmetric 
slope Conditional Autoregressive Value at Risk model (CAViaR) as intro-
duced by Engle and Manganelli (2004). We also used graphical networks 
to analyze specific dates in the foreign exchange markets, in line with 
Diebold and Yilmaz (2014). 

A. Volatility Measure

We calculated the volatilities of each of the 20 currencies using the 
range-based volatility framework proposed by Parkinson (1980). We 
opted for this framework given its efficiency and simplicity both of es-
timation and interpretation (Alizadeh et al., 2002). The daily variance of 

each market i is calculated based on the highest and lowest daily prices 

on day t as follows:
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In line with Diebold and Yilmaz (2015), we opted to include in our sample of 
20 currencies against the US dollar those with high trading volume ratios 
(Euro, Yen, British Pound, Australian Dollar, Canadian Dollar, Swiss Franc, 
Swedish Krona, Mexican Peso, New Zealand Dollar, Singapore Dollar, and 
Norwegian Krone) as well as those with considerably lower market transaction 
levels (South Korean Won, Turkish Lira, Indian Rupiah, Brazilian Real, South 
African Rand, Polish Zloty, Thai Baht, Colombian and Philippine Pesos). In 
this way, we seek to provide a more comprehensive panorama of global FX 
market dynamics.  
Our methodology consists of two steps. First, we estimate intraday range 
volatilities and conditional quantiles. Then we use these series as input to 
construct traditional Diebold and Yilmaz (2012, 2014) statistics, net pairwise 
statistics and networks. Obvious alternatives for constructing asymmetric 
spillovers are semi-variances, as performed by Barndorff-Nielsen et al. (2010). 
However, these semi-variances, especially the measure of ‘bad volatility’, are 
based on ‘fill-in asymptotics’, and require intraday prices to be constructed on 
a daily basis. Our measure is based on conditional quantiles and does not 
require this level of detailed information. Second, our measure focuses 
specifically on a high quantile (95th percentile), as opposed to the full 
spectrum of ‘bad volatility’, which refers approximately to 50% of the 
variations. It is our contention that the two steps outlined above represent 
compelling advantages of our proposal.  
We document significant asymmetries in terms of risk propagation that 
become evident after comparing volatility-based and quantile-based spillover 
measures. The quantile-based statistic reacts more significantly to events that 
have a sizable impact on FX markets (e.g. the Brexit vote and the FX crash 
following the subprime crisis), and which are missed by the volatility- and 
return-based statistics. We also gain insights into the relation between liquidity 
and spillovers. For example, while Karnaukh et al. (2015) document that the 
most liquid currencies are more strongly affected by global risk factors during 
turbulent times, we complement this analysis by showing that during the 
subprime crisis and its aftermath (between 2008 and 2012) the most liquid 
currencies not only behaved as net-receivers of volatility shocks (in this 
respect in line with Karnaukh et al., 2015), but also that this pattern is reversed 
for the period 2012-2016, indicating that the most liquid currencies are also 
able to destabilize the rest of the market during episodes of relative calm. 
Interestingly, the shocks propagate as in a cascade: the more liquid a set of 
currencies is, the more likely it affects all the other currencies, during periods of 
depreciation (against the USD). Conversely, the more liquid it is, the more likely 
it is affected by all the other currencies during turbulent periods that lack a clear trend 
in terms of appreciation or depreciation.  
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Our analyses provide new perspectives on the relation between liquidity and 
volatility (quantile) spillovers. In the case of tail-spillovers, most liquid 
currencies are, by rule, net-receivers and the least liquid currencies are net-
transmitters. However, in the case of volatility spillovers, the (receiving or 
transmitting) role of the currencies is sorted by liquidity changes during 
periods of depreciation, appreciation or turbulence.   
The significant asymmetries that we reveal by contrasting quantile- and 
volatility-based measures of spillovers are critical for financial stability, and 
should be taken into consideration when conducting exercises that seek to 
monitor financial fragility around the world. Our findings are also relevant for 
designing the hedging mechanisms that are of such instrumental importance 
for international investors.  
The rest of the paper is organized as follows. Section 2 presents the 
methodological approach we adopt and section 3 describes our data. The 
results of the spillover analysis are discussed in section 4 and section 5 
concludes.  
5.2. Methodology 

We used variance decomposition of forecast errors, as proposed by Diebold 
and Yilmaz (2012), to analyze spillovers between range-based volatilities and 
between quantiles of daily log-variations in foreign exchange markets. To 
estimate the latter, we employed an asymmetric slope Conditional 
Autoregressive Value at Risk model (CAViaR) as introduced by Engle and 
Manganelli (2004). We also used graphical networks to analyze specific dates 
in the foreign exchange markets, in line with Diebold and Yilmaz (2014).   
A. Volatility Measure 

We calculated the volatilities of each of the 20 currencies using the range-
based volatility framework proposed by Parkinson (1980). We opted for this 
framework given its efficiency and simplicity both of estimation and 
interpretation (Alizadeh et al., 2002). The daily variance of each market i is 
calculated based on the highest and lowest daily prices on day t as follows: 

ì|à)
ã = 0.361[ln óu≠∆à) − ln óuKJà)]

ã,    (5.1) 

where óu≠∆ is the highest price of currency i on day t and óuKJ is the lowest 
price of currency i on day t for K = 1,…A	 and ! = 1,… , ]	. The annualized 
volatility in percentage points was calculated as: 

ì¶à)
ã = 1002365	ì|à)ã .      (5.2) 

B. CAViaR model 

The CAViaR model for variable ∫) can be expressed as: 

…)(3, -) = 4¢(-) + ∑ 4à(3, -)«
àêi …){à(-) + ∑ eè(-)

Ÿ
èêi 3N∆){è, 5V,    (5.3) 
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In line with Diebold and Yilmaz (2015), we opted to include in our sample of 
20 currencies against the US dollar those with high trading volume ratios 
(Euro, Yen, British Pound, Australian Dollar, Canadian Dollar, Swiss Franc, 
Swedish Krona, Mexican Peso, New Zealand Dollar, Singapore Dollar, and 
Norwegian Krone) as well as those with considerably lower market transaction 
levels (South Korean Won, Turkish Lira, Indian Rupiah, Brazilian Real, South 
African Rand, Polish Zloty, Thai Baht, Colombian and Philippine Pesos). In 
this way, we seek to provide a more comprehensive panorama of global FX 
market dynamics.  
Our methodology consists of two steps. First, we estimate intraday range 
volatilities and conditional quantiles. Then we use these series as input to 
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concludes.  
5.2. Methodology 

We used variance decomposition of forecast errors, as proposed by Diebold 
and Yilmaz (2012), to analyze spillovers between range-based volatilities and 
between quantiles of daily log-variations in foreign exchange markets. To 
estimate the latter, we employed an asymmetric slope Conditional 
Autoregressive Value at Risk model (CAViaR) as introduced by Engle and 
Manganelli (2004). We also used graphical networks to analyze specific dates 
in the foreign exchange markets, in line with Diebold and Yilmaz (2014).   
A. Volatility Measure 

We calculated the volatilities of each of the 20 currencies using the range-
based volatility framework proposed by Parkinson (1980). We opted for this 
framework given its efficiency and simplicity both of estimation and 
interpretation (Alizadeh et al., 2002). The daily variance of each market i is 
calculated based on the highest and lowest daily prices on day t as follows: 

ì|à)
ã = 0.361[ln óu≠∆à) − ln óuKJà)]

ã,    (5.1) 

where óu≠∆ is the highest price of currency i on day t and óuKJ is the lowest 
price of currency i on day t for K = 1,…A	 and ! = 1,… , ]	. The annualized 
volatility in percentage points was calculated as: 

ì¶à)
ã = 1002365	ì|à)ã .      (5.2) 

B. CAViaR model 

The CAViaR model for variable ∫) can be expressed as: 
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In line with Diebold and Yilmaz (2015), we opted to include in our sample of 
20 currencies against the US dollar those with high trading volume ratios 
(Euro, Yen, British Pound, Australian Dollar, Canadian Dollar, Swiss Franc, 
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African Rand, Polish Zloty, Thai Baht, Colombian and Philippine Pesos). In 
this way, we seek to provide a more comprehensive panorama of global FX 
market dynamics.  
Our methodology consists of two steps. First, we estimate intraday range 
volatilities and conditional quantiles. Then we use these series as input to 
construct traditional Diebold and Yilmaz (2012, 2014) statistics, net pairwise 
statistics and networks. Obvious alternatives for constructing asymmetric 
spillovers are semi-variances, as performed by Barndorff-Nielsen et al. (2010). 
However, these semi-variances, especially the measure of ‘bad volatility’, are 
based on ‘fill-in asymptotics’, and require intraday prices to be constructed on 
a daily basis. Our measure is based on conditional quantiles and does not 
require this level of detailed information. Second, our measure focuses 
specifically on a high quantile (95th percentile), as opposed to the full 
spectrum of ‘bad volatility’, which refers approximately to 50% of the 
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We document significant asymmetries in terms of risk propagation that 
become evident after comparing volatility-based and quantile-based spillover 
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currencies is, the more likely it affects all the other currencies, during periods of 
depreciation (against the USD). Conversely, the more liquid it is, the more likely 
it is affected by all the other currencies during turbulent periods that lack a clear trend 
in terms of appreciation or depreciation.  
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where α is the level of confidence of the associated VaR, 
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where - is the level of confidence of the associated VaR, ∆) are the variables 
on which we condition the estimation of the quantile, 3  is a vector of 
unknown parameters of size p, 5 is the information set, and …)(3, -) is the - 
quantile at time t of the variable ∫), which in our case corresponds to the daily 
log variation of each FX in our sample. The second term in the equation 
relates to the autoregressive component that allows for the smooth dynamics 
of the quantile, while the third term is related to the conditioning variables. 
Specifically, the asymmetric slope CAViaR can be expressed as: 

…)(3, -) = 3¢(-) + 3i(-)…){à(3, -) + 3ã(-)∫){i{ + 36(-)∫){i
j,   (5.4) 

where ∫){  and ∫)j  are the negative and positive values of ∫) , respectively. 
This specification captures the asymmetric effect in the slope of the quantile, 
conditional on the value and on the sign of the returns. 
The CAViaR model was estimated following the quantile regression 
framework provided by Koenker and Bassett (1978). In this framework, the 
parameters are estimated as a special case of the least absolute deviation 
(LAD) estimator. The maximization of the likelihood function was performed 
using numerical methods (BFGS quasi-Newton with Hessian updates). 
C. Spillover measures 

The spillover indices are based on a VAR with N=20 variables, and were built 
on the associated forecast error variance decomposition (FEVD). The errors 
were estimated from the moving average representation of the VAR as 
follows: 

á) = Θ(()»),      (5.5) 

á) = ∑ ´à»){à
ˇ
)ê¢ ,      (5.6) 

where á)  is a matriz ] × A , Θ(() = (Œ − ’(()){i  and ´à = ’´à{i +
’´à{ã + ⋯+ ’´à{Ÿ is the parameters’ matrix, p is the number of lags used in 
the estimation, and T is the number of periods. To estimate the FEVD from 
the h-step ahead forecast, we first had to identify the structural VAR 
innovations by imposing restrictions on the MA parameters. In line with 
Diebold and Yilmaz’s suggestion (2012), we followed the eclectic path 
proposed by Koop et al. (1996) and Pesaran and Shin (1998), namely the 
generalized VAR, for the construction of the FEVD. 
The errors in the FEVD can be divided into own variance shares or cross variance 
shares. The former are the fractions of the errors that are related to a shock to 
∆à on itself, while the latter are the portion of the shocks on ∆à related to the 
rest of the variables in the system. The h-step ahead FEVD can be defined as: 

8àè(:) =
Öçç
l� ∑ (kzX∑9:kç)É;l�

9ü<
∑ (kzX∑9:∑9Xkz);l�

9ü<
,    (5.7) 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
equation, and Gè is a selection vector, with ones in the i-th element and zero 
otherwise. To guarantee that the sum of each row is 1, ∑ 8àè(:) = 1è , each 
entry of the variance decomposition must be normalized as follows: 

8ÿàè(:) =
>zç(8)

∑ >zç(8);l�
çü�

.     (5.8) 

With the normalized variance decomposition, a total spillover index can be 
calculated as: 

B(:) =
∑ >Pzç(8)~
z,çü�,z?ç
∑ >Pzç(8)~
z,çü�

× 100.    (5.9) 

This index measures the percentage variance that can be explained by cross-
spillovers. It can be extended to a dynamic version, known in the literature as 
a directional spillover index, in which the effect of a shock to ∆è on the variable 
∆à, for every period, is given by: 

Bà∗(:) =
∑ >Pzç(8)~
çü�,z?ç
∑ >Pzç(8)~
z,çü�

× 100,    (5.10) 

conversely, a shock to ∆à on ∆è is given by: 

B∗à(:) =
∑ >Pçz(8)~
çü�,z?ç
∑ >Pzç(8)~
z,çü�

× 100,    (5.11) 

with the two directional spillover indices we construct a net spillover index, 
given by: 

Bà(:) = B∗à(:) − Bà∗(:).    (5.12) 
 
The net spillover index is a measure of the effect related to a shock in the 
variable ∆à on the rest of the system. Therefore, each variable will be either a 
net receiver or a net transmitter of shocks in each period. It is also possible to 
construct a net pairwise spillover index, that accounts for the net spillover effect 
of the exchange rate ∆à  on ∆è , where K ≠ Î . The net pairwise index can be 
defined as: 

Bàè(:) =
>Pçz(8){>Pzç(8)
∑ >Pzç(8)~
z,çü�

× 100.    (5.13) 

 

D. Networks 

In line with Diebold and Yilmaz (2014, 2015), we also employed graphical 
network analysis. Unlike those authors, we used graphs to highlight the 
differences between volatility-based and quantile-based measures in FX 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
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relates to the autoregressive component that allows for the smooth dynamics 
of the quantile, while the third term is related to the conditioning variables. 
Specifically, the asymmetric slope CAViaR can be expressed as: 

…)(3, -) = 3¢(-) + 3i(-)…){à(3, -) + 3ã(-)∫){i{ + 36(-)∫){i
j,   (5.4) 

where ∫){  and ∫)j  are the negative and positive values of ∫) , respectively. 
This specification captures the asymmetric effect in the slope of the quantile, 
conditional on the value and on the sign of the returns. 
The CAViaR model was estimated following the quantile regression 
framework provided by Koenker and Bassett (1978). In this framework, the 
parameters are estimated as a special case of the least absolute deviation 
(LAD) estimator. The maximization of the likelihood function was performed 
using numerical methods (BFGS quasi-Newton with Hessian updates). 
C. Spillover measures 

The spillover indices are based on a VAR with N=20 variables, and were built 
on the associated forecast error variance decomposition (FEVD). The errors 
were estimated from the moving average representation of the VAR as 
follows: 

á) = Θ(()»),      (5.5) 
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)ê¢ ,      (5.6) 

where á)  is a matriz ] × A , Θ(() = (Œ − ’(()){i  and ´à = ’´à{i +
’´à{ã + ⋯+ ’´à{Ÿ is the parameters’ matrix, p is the number of lags used in 
the estimation, and T is the number of periods. To estimate the FEVD from 
the h-step ahead forecast, we first had to identify the structural VAR 
innovations by imposing restrictions on the MA parameters. In line with 
Diebold and Yilmaz’s suggestion (2012), we followed the eclectic path 
proposed by Koop et al. (1996) and Pesaran and Shin (1998), namely the 
generalized VAR, for the construction of the FEVD. 
The errors in the FEVD can be divided into own variance shares or cross variance 
shares. The former are the fractions of the errors that are related to a shock to 
∆à on itself, while the latter are the portion of the shocks on ∆à related to the 
rest of the variables in the system. The h-step ahead FEVD can be defined as: 

8àè(:) =
Öçç
l� ∑ (kzX∑9:kç)É;l�

9ü<
∑ (kzX∑9:∑9Xkz);l�

9ü<
,    (5.7) 

	 104	

where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
equation, and Gè is a selection vector, with ones in the i-th element and zero 
otherwise. To guarantee that the sum of each row is 1, ∑ 8àè(:) = 1è , each 
entry of the variance decomposition must be normalized as follows: 

8ÿàè(:) =
>zç(8)

∑ >zç(8);l�
çü�

.     (5.8) 

With the normalized variance decomposition, a total spillover index can be 
calculated as: 

B(:) =
∑ >Pzç(8)~
z,çü�,z?ç
∑ >Pzç(8)~
z,çü�

× 100.    (5.9) 

This index measures the percentage variance that can be explained by cross-
spillovers. It can be extended to a dynamic version, known in the literature as 
a directional spillover index, in which the effect of a shock to ∆è on the variable 
∆à, for every period, is given by: 

Bà∗(:) =
∑ >Pzç(8)~
çü�,z?ç
∑ >Pzç(8)~
z,çü�

× 100,    (5.10) 

conversely, a shock to ∆à on ∆è is given by: 

B∗à(:) =
∑ >Pçz(8)~
çü�,z?ç
∑ >Pzç(8)~
z,çü�

× 100,    (5.11) 

with the two directional spillover indices we construct a net spillover index, 
given by: 

Bà(:) = B∗à(:) − Bà∗(:).    (5.12) 
 
The net spillover index is a measure of the effect related to a shock in the 
variable ∆à on the rest of the system. Therefore, each variable will be either a 
net receiver or a net transmitter of shocks in each period. It is also possible to 
construct a net pairwise spillover index, that accounts for the net spillover effect 
of the exchange rate ∆à  on ∆è , where K ≠ Î . The net pairwise index can be 
defined as: 

Bàè(:) =
>Pçz(8){>Pzç(8)
∑ >Pzç(8)~
z,çü�

× 100.    (5.13) 
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where - is the level of confidence of the associated VaR, ∆) are the variables 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
equation, and Gè is a selection vector, with ones in the i-th element and zero 
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The net spillover index is a measure of the effect related to a shock in the 
variable ∆à on the rest of the system. Therefore, each variable will be either a 
net receiver or a net transmitter of shocks in each period. It is also possible to 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
equation, and Gè is a selection vector, with ones in the i-th element and zero 
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entry of the variance decomposition must be normalized as follows: 
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This index measures the percentage variance that can be explained by cross-
spillovers. It can be extended to a dynamic version, known in the literature as 
a directional spillover index, in which the effect of a shock to ∆è on the variable 
∆à, for every period, is given by: 
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The net spillover index is a measure of the effect related to a shock in the 
variable ∆à on the rest of the system. Therefore, each variable will be either a 
net receiver or a net transmitter of shocks in each period. It is also possible to 
construct a net pairwise spillover index, that accounts for the net spillover effect 
of the exchange rate ∆à  on ∆è , where K ≠ Î . The net pairwise index can be 
defined as: 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
equation, and Gè is a selection vector, with ones in the i-th element and zero 
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a directional spillover index, in which the effect of a shock to ∆è on the variable 
∆à, for every period, is given by: 
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with the two directional spillover indices we construct a net spillover index, 
given by: 

Bà(:) = B∗à(:) − Bà∗(:).    (5.12) 
 
The net spillover index is a measure of the effect related to a shock in the 
variable ∆à on the rest of the system. Therefore, each variable will be either a 
net receiver or a net transmitter of shocks in each period. It is also possible to 
construct a net pairwise spillover index, that accounts for the net spillover effect 
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where - is the level of confidence of the associated VaR, ∆) are the variables 
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(LAD) estimator. The maximization of the likelihood function was performed 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
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The net spillover index is a measure of the effect related to a shock in the 
variable ∆à on the rest of the system. Therefore, each variable will be either a 
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where - is the level of confidence of the associated VaR, ∆) are the variables 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
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The net spillover index is a measure of the effect related to a shock in the 
variable ∆à on the rest of the system. Therefore, each variable will be either a 
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of the exchange rate ∆à  on ∆è , where K ≠ Î . The net pairwise index can be 
defined as: 

Bàè(:) =
>Pçz(8){>Pzç(8)
∑ >Pzç(8)~
z,çü�

× 100.    (5.13) 

 

D. Networks 

In line with Diebold and Yilmaz (2014, 2015), we also employed graphical 
network analysis. Unlike those authors, we used graphs to highlight the 
differences between volatility-based and quantile-based measures in FX 

 	 (5.12)

The net spillover index is a measure of the effect related to a shock 
in the variable 

	 103	

where - is the level of confidence of the associated VaR, ∆) are the variables 
on which we condition the estimation of the quantile, 3  is a vector of 
unknown parameters of size p, 5 is the information set, and …)(3, -) is the - 
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parameters are estimated as a special case of the least absolute deviation 
(LAD) estimator. The maximization of the likelihood function was performed 
using numerical methods (BFGS quasi-Newton with Hessian updates). 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
equation, and Gè is a selection vector, with ones in the i-th element and zero 
otherwise. To guarantee that the sum of each row is 1, ∑ 8àè(:) = 1è , each 
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with the two directional spillover indices we construct a net spillover index, 
given by: 

Bà(:) = B∗à(:) − Bà∗(:).    (5.12) 
 
The net spillover index is a measure of the effect related to a shock in the 
variable ∆à on the rest of the system. Therefore, each variable will be either a 
net receiver or a net transmitter of shocks in each period. It is also possible to 
construct a net pairwise spillover index, that accounts for the net spillover effect 
of the exchange rate ∆à  on ∆è , where K ≠ Î . The net pairwise index can be 
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where - is the level of confidence of the associated VaR, ∆) are the variables 
on which we condition the estimation of the quantile, 3  is a vector of 
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The CAViaR model was estimated following the quantile regression 
framework provided by Koenker and Bassett (1978). In this framework, the 
parameters are estimated as a special case of the least absolute deviation 
(LAD) estimator. The maximization of the likelihood function was performed 
using numerical methods (BFGS quasi-Newton with Hessian updates). 
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follows: 
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’´à{ã + ⋯+ ’´à{Ÿ is the parameters’ matrix, p is the number of lags used in 
the estimation, and T is the number of periods. To estimate the FEVD from 
the h-step ahead forecast, we first had to identify the structural VAR 
innovations by imposing restrictions on the MA parameters. In line with 
Diebold and Yilmaz’s suggestion (2012), we followed the eclectic path 
proposed by Koop et al. (1996) and Pesaran and Shin (1998), namely the 
generalized VAR, for the construction of the FEVD. 
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shares. The former are the fractions of the errors that are related to a shock to 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
equation, and Gè is a selection vector, with ones in the i-th element and zero 
otherwise. To guarantee that the sum of each row is 1, ∑ 8àè(:) = 1è , each 
entry of the variance decomposition must be normalized as follows: 
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calculated as: 
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a directional spillover index, in which the effect of a shock to ∆è on the variable 
∆à, for every period, is given by: 
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with the two directional spillover indices we construct a net spillover index, 
given by: 
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The net spillover index is a measure of the effect related to a shock in the 
variable ∆à on the rest of the system. Therefore, each variable will be either a 
net receiver or a net transmitter of shocks in each period. It is also possible to 
construct a net pairwise spillover index, that accounts for the net spillover effect 
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where - is the level of confidence of the associated VaR, ∆) are the variables 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
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where - is the level of confidence of the associated VaR, ∆) are the variables 
on which we condition the estimation of the quantile, 3  is a vector of 
unknown parameters of size p, 5 is the information set, and …)(3, -) is the - 
quantile at time t of the variable ∫), which in our case corresponds to the daily 
log variation of each FX in our sample. The second term in the equation 
relates to the autoregressive component that allows for the smooth dynamics 
of the quantile, while the third term is related to the conditioning variables. 
Specifically, the asymmetric slope CAViaR can be expressed as: 

…)(3, -) = 3¢(-) + 3i(-)…){à(3, -) + 3ã(-)∫){i{ + 36(-)∫){i
j,   (5.4) 

where ∫){  and ∫)j  are the negative and positive values of ∫) , respectively. 
This specification captures the asymmetric effect in the slope of the quantile, 
conditional on the value and on the sign of the returns. 
The CAViaR model was estimated following the quantile regression 
framework provided by Koenker and Bassett (1978). In this framework, the 
parameters are estimated as a special case of the least absolute deviation 
(LAD) estimator. The maximization of the likelihood function was performed 
using numerical methods (BFGS quasi-Newton with Hessian updates). 
C. Spillover measures 

The spillover indices are based on a VAR with N=20 variables, and were built 
on the associated forecast error variance decomposition (FEVD). The errors 
were estimated from the moving average representation of the VAR as 
follows: 

á) = Θ(()»),      (5.5) 

á) = ∑ ´à»){à
ˇ
)ê¢ ,      (5.6) 

where á)  is a matriz ] × A , Θ(() = (Œ − ’(()){i  and ´à = ’´à{i +
’´à{ã + ⋯+ ’´à{Ÿ is the parameters’ matrix, p is the number of lags used in 
the estimation, and T is the number of periods. To estimate the FEVD from 
the h-step ahead forecast, we first had to identify the structural VAR 
innovations by imposing restrictions on the MA parameters. In line with 
Diebold and Yilmaz’s suggestion (2012), we followed the eclectic path 
proposed by Koop et al. (1996) and Pesaran and Shin (1998), namely the 
generalized VAR, for the construction of the FEVD. 
The errors in the FEVD can be divided into own variance shares or cross variance 
shares. The former are the fractions of the errors that are related to a shock to 
∆à on itself, while the latter are the portion of the shocks on ∆à related to the 
rest of the variables in the system. The h-step ahead FEVD can be defined as: 

8àè(:) =
Öçç
l� ∑ (kzX∑9:kç)É;l�

9ü<
∑ (kzX∑9:∑9Xkz);l�

9ü<
,    (5.7) 
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where Σ is the variance matrix of »), ìèè is the standard deviation of the j-th 
equation, and Gè is a selection vector, with ones in the i-th element and zero 
otherwise. To guarantee that the sum of each row is 1, ∑ 8àè(:) = 1è , each 
entry of the variance decomposition must be normalized as follows: 

8ÿàè(:) =
>zç(8)

∑ >zç(8);l�
çü�

.     (5.8) 

With the normalized variance decomposition, a total spillover index can be 
calculated as: 
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This index measures the percentage variance that can be explained by cross-
spillovers. It can be extended to a dynamic version, known in the literature as 
a directional spillover index, in which the effect of a shock to ∆è on the variable 
∆à, for every period, is given by: 
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The net spillover index is a measure of the effect related to a shock in the 
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D. Networks

In line with Diebold and Yilmaz (2014, 2015), we also employed graphi-
cal network analysis. Unlike those authors, we used graphs to highlight 
the differences between volatility-based and quantile-based measures 
in FX markets. Nodes and edges constitute network graphs: the former 
given by a certain currency and weighted according to the turnover 
of this currency during the last year in the sample; and the latter by 
the net pairwise spillover indices on a certain date. In Figure 5.5 we 
only include the highest quartile of the net pairwise statistics so as to 
better appreciate the main results. 

5.3. Data

We use a database comprising twenty of the most traded currencies 
per US dollar (currency/US dollar) that have either a free floating, 
floating or managed floating exchange rate regime (see Table 5.1). 
Currency selection was based on the information provided by the 
Bank of International Settlements’ Triennial Central Bank Survey of 
foreign exchange and OTC derivatives markets (Bank of International 
Settlements, 2016). This report ranks foreign exchange currencies ac-
cording to their daily turnover. The exchange rate regime for each of 
the currencies was obtained from the International Monetary Fund’s 
Annual Report on Exchange Arrangements and Exchange Restrictions 
(International Monetary Fund, 2014).

We retrieved the data that correspond to the close, high and low quo-
tes of the exchange rates from Bloomberg. Our data span the period 
January 1, 2003 to September 5, 2016, for a total of 3,569 daily ob-
servations for each of the currencies. The year 2003 was chosen as the 
starting date in order to include in our database emerging market cu-
rrencies (including the Colombian Peso and the Polish Zloty) that did 
not adopt a floating or managed floating exchange rate regime until 
around this date. We omit countries with fixed exchange rate regimes 
because their artificially low exchange rate risk would bias the results.
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Table 5.1. Selected currencies ordered according to turnover

Code Currency Country Exchange Regime

EUR Euro Europe Free Floating

JPY Yen Japan Free Floating

GBP Pound Sterling United Kingdom Free Floating

AUD Australian Dollar Australia Free Floating

CAD Canadian Dollar Canada Free Floating

CHF Franc Switzerland Managed Floating

SEK Swedish Krona Sweden Free Floating

MXN Mexican Peso Mexico Free Floating

NZD New Zealand Dollar New Zealand Floating

SGD Singapore Dollar Singapore Managed Floating

NOK Norwegian Krone Norway Free Floating

KRW Won South Korea Floating

TRY Lira Turkey Floating

INR Rupee India Floating

BRL Real Brazil Floating

ZAR Rand South Africa Floating

PLN Zloty Poland Free Floating

THB Baht Thailand Floating

COP Colombian Peso Colombia Floating

PHP Philippine Peso Philippines Floating

Source: Bank of International Settlements (2016) and International Monetary Fund (2014).

A. Descriptive statistics of daily log variations in FX markets

Table 5.2 provides the summary statistics of the annualized FX log re-
turns in our sample. In Tables A1 and A3 in the appendix, we provi-
de the descriptive statistics for the estimated volatilities and VaRs. FX 
returns are characterized by heavy tails and some by negative skew-
ness. The ZAR displays the highest one-day depreciation in the sample, 
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with a 15 percent drop in October 2008. The range (difference between 
daily max. and min.) of the currencies of the developing economies 
and the commodity exporting countries is, in general, greater than that 
of the currencies of the developed economies. Consistent with this, the 
former currencies present higher risk, with a greater standard deviation, 
than that presented by the mature markets. 

Table 5.2. Summary statistics of annualized FX log returns
Our data span January 1, 2003-September 5, 2016. We use a database comprising 
twenty of the most traded currencies per US dollar (currency/US dollar) that have 
either a free floating, floating or managed floating exchange rate regime.

  EUR JPY GBP AUD CAD CHF* SEK MXN NZD SGD

 Mean 0.03 0.04 0.00 0.08 0.05 0.08 0.04 -0.03 0.08 0.03

 Median 0.03 0.00 0.00 0.14 0.04 0.00 0.03 0.04 0.14 0.06

 Maximum 13.42 14.92 11.27 35.25 15.64 103.58 20.20 27.45 17.09 7.28

 Minimum -8.50 -18.12 -26.40 -23.38 -11.19 -28.25 -14.30 -22.57 -21.81 -7.89

 Std. Dev. 2.29 2.36 2.16 3.10 2.24 3.05 2.89 2.61 3.12 1.13

 Skewness 0.19 0.27 -0.66 0.18 0.03 10.96 0.18 -0.16 -0.14 -0.30

 Kurtosis 4.80 7.25 11.12 13.80 5.51 378.48* 5.92 12.96 5.37 7.48

  NOK KRW TRY INR BRL ZAR PLN THB COP PHP

 Mean 0.02 0.04 -0.01 -0.02 0.08 0.03 0.06 0.03 0.04 0.02

 Median 0.00 0.04 0.12 0.00 0.00 0.07 0.11 0.00 0.00 0.00

 Maximum 19.67 37.33 25.89 13.51 32.25 28.56 26.28 14.09 31.92 8.10

 Minimum -16.26 -25.32 -23.92 -10.95 -21.23 -43.22 -16.87 -22.64 -22.10 -9.28

 Std. Dev. 2.92 2.71 3.17 1.69 3.75 4.10 3.41 1.56 2.86 1.40

 Skewness 0.03 1.11 -0.26 0.05 0.16 -0.32 0.08 -0.87 0.53 -0.02

 Kurtosis 5.52 31.03 9.23 9.24 8.40 9.18 6.97 32.21 14.04 5.24

* In September 2011, the Swiss National Bank adopted a fixed exchange rate with the Euro and, 
subsequently, in January 2015, it abandoned the peg. These two episodes explain the abnormal 
maximum, kurtosis and skewness of the Swiss Franc (CHF). Except for these episodes, the CHF 
is remarkably stable, with a standard deviation of 2.46, a skewness of 0.37, and a kurtosis of 
6.54. We include it in our sample due to its historical and financial importance as a ‘haven’ 
currency.
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B. Trends in currency markets

Figure 5.1 presents a subsample of three high- and three low-traded 
currencies against the US Dollar from January 1, 2003 to September 5, 
2016. The period from the beginning of the sample until July 2008 fea-
tures a general depreciation of the US dollar. However, the period from 
August 2008 to May 2012 is more difficult to characterize. Thus, while 
the US dollar was depreciating against AUS, JPY and BRL, it recorded 
various changes in terms of appreciation and depreciation against EUR, 
TRY and MXN. Caballero, Farhi, and Gourinchas (2008) document a 
significant flow of capital across the global economy during this period, 
which helps to explain the turbulence observed. Basically, the subprime 
crisis created an abnormal demand for higher returns outside the main 
markets (i.e. in the emerging and commodity markets), which in turn 
fostered a higher demand for the foreign currencies of net-exporters 
of commodities. The last period in the sample –from June 2012 until 
September 2016– was characterized by an appreciation of the US Do-
llar (although one exception to this pattern was Japan at the end of the 
sample). This US appreciation followed on from the events of the 2010 
European debt crisis; the sharp fall in commodity prices at the end of 
2011, and the crises faced by such countries as Greece (May 2010), Ire-
land (November 2010), and Portugal (May 2011), which subsequently 
escalated to affect Cyprus (December 2011) and Spain (July 2012). The 
final years in the sample were also characterized by the progressive re-
covery of the US economy. 

This raw characterization, which identifies the depreciation of the US 
Dollar from 2003 to 2007, a period of turbulence from 2008 to 2012, and 
a period of appreciation from 2013 onwards, also provides a reasonable 
fit with the behavior of the other exchange rates in our sample, but that 
are not included in the plot. We use this characterization below to des-
cribe some of our results.
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Figure 5.1. Subsample of three high- and three low-traded currencies against US 
Dollar
The figure illustrates the behavior of the exchange rates in both mature (top row) 
and emerging (bottom row) economies. The period from the beginning of the sample 
until July 2008 is characterized, in general, by the depreciation of the US dollar (the 
Mexican Peso being an exception). The period from August 2008 to May 2012 is 
difficult to characterize, while the US dollar was depreciating against AUS, JPY and 
BRL, it recorded marked changes against EUR, TRY and MXN. As such, it can be la-
belled as a period of turbulence. Finally, from June 2012 until the end of the sample 
in September 2016, there was a general appreciation of the US Dollar (with Japan 
being one exception at the end of the sample). This characterization also fits reasona-
bly well with the behavior of the other exchange rates in our sample. Our data span 
January 1, 2003-September 5, 2016.
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Table 5.2. 
Summary statistics of annualized FX log returns 

Our data span January 1, 2003-September 5, 2016. We use a database comprising twenty of 
the most traded currencies per US dollar (currency/US dollar) that have either a free 
floating, floating or managed floating exchange rate regime. 

  EUR JPY GBP AUD CAD CHF* SEK MXN NZD SGD 

 Mean 0.03 0.04 0.00 0.08 0.05 0.08 0.04 -0.03 0.08 0.03 
 Median 0.03 0.00 0.00 0.14 0.04 0.00 0.03 0.04 0.14 0.06 

 Maximum 13.42 14.92 11.27 35.25 15.64 103.58 20.20 27.45 17.09 7.28 
 Minimum -8.50 -18.12 -26.40 -23.38 -11.19 -28.25 -14.30 -22.57 -21.81 -7.89 
 Std. Dev. 2.29 2.36 2.16 3.10 2.24 3.05 2.89 2.61 3.12 1.13 
 Skewness 0.19 0.27 -0.66 0.18 0.03 10.96 0.18 -0.16 -0.14 -0.30 
 Kurtosis 4.80 7.25 11.12 13.80 5.51 378.48* 5.92 12.96 5.37 7.48 

  NOK KRW TRY INR BRL ZAR PLN THB COP PHP 

 Mean 0.02 0.04 -0.01 -0.02 0.08 0.03 0.06 0.03 0.04 0.02 
 Median 0.00 0.04 0.12 0.00 0.00 0.07 0.11 0.00 0.00 0.00 

 Maximum 19.67 37.33 25.89 13.51 32.25 28.56 26.28 14.09 31.92 8.10 
 Minimum -16.26 -25.32 -23.92 -10.95 -21.23 -43.22 -16.87 -22.64 -22.10 -9.28 
 Std. Dev. 2.92 2.71 3.17 1.69 3.75 4.10 3.41 1.56 2.86 1.40 
 Skewness 0.03 1.11 -0.26 0.05 0.16 -0.32 0.08 -0.87 0.53 -0.02 
 Kurtosis 5.52 31.03 9.23 9.24 8.40 9.18 6.97 32.21 14.04 5.24 

*In September 2011, the Swiss National Bank adopted a fixed exchange rate with the Euro 
and, subsequently, in January 2015, it abandoned the peg. These two episodes explain the 
abnormal maximum, kurtosis and skewness of the Swiss Franc (CHF). Except for these 
episodes, the CHF is remarkably stable, with a standard deviation of 2.46, a skewness of 
0.37, and a kurtosis of 6.54. We include it in our sample due to its historical and financial 
importance as a ‘haven’ currency. 
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(although one exception to this pattern was Japan at the end of the sample). 
This US appreciation followed on from the events of the 2010 European debt 
crisis; the sharp fall in commodity prices at the end of 2011, and the crises 
faced by such countries as Greece (May 2010), Ireland (November 2010), and 
Portugal (May 2011), which subsequently escalated to affect Cyprus 
(December 2011) and Spain (July 2012). The final years in the sample were 
also characterized by the progressive recovery of the US economy.  
This raw characterization, which identifies the depreciation of the US Dollar 
from 2003 to 2007, a period of turbulence from 2008 to 2012, and a period of 
appreciation from 2013 onwards, also provides a reasonable fit with the 
behavior of the other exchange rates in our sample, but that are not included 
in the plot. We use this characterization below to describe some of our results. 
 

   

   

Figure 5.1. Subsample of three high- and three low-traded currencies against US 
Dollar. The figure illustrates the behavior of the exchange rates in both mature (top row) 
and emerging (bottom row) economies. The period from the beginning of the sample until 
July 2008 is characterized, in general, by the depreciation of the US dollar (the Mexican Peso 
being an exception). The period from August 2008 to May 2012 is difficult to characterize, 
while the US dollar was depreciating against AUS, JPY and BRL, it recorded marked changes 
against EUR, TRY and MXN. As such, it can be labelled as a period of turbulence. Finally, 
from June 2012 until the end of the sample in September 2016, there was a general 
appreciation of the US Dollar (with Japan being one exception at the end of the sample). 
This characterization also fits reasonably well with the behavior of the other exchange rates 
in our sample. Our data span January 1, 2003- September 5, 2016. 
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5.4. Results

We organize our results in four sections. First, we describe the variance-
decomposition exercise using the full sample, and both the log-volatility 
and log-quantile statistics. Second, we present our systemic index of 
financial fragility in global currency markets, and we compare it with a 
more traditional index based on volatility spillovers, similar to that pro-
posed by Diebold and Yilmaz (2015) and which is updated regularly on 
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their web page37. Third, in seeking to emphasize the differences between 
volatility and tail spillovers, we analyze two recent, relevant dates in the 
global currency market in terms of financial stability using graphical 
network representations. Finally, we show how turnover as a measure of 
liquidity helps us understand the way in which currency shocks propa-
gate in the market.

A. 	 Static variance decomposition of currency shocks: volatilities versus 
left tails

In Tables 5.3 and 5.4, we show the 10-day-ahead variance decomposi-
tion of our two specifications. The currencies are organized from left to 
right (and from top to bottom) according to their turnover. The greatest 
turnover in the sample is displayed by the Euro-USD pair (EUR/USD), 
31.3% of the total, while the lowest turnover is associated with the Phi-
lippine Peso, 0.1% of the total, according to the Bank of International 
Settlements (2016). This exercise is useful for identifying currencies with 
a high capacity to destabilize global currency markets, by generating 
significant shocks to the rest of the system. It also allows us to identify 
the most vulnerable currency pairs in our sample. 

Several common patterns emerge from a comparison of the two tables. 
For example, the least liquid currencies in the sample are neither trans-
mitters nor receivers in absolute terms. COP, THB and PHP display the 
greatest percentage of variability arising from their own shocks, both 
in terms of volatility and depreciation-VaRs. Various other currencies, 
while more liquid, present evidence of a similar behavior. This is the 
case of INR and SGD (especially in volatilities). None of these markets 
transmits (receives) a shock to (from) any other market above 7.0%38. 

We also observe that TRY and PLN tend to transmit shocks to the mar-
ket above 7.0% and, in all circumstances, more frequently than they 
receive shocks of the same magnitude. This holds for the analysis of 
both quantiles and volatilities. The most liquid currencies in our sam-
ple also tend to be more integrated with the rest of the system, rarely 

37.  http://financialconnectedness.org/FX.html. 
38.  7% is approximately the 90th percentile in both the volatility- and VaR spillover tables.
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displaying a number above 50% along their main diagonal, with the 
exceptions of JPY and CHF in the depreciation tails. In the case of these 
last two currencies, an interesting finding is highlighted by comparing 
the two tables: in terms of volatility spillovers, the amount of varia-
tion explained by their own shocks is below 50%, but this decreases 
for the left tail VaRs. This means that these currencies tend to receive 
fewer shocks from the market on the depreciation tail than they do in 
their volatility. Moreover, due to the symmetric nature of volatility, this 
might also signal that they are more prone to receive shocks on the right 
tail (appreciation) than they are on the left. This behavior is expected, 
because as haven currencies, the central banks in these countries are 
generally more concerned about episodes of strong appreciation than 
they are about depreciations, given that they are more sensitive on the 
appreciation tail of their distributions. 

The Euro provides us with a notorious example of asymmetry when we 
compare the linkages in the left tail of the distribution with those invol-
ving volatility. While in the latter case the Euro transmits shocks above 
7.0% on the markets of Switzerland (14%), Norway (8%) and Sweden 
(10%), in the left tail, the shocks transmitted by the Euro on these three 
markets are considerably smaller in magnitude, and only above 7.0% in 
the cases of Sweden (9%) and Norway (7%). Note that this should not 
necessarily be the case because by construction the FEVDs are norma-
lized; thus, they are directly comparable in volatilities and quantiles. 
What it provides evidence of is the asymmetric nature of the propaga-
tion of shocks.

Figure 5.2 complements the analysis by showing the sums of the rows 
and columns presented in Tables 5.3 and 5.4. That is, it shows the total 
spillovers from each market to the rest of the system, and from the rest 
of the system to each market, in volatility (Panel A) and depreciation-
VaR (Panel B). It is now readily apparent that the most vulnerable cu-
rrencies in terms of volatility (let’s say with above 70% of their shocks 
being explained by other markets) are the Euro, and the two Nordic cu-
rrencies in the sample (NOK, SEK). These markets are also highly prone 
to receiving shocks in the depreciation tail, but other markets are also 
above the 70% threshold here, including GBP, AUD, and NZD.
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Figure 5.2. Total spillovers (static) during the sample period
The figure shows the sum of the rows and columns in Tables 5.3 and 5.4. That is, it 
shows the total spillovers from each market to the rest of the markets, and from the 
rest of the markets to each market, in volatility (Panel A) and depreciation-VaR (Panel 
B). The estimation sample runs from January 1, 2003 to September 5, 2016. 

A. Volatility spillovers  B. VaR spillovers
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horizon for the underlying variance decomposition39. Figure 5.3 shows the 
total volatility and quantile indices from December 17, 2003 to September 5, 
2016.  

 
Figure 5.3: Total Volatility and VaR spillover indices. The figure shows the total 
(dynamic) indices based on volatility- and VaR-statistics for the full sample, which runs from 
December 17, 2003 to September 5, 2016 (the first observations were lost in the estimation 
process). The estimations were performed using rolling windows of 250 observations, 
forecasting horizon of 10 days, and two lags in the case of volatility and one lag in the case 
of VaR-statistics (following the BIC criterion). The VaR were constructed using an 
asymmetric CAViaR model that allows the two tails of the FX distribution to be treated 
differently. 

The two systemic measures tend to co-move during the sample period, 
showing an increasing trend until 2012. However, while the volatility spillover 
index is lower than the quantile spillover index until 2012, this situation is 
reversed from 2012 onwards, coinciding with a huge reduction in quantile 
spillovers. Interestingly this reduction coincides with a reduction in the 
volume traded in FX markets40. It seems that extreme cross-market shocks are 
positively related to the total market turnover. This is important because, as 
shown by Mancini et al. (2013), liquidity in the foreign exchange market is not 
as stable as previously thought and it can foster financial crises in other 
markets of significant magnitudes.  

	
39  Our main results are not sensitive to realistic changes in the window length and the 
forecasting horizon. We adhered to the most frequent settings in the extant literature; see for 
example Greenwood-Nimmo et al. (2016). 
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Yet, a comparison of the two figures does not allow us to establish 
whether, in general, the shocks propagate more in the left tail or in 
the volatilities, given that for some markets volatility shocks dominate, 
while for others quantile shocks dominate. Important asymmetries are 
found, for example, in the markets of South Africa, India, and South 
Korea. All these markets change from net-transmitters of volatility to 
net-receivers of shocks in the left tail. Once again this points to the 
asymmetric nature of their reactions to international FX spillovers. In 
general, after comparing Panels A and B in Figure 5.2, the analysis of 
JPY and CHF conducted above is confirmed.
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B. Total volatility and VaR spillover indices

The static analysis reveals some interesting results but it is based on fi-
xed parameters and, therefore, is not helpful in understanding how spi-
llovers change over time. In order to assess the time-varying nature of 
spillovers, we estimate the model using a 250-day rolling window and a 
10-day predictive horizon for the underlying variance decomposition39. 
Figure 5.3 shows the total volatility and quantile indices from December 
17, 2003 to September 5, 2016. 

Figure 5.3: Total Volatility and VaR spillover indices
The figure shows the total (dynamic) indices based on volatility- and VaR-statistics 
for the full sample, which runs from December 17, 2003 to September 5, 2016 (the 
first observations were lost in the estimation process). The estimations were performed 
using rolling windows of 250 observations, forecasting horizon of 10 days, and two 
lags in the case of volatility and one lag in the case of VaR-statistics (following the BIC 
criterion). The VaR were constructed using an asymmetric CAViaR model that allows 
the two tails of the FX distribution to be treated differently.
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horizon for the underlying variance decomposition39. Figure 5.3 shows the 
total volatility and quantile indices from December 17, 2003 to September 5, 
2016.  
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The two systemic measures tend to co-move during the sample period, 
showing an increasing trend until 2012. However, while the volatility 
spillover index is lower than the quantile spillover index until 2012, 
this situation is reversed from 2012 onwards, coinciding with a huge 
reduction in quantile spillovers. Interestingly this reduction coincides 
with a reduction in the volume traded in FX markets40. It seems that 
extreme cross-market shocks are positively related to the total market 
turnover. This is important because, as shown by Mancini et al. (2013), 
liquidity in the foreign exchange market is not as stable as previously 
thought and it can foster financial crises in other markets of significant 
magnitudes. 

Meteor showers (cross-spillovers) were more important during the 
subprime crisis and its aftermath than during the rest of the sample, 
this finding only being evident when we focus on the quantile index. 
This means the volatility spillover index underestimated the impact 
of cross-spillovers by as many as 1,000 basis points (bp) in the year 
following the subprime crisis (July 2007–August 2008) and by almost 
500 bp during the European debt crisis in 2010. Since then the volati-
lity spillover index has consistently overestimated the effect of meteor 
showers on the global FX market. 

Furthermore, the quantile-based index seems more sensitive than the 
volatility-based index to events that impacted global currency mar-
kets, including the escalation in the Russian and Ukrainian conflict in 
2014, the Greek referendum in June 2015, and Brexit in June 2016. The 
reduction of risk shown by the quantile-based index is also consistent 
with the recovery experienced by the US economy towards the end of 
the sample. The demand for US dollars and the lower demand for fo-
reign currencies may explain the reduction in cross-spillovers between 
commodities and emerging market currencies during the period 2012-
2016.

40. Daily FX market volumes fell from 5.4 to 5.1 trillion dollars between 2013 and 2016. Prior to 2013, the 
FX market witnessed an unstoppable year-on-year increment, accumulating an increment of 61% between 
2007 and 2013.
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C. Network analysis of two dates: subprime and Brexit

Next we analyze some of the asymmetries in the propagation of shocks 
which can be observed when comparing net-spillovers on specific dates 
that were important for the FX market in terms of financial stability. 
In Figure 5.4, we plot the indices’ dynamics before and after two major 
events in the global currency markets. Panel A shows both measures 
in the period around the subprime crisis –from August 1 to August 31, 
200741, and Panel B shows the measures before and after the Brexit 
vote, held on June 23, 2016. Both were largely unexpected events with 
significant consequences for carry trade strategies and for the stren-
gth of the British Pound and other currencies, respectively. As can be 
observed, before August 16 the two systemic-currency indices, based 
on volatility and on left-tail-VaR statistics, displayed similar dynamics. 
Cross-spillovers accounted for around 53% of the total variation in the 
exchange rate markets according to the volatility index, and around 
63% according to the VaR index. After August 16, the date identified 
by Melvin and Taylor (2009) as marking the onset of the crisis in the 
FX market, cross-spillovers rose to 59.12%, according to the volatility 
index, and remained at this level over the following days, while the in-
crement was of 963 bp from 63 to 72.63%, according to the VaR index. 
The Brexit vote provides another significant example. While the vola-
tility index (which was roughly 1,000 bp above the VaR-index during 
this episode) increased from 69.32% on June 24 to 72.82% on June 28 
(350 bp), between the same dates the VaR index increased from 60.10% 
to 68.63% and remained at this level thereafter (that is, 853 bp above its 
initial magnitude). 

These significant differences have a critical impact on financial stability 
and need to be taken into consideration when conducting exercises that 
seek to monitor financial fragility around the world and when designing 
enhanced hedging mechanisms for international investors. 

41.  Melvin and Taylor (2009) pin the origin of the FX crisis to August 16, 2007, when a major unwinding 
of carry trade occurred and many currency investors suffered huge losses.
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Figure 5.4: Total Volatility and VaR spillovers on two dates
The figure shows the two indices, based on volatility- and depreciation-VaR, during 
two turbulent episodes faced by the exchange rate market: the aftermath of the subpri-
me crisis and the days immediately before and after the Brexit vote. The two statistics 
display different sensitiveness to these events. The plot was constructed after estimating 
volatility and VaRs using 20 series of the most traded floating currencies in our sample.
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Meteor showers (cross-spillovers) were more important during the subprime 
crisis and its aftermath than during the rest of the sample, this finding only 
being evident when we focus on the quantile index. This means the volatility 
spillover index underestimated the impact of cross-spillovers by as many as 
1,000 basis points (bp) in the year following the subprime crisis (July 2007 – 
August 2008) and by almost 500 bp during the European debt crisis in 2010. 
Since then the volatility spillover index has consistently overestimated the 
effect of meteor showers on the global FX market.  

Furthermore, the quantile-based index seems more sensitive than the 
volatility-based index to events that impacted global currency markets, 
including the escalation in the Russian and Ukrainian conflict in 2014, the 
Greek referendum in June 2015, and Brexit in June 2016. The reduction of 
risk shown by the quantile-based index is also consistent with the recovery 
experienced by the US economy towards the end of the sample. The demand 
for US dollars and the lower demand for foreign currencies may explain the 
reduction in cross-spillovers between commodities and emerging market 
currencies during the period 2012-2016. 

C. Network analysis of two dates: subprime and Brexit 
Next we analyze some of the asymmetries in the propagation of shocks which 
can be observed when comparing net-spillovers on specific dates that were 
important for the FX market in terms of financial stability. In Figure 5.4, we 
plot the indices’ dynamics before and after two major events in the global 
currency markets. Panel A shows both measures in the period around the 
subprime crisis – from August 1 to August 31, 200741, and Panel B shows the 
measures before and after the Brexit vote, held on June 23, 2016. Both were 
largely unexpected events with significant consequences for carry trade 
strategies and for the strength of the British Pound and other currencies, 
respectively. As can be observed, before August 16 the two systemic-currency 
indices, based on volatility and on left-tail-VaR statistics, displayed similar 
dynamics. Cross-spillovers accounted for around 53% of the total variation in 
the exchange rate markets according to the volatility index, and around 63% 
according to the VaR index. After August 16, the date identified by Melvin 
and Taylor (2009) as marking the onset of the crisis in the FX market, cross-
spillovers rose to 59.12%, according to the volatility index, and remained at 
this level over the following days, while the increment was of 963 bp from 63 
to 72.63%, according to the VaR index. The Brexit vote provides another 
significant example. While the volatility index (which was roughly 1,000 bp 
above the VaR-index during this episode) increased from 69.32% on June 24 
to 72.82% on June 28 (350 bp), between the same dates the VaR index 

	
41 Melvin and Taylor (2009) pin the origin of the FX crisis to August 16, 2007, when a major 
unwinding of carry trade occurred and many currency investors suffered huge losses. 
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increased from 60.10% to 68.63% and remained at this level thereafter (that is, 
853 bp above its initial magnitude).  
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before and after the Brexit vote. The two statistics display different sensitiveness to these 
events. The plot was constructed after estimating volatility and VaRs using 20 series of the 
most traded floating currencies in our sample. 

 

These significant differences have a critical impact on financial stability and 
need to be taken into consideration when conducting exercises that seek to 
monitor financial fragility around the world and when designing enhanced 
hedging mechanisms for international investors.  

Figure 5.5 shows the graphical network representation of the volatility and 
quantile spillovers for the two periods analyzed above. The nodes represent 
each currency pair and their respective sizes are given by the turnover of each 
market, while the direction of the edges is given by the sign of the net pairwise 
spillover. We have plotted two dates: August 20, 2007, at the beginning of the 
global financial crisis and June 28, 2016, just after the Brexit vote. For the sake 
of clarity, we have only plotted the highest spillovers (above the 75th 
percentile) for each date.  
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Figure 5.5 shows the graphical network representation of the volatility 
and quantile spillovers for the two periods analyzed above. The nodes 
represent each currency pair and their respective sizes are given by the tur-
nover of each market, while the direction of the edges is given by the sign 
of the net pairwise spillover. We have plotted two dates: August 20, 2007, 
at the beginning of the global financial crisis and June 28, 2016, just af-
ter the Brexit vote. For the sake of clarity, we have only plotted the highest 
spillovers (above the 75th percentile) for each date. 

Panel (a) presents the pairwise spillovers in volatilities for August 20, 
2007. It shows that the Euro, Yen, Swiss Franc, and to a lesser extent 
other liquid currencies such as the Australian Dollar, were the main recei-
vers of shocks. In contrast, if we focus on panel (b), which shows the net 
pairwise spillovers across quantiles, it is Turkey and the other emerging 
markets that received most of the shocks. We believe that these outcomes 
reflect the fact that the subprime crisis led to massive flows of capital 
and the reallocation of carry-trade portfolios, which experienced consi-
derable losses. This process primarily affected strong currencies, such as 
the Euro and Yen, in the right tail of their distributions (appreciations),
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Figure 5.5: Net volatility and quantile spillovers on selected dates
The figure shows the net-volatility (left) and depreciation (right) spillovers among the 
20 markets in our sample for two selected dates August 20, 2007 (subprime FX crash) 
and June 28, 2016 (Brexit). We only plot the highest 25% spillovers for each date. The 
size of each node is given by the turnover of each market in 2016.
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(a) 20 August 2007: net-volatility spillovers 

 

(b) 20 August 2007: net-quantile spillovers 

 

(c) 28 June 2016: net-volatility spillovers 

 

(d) 28 June 2016: net-quantile spillovers 

Figure 5.5: Net volatility and quantile spillovers on selected dates. The figure shows 
the net-volatility (left) and depreciation (right) spillovers among the 20 markets in our sample 
for two selected dates August 20, 2007 (subprime FX crash) and June 28, 2016 (Brexit). We 
only plot the highest 25% spillovers for each date. The size of each node is given by the 
turnover of each market in 2016. 

 
Panel (a) presents the pairwise spillovers in volatilities for August 20, 2007. It 
shows that the Euro, Yen, Swiss Franc, and to a lesser extent other liquid 
currencies such as the Australian Dollar, were the main receivers of shocks. In 
contrast, if we focus on panel (b), which shows the net pairwise spillovers 
across quantiles, it is Turkey and the other emerging markets that received 
most of the shocks. We believe that these outcomes reflect the fact that the 
subprime crisis led to massive flows of capital and the reallocation of carry-
trade portfolios, which experienced considerable losses. This process primarily 
affected strong currencies, such as the Euro and Yen, in the right tail of their 
distributions (appreciations), but it also affected weaker currencies, such as the 
Turkish Lira, in their left tails. In terms of financial stability, it is necessary to 
understand these phenomena and to monitor not only the appreciation 
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pressures of strong currencies, but also (and we would add mainly) the 
depreciation pressures faced by weaker currencies, which all told are more 
likely to have to face currency crises. 

A similar analysis can be conducted in the wake of the Brexit vote. Clearly, the 
net receivers of volatility shocks were the commodity currencies and strong 
currencies, in other words the currencies associated with more developed 
markets. Nevertheless, panel (d) shows that other currencies, including the 
South African Rand, the Turkish Lira and the Indian Rupiah, were also 
affected in the left tail of their distributions. Naturally, some currencies, 
including the Euro and Swiss Franc, were affected regardless of the measure, 
because the quantiles are not independent of the variances. Surprisingly, the 
British Pound only received net-shocks in volatility from Poland and Mexico, 
and in the quantiles from Switzerland, Sweden and Colombia. The impact 
recorded by the currencies of the eastern European countries is as expected, 
given that they are directly affected by the variations suffered by the Euro 
market.  

D. D. Turnover, liquidity and spillovers 
Finally, we are also interested in analyzing how traded volume helps us 
understand the patterns of global volatility and VaR spillovers in the FX 
market. Figure 5.6 shows the net-volatility spillovers among the quartiles of 
the currencies in our sample, sorted according to traded volume in 201642. The 
analysis runs from December 17, 2003 to September 5, 2016. The first quartile 
corresponds to the most traded currencies, while the last quartile groups the 
least traded currencies. The traded volume is as reported in the Bank of 
International Settlements (2016). The group in the column is the one that 
transmits the shock while the group in t he row is the one that receives it.  

Our intuition based on the literature on exchange rate fundamentals rooted in 
market microstructures, as in Evans (2011), is that, rather than macro-
fundamentals, liquidity matters for spillovers. Thus, world currency spillovers 
should behave differently according to how much investors trade them. 
Indeed, we are able to document that this is in fact the case. In general, if we 
divide our sample into three periods – corresponding roughly to US dollar 
depreciation (from January 2003 to June 2008), market turbulence without any 
clear trend in the US dollar series (from July 2008 to May 2012), and US dollar 
appreciation (from June 2012 to September 2016, when our sample ends)43 – 
we can document several trends. As far as volatility spillovers are concerned 
(Figure 5.6), the least traded currencies (those in quartile 4) are almost always 
net-receivers of volatility shocks and, when they are transmitters, the net 

	
42Individual net volatility and VaR spillover measures are provided in Figures 5.8 and 5.9 of 
the appendix. 
43 See Figure 5.2. 

but it also affected weaker currencies, such as the Turkish Lira, in their 
left tails. In terms of financial stability, it is necessary to understand 
these phenomena and to monitor not only the appreciation pressures of 
strong currencies, but also (and we would add mainly) the depreciation 
pressures faced by weaker currencies, which all told are more likely to 
have to face currency crises.

A similar analysis can be conducted in the wake of the Brexit vote. Clearly, 
the net receivers of volatility shocks were the commodity currencies and 
strong currencies, in other words the currencies associated with more 
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developed markets. Nevertheless, panel (d) shows that other currencies, 
including the South African Rand, the Turkish Lira and the Indian Ru-
piah, were also affected in the left tail of their distributions. Naturally, 
some currencies, including the Euro and Swiss Franc, were affected re-
gardless of the measure, because the quantiles are not independent of 
the variances. Surprisingly, the British Pound only received net-shocks 
in volatility from Poland and Mexico, and in the quantiles from Swit-
zerland, Sweden and Colombia. The impact recorded by the currencies 
of the eastern European countries is as expected, given that they are 
directly affected by the variations suffered by the Euro market. 

D. Turnover, liquidity and spillovers

Finally, we are also interested in analyzing how traded volume helps us 
understand the patterns of global volatility and VaR spillovers in the FX 
market. Figure 5.6 shows the net-volatility spillovers among the quar-
tiles of the currencies in our sample, sorted according to traded volume 
in 201642. The analysis runs from December 17, 2003 to September 5, 
2016. The first quartile corresponds to the most traded currencies, while 
the last quartile groups the least traded currencies. The traded volume is 
as reported in the Bank of International Settlements (2016). The group 
in the column is the one that transmits the shock while the group in t he 
row is the one that receives it. 

Our intuition based on the literature on exchange rate fundamentals 
rooted in market microstructures, as in Evans (2011), is that, rather than 
macro-fundamentals, liquidity matters for spillovers. Thus, world cu-
rrency spillovers should behave differently according to how much in-
vestors trade them. Indeed, we are able to document that this is in fact 
the case. In general, if we divide our sample into three periods –corres-
ponding roughly to US dollar depreciation (from January 2003 to June 
2008), market turbulence without any clear trend in the US dollar series 
(from July 2008 to May 2012), and US dollar appreciation (from June 
2012 to September 2016, when our sample ends)43– we can document 
several trends. As far as volatility spillovers are concerned (Figure 5.6), 

42.  Individual net volatility and VaR spillover measures are provided in Figures 5.8 and 5.9 of the appendix.
43.  See Figure 5.2.
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the least traded currencies (those in quartile 4) are almost always net-
receivers of volatility shocks and, when they are transmitters, the net 
spillover is low. If we examine the currencies in quartiles 1, 2 and 3, we 
see that during the period of dollar depreciation there was no clear trend 
in the direction of net spillovers, but that they were relatively low. Du-
ring turbulent times, the more liquid a currency was the more shocks it 
received from less liquid currencies. This behavior was reversed during 
the period of US dollar appreciation, when the more liquid a currency 
was the more shocks it transmitted to the rest of the markets. 

Figure 5.6: Net volatility spillovers among world currencies sorted according to 
traded volume
The figure shows net-volatility spillovers among the quartiles of the currencies in our 
sample, sorted according to traded volume in 2016. The first quartile corresponds to 
the most traded currencies, while the last quartile groups the least traded currencies. 
The traded volume is as reported in the Bank of International Settlements Triennial 
Report (BIS, 2016). The group in the column is the one that transmits the shock while 
the group in the row is the one that receives it. The estimations were performed using 
rolling windows of 250 observations and a forecasting horizon of 10 days. 
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while the group in the row is the one that receives it. The estimations were performed using 
rolling windows of 250 observations and a forecasting horizon of 10 days.  
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Interestingly, the shocks propagate as in a cascade: the more liquid a set 
of currencies is the more likely it affects all the other currencies, during 
depreciation periods (against the USD). Conversely, the more liquid it is 
the more likely it gets affected by all the other currencies during turbulent 
periods that lack a clear trend in terms of appreciation or depreciation.

The situation is very different when we examine tail spillovers (Figure 5.7). 
Currencies in quartiles 1 and 2 (the most liquid) are, by rule, net-receivers, 
while those in quartiles 3 and 4 (the least liquid) are net-transmitters. This 
is very likely a consequence of the latter being considerably more exposed 
to downside risk in the global currency markets. Notice, in any case, that 
this is a net result and as such it is mute above the size of the shocks.

Figure 5.7: Net VaR spillovers among world currencies sorted according to tra-
ded volume
The figure shows the net-VaR spillovers among the quartiles of the currencies in our 
sample, sorted according to traded-volume in 2016. The first quartile corresponds to 
the most traded currencies, while the last quartile groups the least traded currencies. 
The traded volume is as reported in the Bank of International Settlements Triennial 
Report (BIS, 2016). The group in the column is the one that transmits the shock while 
the group in the row is the one that receives it. The estimations were performed using 
rolling windows of 250 observations and a forecasting horizon of 10 days. The VaR 
were constructed using an asymmetric CAViaR model that allows the two tails in the 
distribution to be treated differently.
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while the group in the row is the one that receives it. The estimations were performed using 
rolling windows of 250 observations and a forecasting horizon of 10 days.  
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5.5. Conclusions

We estimate spillovers between volatilities and between downside risk 
VaRs (associated with depreciations) for 20 currencies of both mature 
and emerging FX markets. Our depreciation tail measure was construc-
ted using a CAViaR model with asymmetric slopes that allows us to treat 
each tail of the daily variations in the FX market differently. 

First, we find that risk measurement varies considerably depending on the 
part of the distribution targeted by the analysis. That is, the most vulne-
rable FX markets differ if we focus on the depreciation tail as opposed to 
on volatility. To document this, we analyzed recent events in the history 
of FX markets –specifically the subprime crash and the Brexit vote– by 
means of directional pairwise statistics and graphical networks. 

Thus, we find that the least liquid currency markets tend to be more 
vulnerable and to transmit more shocks in the left tail of the distribu-
tion than is the case with volatility. This is fundamental for the correct 
assessment of systemic risk in currency markets and for monitoring 
financial fragility and distress in currency markets around the world. In 
keeping with this outcome, we construct an index of financial fragility 
based on cross-spillovers among the left tails of the distributions (depre-
ciation episodes) and show that this index is much more sensitive than 
a traditional volatility index to such events as political upheavals and 
global crises. 

Finally, for each currency in our sample, we employed turnover as a 
proxy for liquidity. This has helped us shed new light on the propagation 
mechanisms of currency shocks. We find that the most liquid currencies 
are generally net-transmitters of volatility during periods of US dollar 
appreciation, while the most liquid currencies are net-receivers of vola-
tility in periods of turbulence lacking any clear trend. Similarly, the least 
liquid currencies almost always behave as net-receivers of volatility, 
rarely interacting with the rest of the systems, which shows their lack of 
integration in global financial markets. 

In contrast, when we focus on tail spillovers corresponding to depre-
ciation tails, the general perspective changes considerably. The most 
liquid currencies are almost always net-receivers of shocks, while those 
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in the least liquid quartiles (3 and 4) are net-transmitters. This finding 
underlies the nature of the latter, which are considerably more exposed 
to downside risk in global currency markets than are the former. It also 
highlights the convenience of using a measure like the one proposed 
here, based on depreciation-quantiles, when assessing global financial 
stability conditions in FX markets. 

Appendix to Chapter 5

Table A1. Summary statistics of the annualized volatility of the FX log-variations

The table shows summary statistics of FX volatility in annualized terms. The third 
and fourth moments of the series are presented for the logarithmic volatilities, which 
were used in the estimation of the spillover volatility indices. As expected, the series 
with the highest standard deviations and means are found in developing countries (i.e. 
South Africa, Brazil, and Colombia). In contrast, the lowest levels are found in develo-
ped countries (i.e. Europe and Japan). 

EUR JPY GBP AUD CAD CHF SEK MXN NZD SGD

Mean 10.73 10.61 10.12 13.66 10.41 11.51 13.32 11.26 14.90 5.81

Median 9.57 9.26 8.83 11.64 9.26 10.30 11.61 9.34 13.11 5.07

Maximum 52.93 86.29 145.60 124.69 68.25 227.90 87.92 203.75 100.69 33.58

Minimum 0.00 0.42 0.00 1.53 1.27 0.00 1.82 0.00 2.19 0.33

Std. Dev. 5.58 6.33 6.06 8.66 5.65 7.11 7.25 9.05 8.12 3.10

Skewness -0.13 -0.02 0.15 0.35 0.02 0.02 0.26 0.04 0.26 0.10

Kurtosis 3.50 3.89 3.86 3.91 3.31 4.02 3.17 4.43 3.59 3.96

NOK KRW TRY INR BRL ZAR PLN THB COP PHP

Mean 13.81 9.43 13.58 6.36 15.98 19.82 15.63 6.75 10.76 5.80

Median 12.24 7.39 11.20 5.46 13.62 17.03 13.41 5.08 8.19 5.32

Maximum 84.92 164.88 90.23 60.87 131.59 193.68 95.92 83.92 232.30 30.94

Minimum 2.06 0.00 0.00 0.00 0.00 1.48 0.45 0.00 0.00 0.00

Std. Dev. 7.31 9.03 9.14 5.28 10.47 11.28 9.27 6.04 9.97 3.65

Skewness 0.17 -0.35 -0.01 -0.77 -1.11 0.27 0.07 0.23 -0.89 -0.93

Kurtosis 3.23 4.49 4.63 3.76 7.24 3.89 3.70 4.09 5.09 4.36
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Table A2. CAViaR estimation results
The table shows the regression results after fitting a CAViaR model at 95% level of 
confidence with asymmetric slopes, to each FX series. The following equation was 
employed in each case.
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Table A2. CAViaR estimation results 

The table shows the regression results after fitting a CAViaR model at 95% level of 
confidence with asymmetric slopes, to each FX series. The following equation was employed 
in each case. 

!" = $% + $'!"() + $*+"('( + $,+"('- 

Negative and positive shocks are seen to have a different effect on the depreciation tail, 

which supports the use of an asymmetric-slope approach. 

 

Currency $% $' $* $, 
EUR 0.01 0.97 0.09 0.00 

JPY 0.03 0.91 0.08 -0.15 

GBP 0.01 0.95 0.12 -0.07 

AUD 0.03 0.92 0.19 -0.08 

CAD 0.01 0.92 0.17 -0.12 

CHF 0.01 0.96 0.04 -0.09 

SEK 0.02 0.95 0.10 -0.04 

MXN 0.02 0.91 0.24 -0.10 

NZD 0.02 0.93 0.16 -0.08 

SGD 0.01 0.91 0.19 -0.10 

NOK 0.02 0.93 0.13 -0.08 

KRW 0.02 0.93 0.23 0.03 

TRY 0.06 0.84 0.39 -0.15 

INR 0.01 0.89 0.32 -0.14 

BRL 0.04 0.88 0.28 -0.14 

ZAR 0.05 0.90 0.22 -0.07 

PLN 0.02 0.91 0.24 -0.09 

THB 0.01 0.87 0.27 -0.22 

COP 0.03 0.87 0.30 -0.14 

PHP 0.03 0.88 0.20 -0.14 

Mean 0.02 0.91 0.20 -0.10 

Median 0.02 0.91 0.20 -0.09 

Maximum 0.06 0.97 0.39 0.03 

Minimum 0.01 0.84 0.04 -0.22 

Std. Dev. 0.02 0.03 0.09 0.06 

Skewness 1.12 -0.18 0.18 0.32 

Kurtosis 3.62 2.56 2.48 3.41 
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Table A3. Estimated VaR summary statistics 

The summary statistics were calculated from the VaR estimated after fitting a CAViaR model 
with asymmetric slopes. Commodity currencies, such as AUD, CAD, SEK, NZD, NOK, 
BRL, and ZAR, possess a higher risk than most of the other currencies. A second aspect that 
can be seen is that countries with capital control and with a history of foreign exchange 
interventions, such as INR, SGD and THB, have lower volatility. 

 EUR JPY GBP AUD CAD CHF SEK MXN NZD SGD 

Mean 0.99 0.97 0.96 1.30 0.97 1.03 1.27 1.14 1.36 0.48 

Median 0.96 0.93 0.90 1.19 0.89 0.98 1.19 1.03 1.27 0.45 

Maximum 2.13 2.61 2.61 6.19 3.51 2.46 2.88 5.98 4.40 1.43 

Minimum 0.47 0.50 0.40 0.66 0.41 0.47 0.77 0.44 0.69 0.22 

Std. Dev. 0.29 0.26 0.34 0.55 0.36 0.28 0.36 0.54 0.44 0.15 

Skewness 0.93 1.51 2.14 4.16 2.49 1.14 2.01 2.92 2.32 1.55 

Kurtosis 4.40 7.43 9.43 28.88 13.47 5.55 7.59 17.90 11.86 7.19 

 NOK KRW TRY INR BRL ZAR PLN THB COP PHP 

Mean 1.27 0.95 1.41 0.74 1.57 1.79 1.44 0.57 1.08 0.62 

Median 1.20 0.80 1.26 0.67 1.40 1.66 1.28 0.49 0.91 0.59 

Maximum 3.47 7.17 7.48 3.38 7.35 7.65 5.25 3.77 5.05 1.34 

Minimum 0.65 0.32 0.58 0.08 0.55 0.93 0.52 0.17 0.30 0.30 

Std. Dev. 0.35 0.68 0.63 0.40 0.74 0.59 0.63 0.35 0.57 0.16 

Skewness 1.86 4.54 2.66 1.40 2.71 3.16 2.13 3.77 1.92 0.98 

Kurtosis 8.91 30.91 14.98 6.77 15.56 21.59 9.39 22.55 9.25 4.20 

Negative and positive shocks are seen to have a different effect on the depreciation 
tail, which supports the use of an asymmetric-slope approach.

Currency β0 β1 β2 β3

EUR 0.01 0.97 0.09 0.00

JPY 0.03 0.91 0.08 -0.15

GBP 0.01 0.95 0.12 -0.07

AUD 0.03 0.92 0.19 -0.08

CAD 0.01 0.92 0.17 -0.12

CHF 0.01 0.96 0.04 -0.09

SEK 0.02 0.95 0.10 -0.04

MXN 0.02 0.91 0.24 -0.10

NZD 0.02 0.93 0.16 -0.08

SGD 0.01 0.91 0.19 -0.10

NOK 0.02 0.93 0.13 -0.08

KRW 0.02 0.93 0.23 0.03

TRY 0.06 0.84 0.39 -0.15

INR 0.01 0.89 0.32 -0.14

BRL 0.04 0.88 0.28 -0.14

ZAR 0.05 0.90 0.22 -0.07

PLN 0.02 0.91 0.24 -0.09

THB 0.01 0.87 0.27 -0.22

COP 0.03 0.87 0.30 -0.14

PHP 0.03 0.88 0.20 -0.14

Mean 0.02 0.91 0.20 -0.10

Median 0.02 0.91 0.20 -0.09

Maximum 0.06 0.97 0.39 0.03

Minimum 0.01 0.84 0.04 -0.22

Std. Dev. 0.02 0.03 0.09 0.06

Skewness 1.12 -0.18 0.18 0.32

Kurtosis 3.62 2.56 2.48 3.41
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Table A3. Estimated VaR summary statistics
The summary statistics were calculated from the VaR estimated after fitting a CAViaR 
model with asymmetric slopes. Commodity currencies, such as AUD, CAD, SEK, NZD, 
NOK, BRL, and ZAR, possess a higher risk than most of the other currencies. A second 
aspect that can be seen is that countries with capital control and with a history of fo-
reign exchange interventions, such as INR, SGD and THB, have lower volatility.

EUR JPY GBP AUD CAD CHF SEK MXN NZD SGD

Mean 0.99 0.97 0.96 1.30 0.97 1.03 1.27 1.14 1.36 0.48

Median 0.96 0.93 0.90 1.19 0.89 0.98 1.19 1.03 1.27 0.45

Maximum 2.13 2.61 2.61 6.19 3.51 2.46 2.88 5.98 4.40 1.43

Minimum 0.47 0.50 0.40 0.66 0.41 0.47 0.77 0.44 0.69 0.22

Std. Dev. 0.29 0.26 0.34 0.55 0.36 0.28 0.36 0.54 0.44 0.15

Skewness 0.93 1.51 2.14 4.16 2.49 1.14 2.01 2.92 2.32 1.55

Kurtosis 4.40 7.43 9.43 28.88 13.47 5.55 7.59 17.90 11.86 7.19

NOK KRW TRY INR BRL ZAR PLN THB COP PHP

Mean 1.27 0.95 1.41 0.74 1.57 1.79 1.44 0.57 1.08 0.62

Median 1.20 0.80 1.26 0.67 1.40 1.66 1.28 0.49 0.91 0.59

Maximum 3.47 7.17 7.48 3.38 7.35 7.65 5.25 3.77 5.05 1.34

Minimum 0.65 0.32 0.58 0.08 0.55 0.93 0.52 0.17 0.30 0.30

Std. Dev. 0.35 0.68 0.63 0.40 0.74 0.59 0.63 0.35 0.57 0.16

Skewness 1.86 4.54 2.66 1.40 2.71 3.16 2.13 3.77 1.92 0.98

Kurtosis 8.91 30.91 14.98 6.77 15.56 21.59 9.39 22.55 9.25 4.20
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Figure 5.8: Net volatility spillovers from all markets to market i
The figure shows net-volatility spillovers from the rest of the markets to each market. 
A positive value indicates that the market is a net-receiver, while a negative sign in-
dicates that it is a net-transmitter of volatility on a certain date. The estimations were 
performed using rolling windows of 250 observations, a forecasting horizon of 10 
days, and two lags in the case of volatility and one lag in the case of VaR-statistics. 
The VaR were constructed using an asymmetric CAViaR model
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Figure 5.9: Net VaR spillovers from all markets to market i. The figure shows the net-
value at risk spillovers from the rest of the markets to each market. A positive value indicates 
that the market is a net-receiver, while a negative sign indicates that it is a net-transmitter of 
volatility on a certain date. The estimations were performed using rolling windows of 250 
observations, a forecasting horizon of 10 days, and two lags in the case of volatility and one 
lag in the case of VaR-statistics. The VaR were constructed using an asymmetric CAViaR 
model. 
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Figure 5.9: Net VaR spillovers from all markets to market i
The figure shows the net-value at risk spillovers from the rest of the markets to each 
market. A positive value indicates that the market is a net-receiver, while a negative 
sign indicates that it is a net-transmitter of volatility on a certain date. The estimations 
were performed using rolling windows of 250 observations, a forecasting horizon of 
10 days, and two lags in the case of volatility and one lag in the case of VaR-statistics. 
The VaR were constructed using an asymmetric CAViaR model.
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Figure 5.8: Net volatility spillovers from all markets to market i. The figure shows net-
volatility spillovers from the rest of the markets to each market. A positive value indicates 
that the market is a net-receiver, while a negative sign indicates that it is a net-transmitter of 
volatility on a certain date. The estimations were performed using rolling windows of 250 
observations, a forecasting horizon of 10 days, and two lags in the case of volatility and one 
lag in the case of VaR-statistics. The VaR were constructed using an asymmetric CAViaR 
model 
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CHAPTER 6: SPILLOVERS FROM THE UNITED STATES TO 
LATIN AMERICAN AND G7 STOCK MARKETS: A VAR QUANTILE 
ANALYSIS

6.1. Introduction

The analysis of spillovers between cross-national stock market returns 
is of increasing interest in the empirical finance literature. A better un-
derstanding of the phenomenon is important for practitioners and policy 
makers alike since it can provide a sound basis for designing portfolio 
allocation, market diversification and hedging strategies, at the same 
time as highlighting market scenarios under which an actively guided 
monetary or macroprudential policy is likely to achieve the best outco-
mes in terms of preserving financial stability, for instance, in seeking to 
avoid international financial contagion. 

However, research in the field has overwhelmingly focused on evalua-
ting the effects of shocks on the first two conditional moments of re-
turn distributions, while ignoring other parts of the distributions. In this 
strand of the literature, studies analyzing stock market return spillovers, 
interdependence and contagion abound, which means a complete sum-
mary of this work would be impracticable in the scope of this paper. To 
name just a few, Becker et al. (1995), Bekaert et al. (2005), Bekaert et 
al. (2009), Jayasuriya (2011), Ehrmann et al. (2011), Bekaert et al. (2014) 
study the spillovers between the means of the return distributions, while 
other authors analyze the conditional variance spillovers to the mean 
(Bae et al., 2007; Diebold and Yilmaz, 2009; Beirne et al., 2010), and the 
pure volatility spillovers (Arouri et al., 2011; Rittler, 2011; Neaime, 2012; 
Lee, 2013). 

There are also many related studies that specifically test the existence 
of financial integration, market interdependence and contagion, con-
sidering Latin American markets, following a significant shock to glo-
bal financial markets, especially from the US. Among this group we 
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observe a first generation of studies that using linear models, most 
notably cointegrated vectors, document a strong relationship between 
the Brazilian, Mexican, Argentinian, Chilean, Colombian and Vene-
zuelan markets and the US market, particularly during crises episodes. 
This results lead to suggest that potential diversification of risk trough 
investing in different Latin American markets is very limited from the 
perspective of an international investor (Chen et al., 2002; Fernández 
and Sosvilla, 2003; Pagan and Soydemir, 2000). Some authors have 
pointed out to the high trade of LA markets with the US, as a possible 
factor underlying such a strong relationship (Johnson and Soenen, 
2003). 

Nevertheless, some of the first-generation studies also documented a 
non-linear relation between Latin American markets and the US market, 
using structural break tests as in Fernández and Sosvilla (2003), par-
titions of the sample into sub-periods as in Chen et al. (2002) or even 
logistic regression and extreme value theory as in Bae et al. (2003). In 
the same vein, Chan-Lau et al. (2004), estimate bivariate extreme depen-
dency measures, to quantify negative and positive equity returns conta-
gion. They report a higher degree of integration between the LA markets 
and the US market, compared to the level of integration of East Asian 
markets and the US, and they document as well stronger ‘bear’ conta-
gion than ‘bull’ contagion. That is, a greater probability of contagion 
following extreme negative than following extreme positive returns in a 
given market, particularly in the LA markets. 

This apparent non-linearity of the relationship has been subsequently 
confirmed by Lahrech and Sylwester (2011). Those authors use dyna-
mic conditional correlations, blended with smooth transition models, 
for testing the degree of market integration between LA markets and 
the US. They find that indeed the level of market integration increased 
from 1988 to 2004, for all the LA markets, but they also document an 
asymmetric behavior at this respect within the LA markets. For instance, 
while Argentina, Brazil and Mexico show a high correlation with the US 
market and experienced a substantial increment in their market correla-
tions during the sample period, Chile still displays a more stable lower 
correlation with the US, becoming a possible diversification opportunity 
from the perspective of an international investor. 
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Other studies have clearly pointed out to other sources of non-linearity 
in the relationship between LA markets and the US market. For ins-
tance, Chiang and Zheng (2010) studied herd behavior in global stock 
markets. They report two key findings: first they identify the role of the 
US market in examining local market herding behavior (the evidence 
shows that in the majority of cases, investors in each national market 
are herding around the US market). Second, they find evidence of her-
ding behavior occurring in developed markets and in Asian markets, but 
less supportive evidence for herding behavior in Latin American mar-
kets. Moreover, herding behavior is clearly more apparent during crisis 
episodes than during regular times. 

Given the literature above, the strategy of focusing solely in analyzing 
the transmission across the markets in the first two moment of the 
return distributions, and by means of linear models, does not appear 
completely justified on empirical grounds. Moreover there seems to be 
a strong temporal dependence between the quantiles of the univariate 
distributions of financial returns, and not only between their second 
moments (Engle and Manganelli, 2004; Baur et al., 2012). Thus, it seems 
plausible to forecast a fuller range of the distribution using contempo-
raneous information, and our attention need not be restricted solely to 
the first two moments. 

Quantile regression models constitute a promising tool for obtaining 
a better understanding of the way in which financial spillovers occur 
and for quantifying the sensitivity of different markets to internatio-
nal shocks. These models are known to be robust to outliers, which is 
particularly important for analyzing financial time series. They are also 
semi-parametric in nature and, therefore, require minimal distributional 
assumptions on the underlying data generating process (DGP). Moreo-
ver, they offer greater flexibility for analyzing different market scena-
rios. For instance, while lower quantiles can be associated with bearish 
markets, higher quantiles are intuitively associated with bullish markets. 
Therefore, very high or very low quantiles can be expected to be related 
to other widely studied financial phenomena, such as bubbles, conta-
gion or episodes of financial distress. 

For the aforementioned reasons, it is not surprising, therefore, that 
quantile models have been incorporated into the financial literature. For 
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instance, Basset and Chen (2001) use quantile regressions to study the 
way in which different portfolio styles (based on their sensitivity to cer-
tain market indexes) influence the whole distribution of the portfolios 
conditional returns, especially at the tail of this distribution. Engle and 
Manganelli (2004) use conditional quantile models to directly calculate 
Value at Risk statistics, instead of recovering them by estimating the 
conditional moments of a set of stock returns. Baur and Schulze (2005) 
analyze coexceedances in the markets, over specific thresholds, as they 
seek to identify episodes of financial contagion. Li and Miu (2010) em-
ploy a binary quantile model to examine predictions of bankruptcy em-
ploying market- and accounting-based factors. 

More recently, Tsai (2012) documents a negative relationship between 
exchange rates and the stock price index in the highest and lowest quan-
tiles of the distribution; however, the study does not provide evidence 
of a significant relationship between the variables in the quantiles near 
the median. Lee and Li (2012) document a non-linear diversification 
effect on firm performance, dependent on the quantile of the distribu-
tion. Ciner et al. (2013) use quantile regressions to explore whether the 
dependences between different asset classes in the US and the UK differ 
during episodes of extreme price movements. Gebka and Wohar (2013), 
using quantile regressions, document a strong non-linear causality in 
the highest and lowest quantiles of the series of volume and stock re-
turns in the Pacific Basin countries. They also report a non-statistically 
significant relationship between volume and returns in the median of 
the distribution. Finally, Rubia and Sanchis-Marco (2013) analyze the 
predictability of different stock portfolios in the tails of the distribution, 
by using variables that proxy for market liquidity and trading condi-
tions. 

In common with any traditional regression, quantile models are sus-
ceptible to reverse causality, simultaneous equations, omitted variables, 
and, in general, to endogenous regressor considerations. Within the fra-
mework of cross-national spillovers, these concerns acquire particular 
relevance and so theoretical restrictions need to be identified before 
quantifying the relationship between markets in different quantiles of 
the returns distribution. Such restrictions can be very naturally impo-
sed in the multivariate quantile setting proposed by White et al. (2015). 
Their framework can be thought of as a vector autoregressive (VAR) 
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extension to quantile models, enabling the direct analysis of the degree 
of tail interdependence among different random variables.

In this paper we measure the response of the six main Latin American 
(LA) stock markets to a shock in the United States (US) stock index. We 
analyze the markets of Brazil, Chile, Mexico, Colombia, Argentina and 
Peru and we also report the results for six mature markets, for the sake 
of comparison (the United Kingdom, Germany, France, Canada, Italy 
and Japan). Unlike previous studies that make use of traditional quantile 
regressions to analyze dependence or spillovers between markets (Mensi 
et al., 2014)44, we use the multivariate quantile model proposed by White 
at al. (2015). This model has an additional advantage over reduced form 
models that analyze dependence in a broader sense than the traditional 
regression framework, using, for example, copula functions (Aloui et al., 
2011). Namely, it allows the direct tracing of structural shocks from the 
US to the other markets, through the estimation of different quantiles of 
the multivariate distribution of market returns and by imposing minimal 
theoretical restrictions on the multivariate DGP describing the data. By 
so doing, we are able to compute pseudo impulse-response functions 
(PIRFs) during different market scenarios, and to document facts about 
the persistence and dynamics of the system after facing a shock condi-
tional on the quantiles of the returns distribution.

In short, this study contributes to studies of contagion, market integra-
tion and cross-border spillovers during both regular and crisis episodes 
by applying multivariate quantile analysis to solve traditional problems 
in finance. Most of the studies in this branch do not consider specific 
quantiles of the distributions and, therefore, they do not condition their 
results to specific market situations. Instead, they focus on the mean 
of the distributions, which could underestimate the real effects of an 
international shock. Even traditional quantile studies do not make any 
attempt to identify structural shocks by recourse to theory, nor are they 
able to analyze certain features of the shocks, such as their persistence, 
during different market scenarios. 

We focus our analysis on Latin American stock markets, which have 
been characterized by a highly positive dynamic in recent decades, in 

44.  These authors study the impact of shocks on the BRICs’ markets.
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terms of market capitalization and liquidity ratios, after a far-reaching 
process of market liberalization and reforms to pension funds across the 
continent during the 80s and 90s (Gill et al., 2005; De la Torre et al., 
2007). Moreover, the global financial crisis between 2007 and 2010 ap-
pears to have fostered financial flows into LA markets, as capital inves-
tors looked for diversification opportunities outside the mature markets, 
and as liquidity began to flourish around the globe, following persis-
tently low market interest rates in the major economies. 

Thus, between 2005 and 2014, the combined domestic market capitali-
zation, reported on the webpage of the World Federation of Exchanges, 
of the markets in Buenos Aires, Sao Paolo, Santiago, Bogota, Mexico 
City and Lima, rose by almost a hundred per cent, climbing from USD 
972.50 billion to USD 1,843.11 billion, in less than ten years. The indica-
tor peaked in 2010 at USD 2717.47 billion, when global financial condi-
tions began to be regularized, primarily in the US. After 2010, a marked 
fall was recorded in the indicators of the regional markets, especially in 
the largest, that of Brazil, which represents around a half of the total. 
In all likelihood this can be attributed to flight-to-quality scenarios and 
disparate expectations among investors in terms of the future of the 
emerging markets’ economic fundamentals, for instance, in relation to 
commodity exports45. 

The dynamics of these regional markets is of interest, especially for ins-
titutional investors around the globe who are constantly looking for 
opportunities to diversify their portfolios. Moreover, a shock originating 
in the US market is of considerable interest for the LA economies given 
that the US economy is the destination of around 40% of the region’s 
total exports and imports, making it by far the main commercial partner 
of LA countries46.

In general we documented smaller dependences between the LA mar-
kets and the US market than those between the US and the developed 
economies, especially in the highest and lowest quantiles. Nevertheless, 
we found an asymmetrical response to the shocks originating in the US 

45.  Among the markets in our sample the percentage of total market capitalization is: Brazil (38.3%), 
México (31.4%), Chile (14.9%), Colombia (6.7%), Peru (4.4%) and Argentina (4.4%). The market with the 
highest market capitalization (relative to GDP ) is Chile (79.2%). http://data.worldbank.org/
46.  Data taken from the webpage of the Comisión Económica para América Latina y el Caribe (CEPAL). 
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market, depending on the conditioning quantile analyzed. This result 
holds regardless of whether the market under consideration is mature 
or emerging, an outcome that can be attributed to the phenomenon of 
flight-to-quality operating in the lowest quantiles (a positive shock in 
the US is followed by a negative reaction in the other markets), and 
a situation of liquidity spillovers between the markets in the highest 
quantiles (a positive shock in the US is followed by a positive reaction 
in the other markets). 

Another useful way to understand our results is to consider the un-
conditional stock return distributions without focusing on any specific 
quantiles. In this case, a shock to the US market can be expected to 
flatten the distribution of financial returns in all other markets. This 
increases the likelihood of observing extreme returns in these markets 
in the period following the original shock. In other words, a shock to 
the US market will increase the Value at Risk (VaR) statistics associated 
with the other markets. However, this change is not symmetrical in the 
tails. For some countries, the right tail of the returns increases more 
than the left tail; for others, the situation is reversed. These results have 
obvious implications in terms of the optimal implementation of hedging 
strategies, portfolio diversification, and risk management, but also with 
regards to the optimal design of monetary and macroprudential policies. 

The rest of the paper is organized as follows. First, we present a brief 
introduction to quantile modeling and the specific multivariate multi-
quantile MVMQ (1,1) employed here. We then describe the data used to 
perform the estimations. The main results and discussion are presen-
ted in the next section. Finally, we outline the conclusions that can be 
drawn from this study.

6.2. Methodology

Since Koenker and Basset’s (1978) seminal contribution, quantile mo-
dels have been of growing interest in many fields of economics, being 
applied in disciplines that range from finance to macroeconomics and 
labor economics (Koenker, 2005). Quantile regression allows the re-
searcher to study the relationship between economic variables not only 
at the center but also across the entire conditional distribution of the 
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dependent variable. In traditional quantile regression, the quantiles of 
a dependent variable are assumed to be linearly dependent on a set 
of conditioning variables. 

As in any structural modeling set up, causal relationships can only be 
identified after maintaining the exogeneity condition of the conditio-
ning variables (Pearl, 2014; Heckman 2008). In a continuously inte-
grating global financial market, this condition is difficult to assume in 
practice. Global investors can rapidly change their positions, by restruc-
turing their portfolios. In turn, this has a feedback effect on global mar-
kets, breaking down the exogeneity requirement. Therefore, in order to 
recover the effects of specific structural innovations over a given system 
of financial prices, it is necessary to resort to the traditional multivariate 
time series tools, such as structural vector autoregressions (Sims, 1980), 
which have been available in the literature for decades. 

Multivariate quantile models (MVMQ) allow the researcher to perform 
this task. They were recently proposed by White et al. (2015) as a mul-
tivariate extension of the influential CAViaR model developed by Engle 
and Maganelli (2004). The authors use an MVMQ (1,1) model to analyze 
the sensitivity of financial institutions to systemic shocks (a market in-
dex constructed as a common factor of financial institutions’ returns). 
This allows them to construct a measure of the performance of each 
financial institution facing financial distress (with a specific focus on 
the low quantiles). The general idea behind MVMQ models is that the 
quantiles of the distribution of a time series 
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where !)"  is implicitly defined as Pr[.)" ≤ !)"|ℱ"('] = 1, @ = 1,2 . That is, 
quantiles of stock return series .)", at level 1, depend on the first lag of the 

returns 7"('47, via the matrix A, and on the first lag of the quantiles in the 
bivariate system, via the matrix 8 . Notice that the elements in the main 
diagonal of 8 measure the dependence of the quantiles on its own lags. In 
contrast, elements outside the main diagonal measure the tail codependence 
between the quantile series. 

Assuming one suitable exogeneity restriction in the system, it is possible to 
recover the structural innovations and, therefore, to calculate quantile pseudo 
impulse-response functions as proposed by White et al. (2015). Here, we use 
the fact that the US market can be taken as the origin of recent major shocks 
to the global financial markets, as documented by Ehrmann et al. (2011) and 
also the fact that this market mainly reacts to its own news, given its 
significant size and liquidity (Ehrmann et al., 2011; Brazys et al., 2015). In this 
way, while we impose the restriction that the US index is contemporaneously 
insensitive to external shocks, every other market reacts contemporaneously to 
the US index. This assumption remains a plausible and simple alternative in all 
cases, supported by the empirical literature, and it is much more suitable than 
assuming strict exogeneity of the global factors. 

Pseudo impulse-response functions (PIRFs) differ from traditional functions 
because, unlike the latter where a one-off intervention E is given to the error 
term F" , PIRFs assume that the one-off intervention E  is given to the 

	
47 An alternative specification of the model described in the main text consists of including 
squared returns, or other proxies for the volatility of the returns, instead of their absolute 
values. This approached has been recently explored, in the empirical application provided by 
Han et al. (2016), regarding their ‘cross-quantilogram’. 
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observable return ." only at time G. At all other times there is no change in .". 
In this way, the pseudo 1th quantile impulse-response function for the ith 
return .)" is defined as: 

∆),I(.̃)") = !K),"-I − !),"-I,					N = 1,2,3…Q    (6.4) 

where !K),"-I is the 1th-conditional quantile of the treated series,	.̃)", and !),"-I 
is 1th-conditional quantile of the contra-factual series, .)". One advantage of 
PIRFs  ∆),I(.̃)") is that they retain the traditional interpretation of IRFs, even 
when they can be calculated for different quantiles of the distribution. In this 
way, they allow us to enhance the analysis of extreme codependences between 
pairs of time series, approaching the problem of estimating tail dependences in 
a direct fashion, instead of indirectly, by recovering them using models of the 
first and second conditional moments.  

6.3. Data 
We used MSCI daily stock price indexes, as calculated by Morgan Stanley 
between 30 June 1995 and 30 June 2015, giving a total of 20 years of 
transactions (5218 observations). All data were obtained from Datastream 
International. The period was selected primarily on the basis of data 
availability for the whole sample. These indices measure the price behavior of 
the assets traded on the stock market in each country, without accounting for 
dividends. They are constructed in a standard way for each country, which 
allows market prices to be compared. We transformed the original prices into 
logarithmic returns by taking natural logs and differentiating. 

In the case of Latin America, we used the country indexes of Argentina, 
Brazil, Chile, Colombia, and Peru, the largest, most liquid markets in the 
region. We selected the markets of the G7 economies as a benchmark, and so 
used the MSCI indicators for the United Kingdom, Canada, Germany, France, 
Italy and Japan. We also worked with the US index constructed by Morgan 
Stanley.  

The period analyzed was marked by several crises, frequently preceded by 
boom-bubble episodes in the global financial markets. For instance, the period 
witnessed the Argentine debt crisis of 2002; the Colombian crisis of 1999; the 
last part of the Mexican crisis, known as the ‘tequila crisis’ in 1994-1995; the 
Asian crisis in 1997; the Russian crisis in 1998; the dotcom crisis in the US in 
2000; the September 11 terrorist attacks; the global financial crisis from 2007 
to 2009; and the European debt crisis in 2010, among others. 
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a direct fashion, instead of indirectly, by recovering them using models of the 
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6.3. Data 
We used MSCI daily stock price indexes, as calculated by Morgan Stanley 
between 30 June 1995 and 30 June 2015, giving a total of 20 years of 
transactions (5218 observations). All data were obtained from Datastream 
International. The period was selected primarily on the basis of data 
availability for the whole sample. These indices measure the price behavior of 
the assets traded on the stock market in each country, without accounting for 
dividends. They are constructed in a standard way for each country, which 
allows market prices to be compared. We transformed the original prices into 
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used the MSCI indicators for the United Kingdom, Canada, Germany, France, 
Italy and Japan. We also worked with the US index constructed by Morgan 
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We used MSCI daily stock price indexes, as calculated by Morgan Stanley 
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availability for the whole sample. These indices measure the price behavior of 
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interpretation of IRFs, even when they can be calculated for different 
quantiles of the distribution. In this way, they allow us to enhance the 
analysis of extreme codependences between pairs of time series, ap-
proaching the problem of estimating tail dependences in a direct fash-
ion, instead of indirectly, by recovering them using models of the first 
and second conditional moments. 

6.3. Data

We used MSCI daily stock price indexes, as calculated by Morgan Stan-
ley between 30 June 1995 and 30 June 2015, giving a total of 20 years 
of transactions (5218 observations). All data were obtained from Da-
tastream International. The period was selected primarily on the basis 
of data availability for the whole sample. These indices measure the 
price behavior of the assets traded on the stock market in each country, 
without accounting for dividends. They are constructed in a standard 
way for each country, which allows market prices to be compared. We 
transformed the original prices into logarithmic returns by taking natu-
ral logs and differentiating.

In the case of Latin America, we used the country indexes of Argentina, 
Brazil, Chile, Colombia, and Peru, the largest, most liquid markets in 
the region. We selected the markets of the G7 economies as a bench-
mark, and so used the MSCI indicators for the United Kingdom, Canada, 
Germany, France, Italy and Japan. We also worked with the US index 
constructed by Morgan Stanley. 

The period analyzed was marked by several crises, frequently preceded 
by boom-bubble episodes in the global financial markets. For instance, 
the period witnessed the Argentine debt crisis of 2002; the Colombian 
crisis of 1999; the last part of the Mexican crisis, known as the ‘tequila 
crisis’ in 1994-1995; the Asian crisis in 1997; the Russian crisis in 1998; 
the dotcom crisis in the US in 2000; the September 11 terrorist attacks; 
the global financial crisis from 2007 to 2009; and the European debt 
crisis in 2010, among others.
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6.4. Results and Discussion

The events outlined above provided the motivation for our analysis of 
the time series quantiles48. Reactions to the shocks originating in the 
main global financial market in periods of pronounced rallies are ex-
pected to differ markedly from those experienced during economic cras-
hes. Reactions may also differ between periods of normal and extreme 
economic activity. All these episodes are naturally related to different 
quantiles of the market return distributions. 

Below, we test the hypothesis of statistical dependence between the se-
ries of quantiles for the different markets, with the US index serving as 
a pivot point. First, we present the results of the reduced form vector 
autoregression (VAR), followed by the results for the pseudo impulse-
response functions following a structural shock to the US index. Finally, 
we introduce various performance tests and robustness exercises. 

A. Reduced Form Vector Autoregression 

Tables 6.1 and 6.2 provide a summary of the estimated coefficients for 
the six main Latin American and the six mature markets in the reduced 
form model. We present the coefficients associated with Equation 6.2 
that best describe the relationship of each index with the US indicator. 
The coefficients 
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A. Reduced Form Vector Autoregression  
Tables 6.1 and 6.2 provide a summary of the estimated coefficients for the six 
main Latin American and the six mature markets in the reduced form model. 
We present the coefficients associated with Equation 6.2 that best describe the 
relationship of each index with the US indicator. The coefficients 3*'	and 5*' 
were estimated at three different quantiles of the distribution of returns: 1 =
{0.01, 0.5, 0.99} , for each country. We also report the joint statistical 
significance of the coefficients outside the main diagonal of the matrixes 6, 8, 
in each case.  

We estimated bivariate VAR models between the US index and each of the 
twelve market indicators. Although this approach runs the risk of incurring 
bias due to omitted variables, it has the advantage of allowing us to use the 
PIRFs provided by White et al. (2015) in our analysis. 

  

	
48 Nevertheless, we also tested for parameter instabilities in the linear model specifications, 
outline in footnote 4. In all the cases, both for emerging and mature markets (but Italy), we 
rejected the null of stability in favor of an alternative of structural changes. We used 
cumulative-sum (CUSUM) statistics and dynamic confidence bounds. The results are 
available upon request. 
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Table 6.1 
Reduced form VAR coefficients at 50th percentile 

50% 

   c2   a21   a22   b21   b22   js     c2   a21   a22   b21   b22   js  

Arg 0.00 0.00 0.01 -0.08 0.08 0.54 Can 0.00 0.00 0.00 0.00 0.00 0.01 

  0.04 0.02 0.01 0.70 0.76     0.00 0.00 0.00 0.70 1.20   
Bra 0.00 0.00 0.01 -0.03 0.00 0.33 Fra 0.09*** 0.00 0.00 -0.20 -0.94** 4.62 

  0.03 0.02 0.02 0.69 1.84     0.00 0.00 0.00 0.10 0.10   

Chil 0.00 0.00 0.01 -0.04 0.02 2.03 Ger 0.15*** 
-

0.07**
* 

0.0 -1.5 0.1 
17.7
3*** 

  0.02 0.02 0.02 0.35 3.80     0.00 0.00 0.00 1.00 0.60   

Col -0.01 0.00 0.03 0.10 0.03 0.07 Ita 0.00 0.00 0.00 -0.30 -0.40 1.85 

  0.02 0.01 0.02 0.40 0.44     0.00 0.00 0.00 0.40 0.60   

Mex 0.04 -0.01 0.02 0.07 
-

0.78*** 
1.02 Jap 0.00 0.00 0.00 0.00 1.00 1.50 

  0.03 0.02 0.01 0.15 0.24     0.00 0.00 0.00 1.00 1.60   

Peru 0.03 0.00 0.03 -0.38 -0.27 0.84 UK 0.08*** 
-

0.07**
* 

0.00 -0.60 -0.50** 
10.7
4** 

  0.03 0.02 0.02 0.51 0.66     0.00 0.00 0.00 0.40 0.30   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, a22 
is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-coefficients and 
js is the statistic associated to the joint significance of the cross-coefficients.  

 

The statistics in Table 6.1 highlight certain similarities between the emerging 
and the advanced economies included in our sample. For instance, if we focus 
on the transmission of shocks between markets in the 50th percentile (the 
median), we observe that the estimations of the cross-sectional effects, which 
relate the US market with the rest of the sample, tend to be non-significant. In 
the developed economies, only Germany and the United Kingdom show a 
negative and statistically significant coefficient 3*' , as associated with 
Equation 6.2. The effects in the median, however, for the LA markets and the 
other mature economies are non-significant in all cases. The same result is 
found for the joint significance test (last column, Table 6.1).  

The autoregressive coefficients, relating the median values with their own lags, 
are also insignificant in almost all cases (with the exceptions of France, Mexico 
and the UK). These results are consistent with the weak form of the efficient 
market hypothesis and support past evidence in the literature about the 
unpredictability of asset returns in the central fragment of the distribution, 
within a daily frequency framework (White, 2000; Christoffersen and Diebold, 
2006).  
  

 and  
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main Latin American and the six mature markets in the reduced form model. 
We present the coefficients associated with Equation 6.2 that best describe the 
relationship of each index with the US indicator. The coefficients 3*'	and 5*' 
were estimated at three different quantiles of the distribution of returns: 1 =
{0.01, 0.5, 0.99} , for each country. We also report the joint statistical 
significance of the coefficients outside the main diagonal of the matrixes 6, 8, 
in each case.  

We estimated bivariate VAR models between the US index and each of the 
twelve market indicators. Although this approach runs the risk of incurring 
bias due to omitted variables, it has the advantage of allowing us to use the 
PIRFs provided by White et al. (2015) in our analysis. 

  

	
48 Nevertheless, we also tested for parameter instabilities in the linear model specifications, 
outline in footnote 4. In all the cases, both for emerging and mature markets (but Italy), we 
rejected the null of stability in favor of an alternative of structural changes. We used 
cumulative-sum (CUSUM) statistics and dynamic confidence bounds. The results are 
available upon request. 
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Table 6.1 
Reduced form VAR coefficients at 50th percentile 

50% 

   c2   a21   a22   b21   b22   js     c2   a21   a22   b21   b22   js  

Arg 0.00 0.00 0.01 -0.08 0.08 0.54 Can 0.00 0.00 0.00 0.00 0.00 0.01 

  0.04 0.02 0.01 0.70 0.76     0.00 0.00 0.00 0.70 1.20   
Bra 0.00 0.00 0.01 -0.03 0.00 0.33 Fra 0.09*** 0.00 0.00 -0.20 -0.94** 4.62 

  0.03 0.02 0.02 0.69 1.84     0.00 0.00 0.00 0.10 0.10   

Chil 0.00 0.00 0.01 -0.04 0.02 2.03 Ger 0.15*** 
-

0.07**
* 

0.0 -1.5 0.1 
17.7
3*** 

  0.02 0.02 0.02 0.35 3.80     0.00 0.00 0.00 1.00 0.60   

Col -0.01 0.00 0.03 0.10 0.03 0.07 Ita 0.00 0.00 0.00 -0.30 -0.40 1.85 

  0.02 0.01 0.02 0.40 0.44     0.00 0.00 0.00 0.40 0.60   

Mex 0.04 -0.01 0.02 0.07 
-

0.78*** 
1.02 Jap 0.00 0.00 0.00 0.00 1.00 1.50 

  0.03 0.02 0.01 0.15 0.24     0.00 0.00 0.00 1.00 1.60   

Peru 0.03 0.00 0.03 -0.38 -0.27 0.84 UK 0.08*** 
-

0.07**
* 

0.00 -0.60 -0.50** 
10.7
4** 

  0.03 0.02 0.02 0.51 0.66     0.00 0.00 0.00 0.40 0.30   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, a22 
is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-coefficients and 
js is the statistic associated to the joint significance of the cross-coefficients.  

 

The statistics in Table 6.1 highlight certain similarities between the emerging 
and the advanced economies included in our sample. For instance, if we focus 
on the transmission of shocks between markets in the 50th percentile (the 
median), we observe that the estimations of the cross-sectional effects, which 
relate the US market with the rest of the sample, tend to be non-significant. In 
the developed economies, only Germany and the United Kingdom show a 
negative and statistically significant coefficient 3*' , as associated with 
Equation 6.2. The effects in the median, however, for the LA markets and the 
other mature economies are non-significant in all cases. The same result is 
found for the joint significance test (last column, Table 6.1).  

The autoregressive coefficients, relating the median values with their own lags, 
are also insignificant in almost all cases (with the exceptions of France, Mexico 
and the UK). These results are consistent with the weak form of the efficient 
market hypothesis and support past evidence in the literature about the 
unpredictability of asset returns in the central fragment of the distribution, 
within a daily frequency framework (White, 2000; Christoffersen and Diebold, 
2006).  
  

 were estimated at three different quantiles 
of the distribution of returns:  
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6.4. Results and Discussion 
The events outlined above provided the motivation for our analysis of the 
time series quantiles48. Reactions to the shocks originating in the main global 
financial market in periods of pronounced rallies are expected to differ 
markedly from those experienced during economic crashes. Reactions may 
also differ between periods of normal and extreme economic activity. All these 
episodes are naturally related to different quantiles of the market return 
distributions.  

Below, we test the hypothesis of statistical dependence between the series of 
quantiles for the different markets, with the US index serving as a pivot point. 
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We estimated bivariate VAR models between the US index and each of the 
twelve market indicators. Although this approach runs the risk of incurring 
bias due to omitted variables, it has the advantage of allowing us to use the 
PIRFs provided by White et al. (2015) in our analysis. 
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0.07**
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0.00 -0.60 -0.50** 
10.7
4** 
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Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, a22 
is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-coefficients and 
js is the statistic associated to the joint significance of the cross-coefficients.  
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median), we observe that the estimations of the cross-sectional effects, which 
relate the US market with the rest of the sample, tend to be non-significant. In 
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Equation 6.2. The effects in the median, however, for the LA markets and the 
other mature economies are non-significant in all cases. The same result is 
found for the joint significance test (last column, Table 6.1).  

The autoregressive coefficients, relating the median values with their own lags, 
are also insignificant in almost all cases (with the exceptions of France, Mexico 
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is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-coefficients and 
js is the statistic associated to the joint significance of the cross-coefficients.  

 

The statistics in Table 6.1 highlight certain similarities between the emerging 
and the advanced economies included in our sample. For instance, if we focus 
on the transmission of shocks between markets in the 50th percentile (the 
median), we observe that the estimations of the cross-sectional effects, which 
relate the US market with the rest of the sample, tend to be non-significant. In 
the developed economies, only Germany and the United Kingdom show a 
negative and statistically significant coefficient 3*' , as associated with 
Equation 6.2. The effects in the median, however, for the LA markets and the 
other mature economies are non-significant in all cases. The same result is 
found for the joint significance test (last column, Table 6.1).  

The autoregressive coefficients, relating the median values with their own lags, 
are also insignificant in almost all cases (with the exceptions of France, Mexico 
and the UK). These results are consistent with the weak form of the efficient 
market hypothesis and support past evidence in the literature about the 
unpredictability of asset returns in the central fragment of the distribution, 
within a daily frequency framework (White, 2000; Christoffersen and Diebold, 
2006).  
  

 , for each country. 
We also report the joint statistical significance of the coefficients outside 
the main diagonal of the matrixes A, B, in each case. 

We estimated bivariate VAR models between the US index and each 
of the twelve market indicators. Although this approach runs the risk of 
incurring bias due to omitted variables, it has the advantage of allowing 
us to use the PIRFs provided by White et al. (2015) in our analysis.

48.  Nevertheless, we also tested for parameter instabilities in the linear model specifications, outline in 
footnote 4. In all the cases, both for emerging and mature markets (but Italy), we rejected the null of stability 
in favor of an alternative of structural changes. We used cumulative-sum (CUSUM) statistics and dynamic 
confidence bounds. The results are available upon request.
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Table 6.1. Reduced form VAR coefficients at 50th percentile

50%
   c2  a21 a22  b21  b22  js    c2  a21  a22  b21  b22  js 

Arg 0.00 0.00 0.01 -0.08 0.08 0.54 Can 0.00 0.00 0.00 0.00 0.00 0.01

  0.04 0.02 0.01 0.70 0.76     0.00 0.00 0.00 0.70 1.20  

Bra 0.00 0.00 0.01 -0.03 0.00 0.33 Fra 0.09*** 0.00 0.00 -0.20 -0.94** 4.62

  0.03 0.02 0.02 0.69 1.84     0.00 0.00 0.00 0.10 0.10  

Chil 0.00 0.00 0.01 -0.04 0.02 2.03 Ger 0.15*** -0.07*** 0.0 -1.5 0.1 17.73***

  0.02 0.02 0.02 0.35 3.80     0.00 0.00 0.00 1.00 0.60  

Col -0.01 0.00 0.03 0.10 0.03 0.07 Ita 0.00 0.00 0.00 -0.30 -0.40 1.85

  0.02 0.01 0.02 0.40 0.44     0.00 0.00 0.00 0.40 0.60  

Mex 0.04 -0.01 0.02 0.07 -0.78*** 1.02 Jap 0.00 0.00 0.00 0.00 1.00 1.50

  0.03 0.02 0.01 0.15 0.24     0.00 0.00 0.00 1.00 1.60  

Peru 0.03 0.00 0.03 -0.38 -0.27 0.84 UK 0.08*** -0.07*** 0.00 -0.60 -0.50** 10.74**

  0.03 0.02 0.02 0.51 0.66     0.00 0.00 0.00 0.40 0.30  

Note: *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR co-
efficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, a22 
is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-coefficients and 
js is the statistic associated to the joint significance of the cross-coefficients. 

The statistics in Table 6.1 highlight certain similarities between the emer-
ging and the advanced economies included in our sample. For instance, 
if we focus on the transmission of shocks between markets in the 50th 
percentile (the median), we observe that the estimations of the cross-
sectional effects, which relate the US market with the rest of the sample, 
tend to be non-significant. In the developed economies, only Germany 
and the United Kingdom show a negative and statistically significant 
coefficient a21, as associated with Equation 6.2. The effects in the me-
dian, however, for the LA markets and the other mature economies are 
non-significant in all cases. The same result is found for the joint signi-
ficance test (last column, Table 6.1). 

The autoregressive coefficients, relating the median values with their 
own lags, are also insignificant in almost all cases (with the exceptions 
of France, Mexico and the UK). These results are consistent with the 
weak form of the efficient market hypothesis and support past evidence 
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in the literature about the unpredictability of asset returns in the central 
fragment of the distribution, within a daily frequency framework (Whi-
te, 2000; Christoffersen and Diebold, 2006). 

Table 6.2. Reduced form VAR coefficients at 1st and 99th percentiles

  1% 99%
   c2  a21  a22  b21  b22  js  c2  a21  a22  b21  b22  js 

  Latin American Stock Markets

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03  

Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02  

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03  

Col -0.27*** -0.21 -0.58*** -0.08*** 0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08  

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02  

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01  

  Mature G7 Stock Markets

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05  

Fra -0.16*** -0.13*** -0.21*** 0.01 0.85*** 16.58*** 0.07*** 0.14*** 0.29*** -0.02 0.86*** 27.32***

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03  

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 12.44**

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04  

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01  

Jap -0.55*** -0.39*** -0.38*** -0.03 0.65*** 76.99*** 0.09** 0.35*** 0.19*** -0.09*** 0.89*** 110***

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03  

UK -0.11** -0.22*** -0.19*** 0.05 0.78*** 77.66*** 0.03** 0.11*** 0.11*** -0.03 0.95*** 21.77***

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02  

Note: *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR co-
efficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, a22 
is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-coefficients 
and js is the statistic associated to the joint significance of the cross-coefficients.
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Another common pattern that can be documented at this stage of the 
analysis (Table 6.2) is the fact that tail-codependences appear to be more 
significant in the lowest quantile than they are in the highest one, in-
dependently of whether the market is mature or emerging. Indeed, 8 
out of 12 markets present statistically significant cross-dependence at 
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

 and only 4 out of 12 do so at  
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

  (see joint test results in 
columns 7 and 12). In other words, shocks experienced by the US market 
tend to lengthen the tails of the return distributions in the other mar-
kets in an asymmetrical fashion. In a related study, Baur and Schulze 
(2005) analyzed 11 markets in Asia and four aggregate regional indexes 
in Europe, LA, Asia and the USA and similarly documented a stronger 
dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world.

The similarities found in the median of the distributions of advanced 
and emerging markets contrast with the differences found in their high-
est and the lowest quantiles. Recall that high quantiles (i.e., 
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 

	 138	

statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

) 
are likely associated with bullish market episodes and financial bubble 
periods, in which sharp rates of growth in stock prices are recorded. In 
contrast, low quantiles (i.e., 
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

) are mainly associated with bearish 
markets, periods of crises and scenarios of financial distress. These lower 
quantiles, when calculated at very low levels, such as 
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

, can 
be interpreted as Value at Risk (VaR) statistics. 

Bearing this in mind, Table 6.2 makes evident that at 
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

) there is 
a greater codependence between the US and the mature markets than 
between the US and the LA markets. The joint hypothesis of quantile 
cross-dependence is maintained for Germany, the UK, France and Japan 
and it is rejected only in the cases of Canada and Italy. 

If we examine the Latin American markets, a contrasting landscape emer-
ges. In none of the six markets in our sample do we record a statistically 
significant cross-tail-codependence. Only Mexico exhibits an individua-
lly significant relationship in the case of the coefficient a21. In all other 
instances, the autoregressive terms are statistically significant, but the 
codependence terms are not. This result indicates that there is a clear 
statistical dependence between the right tail of the marginal distributions 
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in each market, but this dependence does not extend to the bivariate dis-
tribution. In other words, after a high-value realization in the returns of 
these markets, a high-value realization is expected to follow in the next 
period. However, this cannot be attributed to high (or low) realizations in 
the US market. This result contrasts with those recorded for most of the 
mature economies and is in line with previous findings in the literature 
that report a lower degree of financial interdependence between the LA 
and the global (and US) financial markets than that found with Western 
Europe markets (see Bekaert et al., 2005 and Bekaert et al., 2014).

It is also possible to analyze the left tail of the return distributions by 
inspecting the quantile in which θ equals 0.01 –that is, the ‘Value at Risk’ 
scenarios, the worst scenarios that can be expected during regular market 
conditions. Specifically, in 99% of occasions the returns are expected to 
be greater than the 1st estimated percentile. In such cases, the evidence 
of tail-codependence between the US market and the other developed 
markets in the sample is decisive. Indeed, 5 out of 6 mature markets ex-
hibit tail-codependence when we take the joint hypothesis statistic (Table 
6.1) into account. Only in the case of Italy can the cross-dependence be 
disregarded. In the emerging Latin-American economies the evidence is 
more balanced. While tail-dependence is significant in the cases of Co-
lombia, Peru and Argentina, it is not in those of Brazil, Chile and Mexico. 
This scenario is consistent with hypotheses forwarded in the literature 
that highlight the importance of amplifying mechanisms during crises, 
which induce contagion during episodes of financial distress. Although 
the argument has been made within a market (Brunnermeier and Oehmke, 
2013), the same mechanisms could be operating at an international level. 

B. Structural VAR - Pseudo impulse-response functions

The analysis of the PIRFs at different quantiles substantiates the inter-
pretation of the results above. We constructed PIRFs for each market, 
after identifying a structural shock as two standard deviations from the 
US index. Using the Cholesky factorization, we assume that the US is 
contemporaneously exogenous in each bivariate system. 

The main results for the LA markets are presented in Figure 6.1 while 
Figure 6.2 shows the mature economy benchmarks. While the results are 
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in line with the previous discussion, the PIRFs tend to be statistically 
significant in most cases with the exception of the central cases (asso-
ciated with the medians of the distributions, which are not reported for 
reasons of space). These impulse-response functions have the advantage 
of allowing the observation of the time persistence of the shocks as well 
as the direction of the effects at each specific quantile.

An interesting trend clarified by observing the PIRFs is the fact that the 
two-standard deviation shock to the US market induces effects with op-
posite signs depending on the quantile. This observation holds in all cases, 
regardless of whether the market is mature or emerging. This means that a 
sizeable positive shock to the US index increases the probability of a very 
high or a very low observation in the other markets. Thus, a shock increa-
ses the highest and lowest quantiles by enlarging the whole support of the 
unconditional return distributions. In other words, conditioning on a spe-
cific quantile we find that, while in higher quantiles the shock produces 
a positive response, this is related to a negative effect in lower quantiles. 

These results also present novel empirical evidence in favor of different 
trading strategies, depending on the location of an observed market 
realization among the quantile categories. Although it would be optimal 
to go long in developed or emerging markets in the highest quantiles, 
after a positive shock to the US market is observed, the strategy would 
be inappropriate in the lowest quantiles. Indeed, the opposite may well 
be the optimal course in such a scenario. 

The methodology employed here also allows us to identify asymmetries 
in the size of the effects, and not just in the signs of the tails. For ins-
tance, Japan presents a clear case of asymmetry. Thus, while the shock 
reduces the 1st percentile by 2.62 percentage points (pp), in the following 
20 days it increases the 99th percentile by 4.25 pp in the same amount 
of time. This same pattern is documented in the case of Mexico (-3.57 
pp in the left tail versus 5.56 pp in the right tail); however, several mar-
kets present asymmetries in the other direction. That is, in the cases of 
Canada, Peru and Argentina the shock decreases the lowest quantiles by 
-6.62 pp, -4.94 pp, and -6.60, respectively, while it increases the highest 
quantiles by only 1.28 pp, 3.54 pp and 4.76 pp. 
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Figure 6.1. Impulse-response functions of the LA markets to a two-standard 
deviation shock in the US market
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It is also possible to analyze the left tail of the return distributions by 
inspecting the quantile in which 1 equals 0.01 – that is, the ‘Value at Risk’ 
scenarios, the worst scenarios that can be expected during regular market 
conditions. Specifically, in 99% of occasions the returns are expected to be 
greater than the 1st estimated percentile. In such cases, the evidence of tail-
codependence between the US market and the other developed markets in the 
sample is decisive. Indeed, 5 out of 6 mature markets exhibit tail-
codependence when we take the joint hypothesis statistic (Table 6.1) into 
account. Only in the case of Italy can the cross-dependence be disregarded. In 
the emerging Latin-American economies the evidence is more balanced. While 
tail-dependence is significant in the cases of Colombia, Peru and Argentina, it 
is not in those of Brazil, Chile and Mexico. This scenario is consistent with 
hypotheses forwarded in the literature that highlight the importance of 
amplifying mechanisms during crises, which induce contagion during episodes 
of financial distress. Although the argument has been made within a market 
(Brunnermeier and Oehmke, 2013), the same mechanisms could be operating 
at an international level.  

B. Structural VAR - Pseudo impulse-response functions 
The analysis of the PIRFs at different quantiles substantiates the interpretation 
of the results above. We constructed PIRFs for each market, after identifying a 
structural shock as two standard deviations from the US index. Using the 
Cholesky factorization, we assume that the US is contemporaneously 
exogenous in each bivariate system.  

The main results for the LA markets are presented in Figure 6.1 while Figure 
6.2 shows the mature economy benchmarks. While the results are in line with 
the previous discussion, the PIRFs tend to be statistically significant in most 
cases with the exception of the central cases (associated with the medians of 
the distributions, which are not reported for reasons of space). These impulse-
response functions have the advantage of allowing the observation of the time 
persistence of the shocks as well as the direction of the effects at each specific 
quantile. 

An interesting trend clarified by observing the PIRFs is the fact that the two-
standard deviation shock to the US market induces effects with opposite signs 
depending on the quantile. This observation holds in all cases, regardless of 
whether the market is mature or emerging. This means that a sizeable positive 
shock to the US index increases the probability of a very high or a very low 
observation in the other markets. Thus, a shock increases the highest and 
lowest quantiles by enlarging the whole support of the unconditional return 
distributions. In other words, conditioning on a specific quantile we find that, 
while in higher quantiles the shock produces a positive response, this is related 
to a negative effect in lower quantiles.  
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Argentina 
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Peru 

 
Figure 6.1. Impulse-response functions of the LA markets to a two-standard 
deviation shock in the US market. Note: The solid top line is the response at the 99th 
percentile, and the corresponding 95% confidence interval is the shaded area. The solid 
lower line is the response at the 1st percentile and the dotted lines are the corresponding 
confidence intervals.   
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Figure 6.2. Impulse-response functions of the G7 markets to a two-standard 
deviation shock in the US market
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Canada 
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Figure 6.2. Impulse-response functions of the G7 markets to a two-standard 
deviation shock in the US market. The solid top line is the response at the 99th percentile, 
and the corresponding 95% confidence interval is the shaded area. The solid lower line is the 
response at the 1st percentile and the dotted lines are the corresponding confidence 
intervals.   
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among the quantile categories. Although it would be optimal to go long in 
developed or emerging markets in the highest quantiles, after a positive shock 
to the US market is observed, the strategy would be inappropriate in the 
lowest quantiles. Indeed, the opposite may well be the optimal course in such 
a scenario.  

The methodology employed here also allows us to identify asymmetries in the 
size of the effects, and not just in the signs of the tails. For instance, Japan 
presents a clear case of asymmetry. Thus, while the shock reduces the 1st 
percentile by 2.62 percentage points (pp), in the following 20 days it increases 
the 99th percentile by 4.25 pp in the same amount of time. This same pattern is 
documented in the case of Mexico (-3.57 pp in the left tail versus 5.56 pp in 
the right tail); however, several markets present asymmetries in the other 
direction. That is, in the cases of Canada, Peru and Argentina the shock 
decreases the lowest quantiles by -6.62 pp, -4.94 pp, and -6.60, respectively, 
while it increases the highest quantiles by only 1.28 pp, 3.54 pp and 4.76 pp.  

The sign asymmetries documented in all markets can be related to episodes of 
flight-to- quality in the lowest quantiles and possible liquidity spillovers in the 
highest quantiles. Flight-to-quality refers to an environment in which investors 
seek to sell assets that are perceived as risky and to purchase safe assets instead 
(Caballero and Kurlat, 2008). In a global financial market characterized by a 
very limited supply of financial instruments considered liquid by the 
international investors during episodes of financial distress, (Caballero et al. 
2008), it is not surprising that a positive shock to the US market, which 
increments the VaR in the other markets, will be followed by flows in the 
direction of the central economy, which is considered less risky, by all 
standards.  

On the other hand, although a liquidity spillover is sometimes referred to in 
the literature as a situation of illiquidity in one market that is transmitted to the 
other market, we use the term here to refer to an episode in which excess 
liquidity in one market (presumably that of the US) increases the liquidity in 
the other markets. The high liquidity increases the amount of trading and 
purchasing taking place in markets other than that of the US, as investors look 
for profitable opportunities around the world and seek to avoid abnormally 
low interest rates in US government-backed securities and other assets. 

In short, at low quantiles following a positive shock to the US markets, capital 
prefers to migrate to this market, increasing the likelihood of a loss in the 
other markets; in contrast, at high quantiles, a positive shock to the US market 
possibly reflects greater liquidity in the global economy, which can potentially 
overshoot to other markets, especially the more highly developed markets, but 
to some extent also to those in the emerging economies. Thus, the statistic is a 
suitable tool for measuring contagion episodes driven by flight-to-quality 

The solid top line is the response at the 99th percentile, and the corresponding 95% confidence 
interval is the shaded area. The solid lower line is the response at the 1st percentile and the 
dotted lines are the corresponding confidence intervals. 
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The sign asymmetries documented in all markets can be related to epi-
sodes of flight-to-quality in the lowest quantiles and possible liquidity 
spillovers in the highest quantiles. Flight-to-quality refers to an envi-
ronment in which investors seek to sell assets that are perceived as risky 
and to purchase safe assets instead (Caballero and Kurlat, 2008). In a 
global financial market characterized by a very limited supply of finan-
cial instruments considered liquid by the international investors during 
episodes of financial distress, (Caballero et al. 2008), it is not surprising 
that a positive shock to the US market, which increments the VaR in the 
other markets, will be followed by flows in the direction of the central 
economy, which is considered less risky, by all standards. 

On the other hand, although a liquidity spillover is sometimes refe-
rred to in the literature as a situation of illiquidity in one market that 
is transmitted to the other market, we use the term here to refer to an 
episode in which excess liquidity in one market (presumably that of the 
US) increases the liquidity in the other markets. The high liquidity in-
creases the amount of trading and purchasing taking place in markets 
other than that of the US, as investors look for profitable opportunities 
around the world and seek to avoid abnormally low interest rates in US 
government-backed securities and other assets.

In short, at low quantiles following a positive shock to the US markets, 
capital prefers to migrate to this market, increasing the likelihood of a 
loss in the other markets; in contrast, at high quantiles, a positive shock 
to the US market possibly reflects greater liquidity in the global eco-
nomy, which can potentially overshoot to other markets, especially the 
more highly developed markets, but to some extent also to those in the 
emerging economies. Thus, the statistic is a suitable tool for measuring 
contagion episodes driven by flight-to-quality considerations or epi-
sodes of increasing correlation between markets, due to high liquidity 
levels in the global economy.

Note also that the differences in the responses are considerable within 
our sample, even within the Latin American zone. This points to the 
need for a careful analysis of the idiosyncrasies of each market before 
exploiting opportunities for diversification. For instance, Chile appears 
to represent a good opportunity for diversification most of the time: it 
does not present tail codependence in its high, median and low quantiles 
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with the US markets, and the cumulated effect of the PIRFs is one of 
the smallest in the sample. In contrast, although Colombia, Peru and 
Argentina seem insensitive to the US market shocks in their highest 
quantiles, they are strongly affected in their lowest quantiles (financial 
distress episodes), which makes them less suitable locations for portfolio 
diversification during times of crisis. 

Note as well that those results can be directly interpreted as risk (or vo-
latility) spillovers from the US market to Latin American markets, since 
the returns are included in the reduced form model, in absolute values, 
in equations 6.1 and 6.2. 

Finally, regarding the persistence of the shocks in the markets, we first 
counted the number of days during which the shock remained statistically 
different from zero in each market. We then counted the number of days 
after which at least half of the shock’s total impact (i.e., its half-life) had 
been absorbed (Table 6.3). In this way we can draw meaningful compari-
sons between the markets. Interestingly, the half-lives of the shocks in the 
LA and mature markets are very similar. The half-life median in bearish 
markets, both in mature and LA markets, is four days, while the half-life 
median in bullish markets is six days in emerging and five days in mature 
markets. In both cases there is a slight asymmetry, with the shocks being 
more persistent during positive extreme return scenarios than during ne-
gative extreme returns. On an individual basis, the market that houses the 
shortest persistence is Colombia, with two days in both tails (very similar 
in this respect to Japan). In contrast, Chile reaches nine days in the 99th 
percentile and Mexico and Peru seven days, in the same tail.

Table 6.3. Persistence (half-life in days)

  1% 99%   1% 99%

Argentina 4 4 Canada 4 4

Brazil 3 4 France 5 4

Chile 3 9 Germany 4 5

Colombia 2 2 Italy 4 6

Mexico 9 7 Japan 2 3

Peru 5 7 UK 4 6

Note: half-life of the shocks, in days, for different markets. 
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C. Performance tests

In this section we assess the overall performance of the models at  
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considerations or episodes of increasing correlation between markets, due to 
high liquidity levels in the global economy. 

Note also that the differences in the responses are considerable within our 
sample, even within the Latin American zone. This points to the need for a 
careful analysis of the idiosyncrasies of each market before exploiting 
opportunities for diversification. For instance, Chile appears to represent a 
good opportunity for diversification most of the time: it does not present tail 
codependence in its high, median and low quantiles with the US markets, and 
the cumulated effect of the PIRFs is one of the smallest in the sample. In 
contrast, although Colombia, Peru and Argentina seem insensitive to the US 
market shocks in their highest quantiles, they are strongly affected in their 
lowest quantiles (financial distress episodes), which makes them less suitable 
locations for portfolio diversification during times of crisis.  

Note as well that those results can be directly interpreted as risk (or volatility) 
spillovers from the US market to Latin American markets, since the returns 
are included in the reduced form model, in absolute values, in equations 6.1 
and 6.2.   

Finally, regarding the persistence of the shocks in the markets, we first 
counted the number of days during which the shock remained statistically 
different from zero in each market. We then counted the number of days after 
which at least half of the shock’s total impact (i.e., its half-life) had been 
absorbed (Table 6.3). In this way we can draw meaningful comparisons 
between the markets. Interestingly, the half-lives of the shocks in the LA and 
mature markets are very similar. The half-life median in bearish markets, both 
in mature and LA markets, is four days, while the half-life median in bullish 
markets is six days in emerging and five days in mature markets. In both cases 
there is a slight asymmetry, with the shocks being more persistent during 
positive extreme return scenarios than during negative extreme returns. On an 
individual basis, the market that houses the shortest persistence is Colombia, 
with two days in both tails (very similar in this respect to Japan). In contrast, 
Chile reaches nine days in the 99th percentile and Mexico and Peru seven days, 
in the same tail. 

Table 6.3 
Persistence (half-life in days) 

  1% 99%   1% 99% 
Argentina 4 4 Canada 4 4 

Brazil 3 4 France 5 4 

Chile 3 9 Germany 4 5 

Colombia 2 2 Italy 4 6 

Mexico 9 7 Japan 2 3 

Peru 5 7 UK 4 6 

Note: half-life of the shocks, in days, for different markets.  
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C. Performance tests 

In this section we assess the overall performance of the models at 1 =
{0.01, 0.99}. This is possible by counting the number of exceedances of the 
actual returns above the highest quantile, and the number of exceedances 
below the lowest quantile. As usual, provided that we are constructing the 
quantiles at 1 and 99 per cent, we expect a number of exceedances in each 
case of around 1% of the times.  

We present the returns of the markets and the estimated quantiles for the LA 
markets in Figure 6.3 and for the G7 markets in Figure 6.4. We also present 
the percentage of exceedances in Table 6.4. 

As can be seen by visual inspection of the figures, and also by observation of 
the statistics in Table 6.4, the performance of the models appears to be highly 
satisfactory, both in the highest and lowest quantiles. We found percentages of 
exceedances in line with theoretical expectations for the selected confidence 
level, ranging from 0.98 to 1.02, with a mean value of 0.998.  
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. This is possible by counting the number of exceedan-
ces of the actual returns above the highest quantile, and the number of 
exceedances below the lowest quantile. As usual, provided that we are 
constructing the quantiles at 1 and 99 per cent, we expect a number of 
exceedances in each case of around 1% of the times. 

We present the returns of the markets and the estimated quantiles for the 
LA markets in Figure 6.3 and for the G7 markets in Figure 6.4. We also 
present the percentage of exceedances in Table 6.4.

As can be seen by visual inspection of the figures, and also by observation 
of the statistics in Table 6.4, the performance of the models appears to be 
highly satisfactory, both in the highest and lowest quantiles. We found per-
centages of exceedances in line with theoretical expectations for the selec-
ted confidence level, ranging from 0.98 to 1.02, with a mean value of 0.998. 

D. Implications for asset allocation

There is not doubt that the principle of portfolio diversification as in-
troduced by Markowitz (1952) is one of the most influential insights in 
contemporaneous finance. Both, practitioners and academics have defi-
nitively embraced it. Nevertheless, authors such as French and Poterba 
(1991) and Vanguard (2014) have documented a persistent ‘higher than 
optimal’ share of domestic stocks in portfolios of global investors, which 
seem reluctant to hold well-diversified portfolios, on a global basis. 

Here we provide the basis for the developing of trading strategies that 
benefit from international diversification in LA markets, in a very sim-
ple and plausible fashion. We document diversification benefits in pre-
viously unaccounted ways: first, we show diversification benefits that 
appear only during extreme market scenarios (either at very high or very 
low quantiles of the stock market returns); second, we isolate the effect 
that a US market shock induces on several markets, making it possible to 
compare their reactions and therefore, to identify less risky investment 
allocations, during turbulent episodes.
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Figure 6.3. 1st and 99th percentiles and stock returns for Latin American markets

Time series of stock returns and quantiles at 
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

 and 
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coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

. The dotted 
blue lines can be interpreted as VaR statistics at the right and left tails with a 99% of 
confidence.
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considerations or episodes of increasing correlation between markets, due to 
high liquidity levels in the global economy. 

Note also that the differences in the responses are considerable within our 
sample, even within the Latin American zone. This points to the need for a 
careful analysis of the idiosyncrasies of each market before exploiting 
opportunities for diversification. For instance, Chile appears to represent a 
good opportunity for diversification most of the time: it does not present tail 
codependence in its high, median and low quantiles with the US markets, and 
the cumulated effect of the PIRFs is one of the smallest in the sample. In 
contrast, although Colombia, Peru and Argentina seem insensitive to the US 
market shocks in their highest quantiles, they are strongly affected in their 
lowest quantiles (financial distress episodes), which makes them less suitable 
locations for portfolio diversification during times of crisis.  

Note as well that those results can be directly interpreted as risk (or volatility) 
spillovers from the US market to Latin American markets, since the returns 
are included in the reduced form model, in absolute values, in equations 6.1 
and 6.2.   

Finally, regarding the persistence of the shocks in the markets, we first 
counted the number of days during which the shock remained statistically 
different from zero in each market. We then counted the number of days after 
which at least half of the shock’s total impact (i.e., its half-life) had been 
absorbed (Table 6.3). In this way we can draw meaningful comparisons 
between the markets. Interestingly, the half-lives of the shocks in the LA and 
mature markets are very similar. The half-life median in bearish markets, both 
in mature and LA markets, is four days, while the half-life median in bullish 
markets is six days in emerging and five days in mature markets. In both cases 
there is a slight asymmetry, with the shocks being more persistent during 
positive extreme return scenarios than during negative extreme returns. On an 
individual basis, the market that houses the shortest persistence is Colombia, 
with two days in both tails (very similar in this respect to Japan). In contrast, 
Chile reaches nine days in the 99th percentile and Mexico and Peru seven days, 
in the same tail. 

Table 6.3 
Persistence (half-life in days) 

  1% 99%   1% 99% 
Argentina 4 4 Canada 4 4 

Brazil 3 4 France 5 4 

Chile 3 9 Germany 4 5 

Colombia 2 2 Italy 4 6 

Mexico 9 7 Japan 2 3 

Peru 5 7 UK 4 6 

Note: half-life of the shocks, in days, for different markets.  
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C. Performance tests 

In this section we assess the overall performance of the models at 1 =
{0.01, 0.99}. This is possible by counting the number of exceedances of the 
actual returns above the highest quantile, and the number of exceedances 
below the lowest quantile. As usual, provided that we are constructing the 
quantiles at 1 and 99 per cent, we expect a number of exceedances in each 
case of around 1% of the times.  

We present the returns of the markets and the estimated quantiles for the LA 
markets in Figure 6.3 and for the G7 markets in Figure 6.4. We also present 
the percentage of exceedances in Table 6.4. 

As can be seen by visual inspection of the figures, and also by observation of 
the statistics in Table 6.4, the performance of the models appears to be highly 
satisfactory, both in the highest and lowest quantiles. We found percentages of 
exceedances in line with theoretical expectations for the selected confidence 
level, ranging from 0.98 to 1.02, with a mean value of 0.998.  

 
Argentina 

 

Brazil 

 
Chile 

 

Colombia 

 
	 	

	 145	

Mexico 
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Figure 6.3. 1st and 99th percentiles and stock returns for Latin American markets: 
Time series of stock returns and quantiles at 1 = 0.01		and 1 = 0.99. The dotted blue lines 
can be interpreted as VaR statistics at the right and left tails with a 99% of confidence. 
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Japan 

 

 
United Kingdom 

 
Figure 6.4. 1st and 99th percentiles and stock returns for G7 markets: Time series of 
stock returns and quantiles at 1 = 0.01		 and 1 = 0.99 . The dotted blue lines can be 
interpreted as VaR statistics at the right and left tails with a 99% of confidence. 

 
Table 6.4 

Percentage of Exceedances 
 

 1% 99%  1% 99% 
Argentina 1.00 1.00 Canada 1.00 0.98 

      

Brazil 1.02 1.02 France 1.00 1.00 
      

Chile 1.02 1.00 Germany 1.00 1.00 
      

Colombia 0.98 1.02 Italy 0.98 1.00 
      

Mexico 0.98 1.02 Japan 1.02 1.00 
      

Peru 0.98 0.98 UK 1.02 1.00 
      

Note: Percentage of exceedances of stock returns above percentile 99th and below the 1st 
percentile. It is expected a percentage of exceedances similar to 1% in the two cases. The 
calculations highlight the accuracy in the construction of both the high and the low quantiles.  
 

D. Implications for asset allocation: 

There is not doubt that the principle of portfolio diversification as introduced 
by Markowitz (1952) is one of the most influential insights in contemporaneous 
finance. Both, practitioners and academics have definitively embraced it. 
Nevertheless, authors such as French and Poterba (1991) and Vanguard (2014) 
have documented a persistent ‘higher than optimal’ share of domestic stocks in 
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Figure 6.4. 1st and 99th percentiles and stock returns for G7 markets
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

 and 
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Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
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Figure 6.4. 1st and 99th percentiles and stock returns for G7 markets: Time series of 
stock returns and quantiles at 1 = 0.01		 and 1 = 0.99 . The dotted blue lines can be 
interpreted as VaR statistics at the right and left tails with a 99% of confidence. 
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percentile. It is expected a percentage of exceedances similar to 1% in the two cases. The 
calculations highlight the accuracy in the construction of both the high and the low quantiles.  
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Table 6.4. Percentage of Exceedances

1% 99% 1% 99%

Argentina 1.00 1.00 Canada 1.00 0.98

Brazil 1.02 1.02 France 1.00 1.00

Chile 1.02 1.00 Germany 1.00 1.00

Colombia 0.98 1.02 Italy 0.98 1.00

Mexico 0.98 1.02 Japan 1.02 1.00

Peru 0.98 0.98 UK 1.02 1.00

Note: Percentage of exceedances of stock returns above percentile 99th and below the 1st percen-
tile. It is expected a percentage of exceedances similar to 1% in the two cases. The calculations 
highlight the accuracy in the construction of both the high and the low quantiles. 

These results are particularly appealing in a scenario of increasing glo-
bal stock returns correlations, which has made more difficult to achieve 
traditional portfolio diversification benefits, especially for investors with 
short-term horizon preferences (see Viceira et al. (2016)). Our exercise 
relies on the identification of structural innovations in the market. And 
therefore, it gives us insights that are not possible to extract from alter-
native reduced-form approaches such as traditional covariance analyses 
(or even more general formulations to measure dependence such as co-
pula or dynamic copula models). That is, we construct a counterfactual 
scenario of each market dynamics following a shock to the US stock 
market. Disentangling such effect is simply not possible by recurring to 
the reduced-form alternatives.

In Table 6.5 and 6.6 we inform simple trading strategies that allow mini-
mizing market-risk during extreme market scenarios, following a sizea-
ble shock to the US market. In Table 6.5 we report the historical VaR at 
99% of confidence for the left tail of the stock returns distribution. Then 
we report the cumulated loses at different horizons that an investor may 
expect to experience in each market, after a negative shock has impac-
ted the US market. In Table 6.6 we report the same for the right tail. 

As can be seen, in general, highest diversification opportunities can 
be achieved by investing in LA markets, compared to the mature mar-
kets. The only exception is Argentina that seems particularly sensitive 
to US shocks, especially at the lower tail and, on the side of the mature 
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markets, Japan, which constitutes a very good diversification alternative 
in market distressed scenarios (the left tail).

However, the diversification opportunities depend on the preferred inves-
tment horizon of an asset manager. In other words, the cumulated loses 
are of different sizes, depending on the number of days elapsed after the 
original shock has been observed. Thus, different markets constitute a more 
appropriate investment, seeking to reduce the total risk of the portfolio; 
depending on how many days the investor will hold a given position. 

For instance, in a situation of market distress, which can be easily iden-
tified as observing a return above the historical VaR (in absolute terms), 
with an investment horizon of 1 day, the best alternative is to invest in 
Mexico, which houses the lowest potential lost in the sample. For an in-
vestment horizon of 20 days the best alternatives are Chile and Colom-
bia. Notice that, for example, the situation is very different for Colombia 
under these two horizons. After one day, Colombia experiences one of 
the highest loses in the LA countries, but due to the lack of persistence 
of the shock, the situation reverts after 20 days. Chile represents an at-
tractive diversification opportunity, both, at left and right tails.

Table 6.5. Cumulated loses after a shock to the US market (left tail)

VaR 99% 1 day 5 days 10 days 20 days

Japan 3.534 -1.049 -2.567 -2.739 -2.622

Germany 4.440 -0.684 -2.562 -3.745 -4.581

UK 3.191 -0.754 -2.553 -3.632 -4.307

France 4.068 -0.606 -2.261 -3.287 -3.975

Italy 4.376 -0.626 -2.496 -3.839 -4.862

Canada 3.448 -1.054 -3.939 -5.677 -6.623

Brazil 5.007 -0.895 -3.341 -4.818 -5.634

Chile 2.708 -0.548 -1.906 -2.542 -2.641

Colombia 3.519 -0.800 -2.272 -2.500 -2.079

Mexico 3.914 -0.279 -1.259 -2.227 -3.573

Peru 4.779 -0.663 -2.613 -3.970 -4.940

Argentina 6.296 -1.041 -3.897 -5.630 -6.598

Note: The first column shows the historical simulated VaR at 99% of confidence. Columns 2 to 
5 show the cumulated loses after a show to the US market. The lowest loses are highlighted in 
for each horizon. 
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Table 6.6. Cumulated loses after a shock to the US market (right tail)

VaR 99% 1 day 5 days 10 days 20 days
Japan 3.355 0.909 3.149 4.172 4.251

Germany 3.750 0.717 2.849 4.384 5.613

UK 3.045 0.404 1.635 2.564 3.390

France 3.642 0.756 2.745 3.867 4.453

Italy 3.585 0.396 1.647 2.663 3.672

Canada 3.180 0.704 2.680 3.972 4.912

Brazil 4.818 0.497 2.162 3.648 5.311

Chile 2.584 0.277 1.231 2.109 3.109

Colombia 3.683 0.596 1.451 1.601 1.628

Mexico 4.146 0.629 2.583 4.116 5.556

Peru 4.447 0.353 1.499 2.477 3.541

Argentina 5.961 0.652 2.525 3.798 4.765

Note: The first column shows the historical simulated VaR at 99% of confidence. Columns 2 to 
5 show the cumulated loses after a show to the US market. The lowest loses are highlighted in 
for each horizon. 

6.5. Conclusions

We document common and divergent patterns in reactions in LA and 
mature markets to a sizeable shock in US stock market returns. On the 
one hand, both the LA and mature markets in our sample show asym-
metrical responses to the US market shock, dependent on the quantile 
analyzed. Following a positive shock in the US market, a positive effect 
is expected on the return distribution, provided the market is around 
the highest quantiles (
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

). In contrast, at the lowest quantiles  
(
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   
Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 1 = 0.01 and only 4 out of 12 do 
so at 1 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 
lowest quantiles. Recall that high quantiles (i.e., 1 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 
of growth in stock prices are recorded. In contrast, low quantiles (i.e., 1 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 
low levels, such as 1 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at 	1 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 
relationship in the case of the coefficient 3*' . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 

 ), a positive shock to the US index produces a negative res-
ponse in the other markets. We relate this first result to considerations of 
international liquidity overshooting, and the second to flight-to-quality 
effects among the US market and global financial markets. 

A different interpretation is possible if we consider the unconditional 
distribution of the stock returns, without focusing on specific quantiles. 
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In this case, what we find is that a positive shock to the US market is 
followed by a significant increase in the VaR statistics of the rest of 
the world sample, i.e., a risk increment. Nevertheless, the increments 
in the tails of the distributions follow irregular patterns, which depend 
on the idiosyncratic markets. For instance, while the increments in the 
right tail are higher for Japan and Mexico, the opposite is the case for 
Canada, Peru and Argentina. 

Finally, we document a weaker tail-codependence among the LA mar-
kets in our sample than among the mature markets (except Argentina) 
with respect to the US index, as indicated by both the coefficients of 
the reduced form VAR and the highest value of the PIRFs. This points to 
possible diversification strategies that could exploit investments in the 
LA markets following a shock to the US market. 

However, the differences within the LA sample are notorious. While 
Chile and Colombia appear to represent good diversification strategies 
both in times of crisis and during economic rallies, Peru and Argentina 
present higher tail-codependences during bearish scenarios than they 
do during bullish scenarios with regard to the US market. This makes 
them less suitable for diversification, especially during times of econo-
mic trouble, when diversification opportunities are more valuable for 
global investors. 
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EPILOGUE

i) What is macro and financial uncertainty? How to measure it? How is 
it different from risk? How important is it for domestic and international 
financial markets?cii) What sort of asymmetries underlie the internatio-
nal propagation of financial risk and uncertainty? That is, how risk and 
uncertainty propagation changes according to factors such as market 
states or market participants. The first part of this book (chapters 2 to 
4) provides answers to the former questions, while the second part exa-
mines the latter (chapters 5 and 6). This study has implications for asset 
pricing, risk management, financial stability, and the optimal design of 
monetary and macroprudential policies. 

In chapter 2, we empirically study the relationship between macroeco-
nomic uncertainty and momentum abnormal returns. We show that high 
levels of uncertainty in the economy negatively impact the returns of a 
portfolio that consists of buying previous winners and selling previous 
losers, in the stock market. Uncertainty acts as an economic regime that 
underlies abrupt changes over time of momentum returns. The main 
pragmatic recommendation to be derived is not to trade momentum 
when uncertainty is above a certain threshold. Nevertheless, beyond 
this direct implication for trading, the study of momentum strategies, 
which are precisely based on extrapolating the immediate past in order 
to predict the immediate future, offers a unique opportunity to analyze 
the fundamental differences between risky and uncertain situations. 

In chapter 3, we conduct a systematic examination of several pro-
xies for uncertainty in the literature, and propose an uncertainty in-
dex, built on stock market data. This proposal has several advantages 
over the competing alternatives, for example its higher frequency and 
the reduced computational costs for regularly updating it. We use the 
proposed uncertainty estimator to carry out an analysis of the way in 
which uncertainty impacts economic activity. We find that uncertainty 
impacts significantly economic activity, and we document a reduction 
and a subsequent rebound effect in investment dynamics following an 
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uncertainty shock. In Chapter 4, we study the propagation of equity 
market uncertainty to the global stock market and analyze the role of 
uncertainty as a systemic risk factor for the global banking sector. We 
find that the effects of risk and uncertainty on banks returns have re-
mained stable over the last decade, and that economic policy uncertain-
ty is indeed a relevant driver of returns in the banking sector. we also 
provide a new simple tool to measure vulnerable financial institutions 
(as opposed to the popular category of systemically important ones).

In the second part we emphasize the asymmetric nature of the interna-
tional propagation of risk across financial markets, which depends, for 
instance, on the market state, or the market participants. In chapter 5 we 
learned that FX markets house their own idiosyncrasies, which are not 
considered in traditional analysis of return and volatility spillovers in 
currency markets, which implicitly assumes that for any given country 
the situation is roughly the equivalent of facing depreciation or ap-
preciation pressures. This assumption is at the very least controversial. 
Consistently, we propose quantile-based statistics of downside risk, and 
construct an index to monitor financial stability of FX markets, while 
we explain the asymmetric nature of risk resorting to liquidity conside-
rations. We find that the least liquid currency markets tend to be more 
vulnerable and to transmit more shocks in the left tail of the distribu-
tion than is the case with volatility. This is fundamental for the correct 
assessment of systemic risk in currency markets and for monitoring fi-
nancial fragility and distress in currency markets around the world. We 
also find that the most liquid currencies are generally net-transmitters 
of volatility during periods of US dollar appreciation, while the most 
liquid currencies are net-receivers of volatility in periods of turbulence 
lacking any clear trend. 

Finally in the last chapter, chapter 6, we explore the central role of the 
US stock market as a net-exporter of volatility to Latin American and 
G7 stock markets, while document important asymmetries in the in-
ternational propagation of shocks during bullish and bearish markets, 
and for emerging and developed economies. We document a weaker 
tail-codependence among the LA markets in our sample than among the 
mature markets (except Argentina) with respect to the US. This points to 
possible diversification strategies that could exploit investments in the 
LA markets following a shock to the US market.
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It is worth to add, in the sake of future discussion, that the sorts of as-
ymmetries that we have considered in this book are also relevant for 
instance, for energy and insurance markets. Indeed, electricity markets 
are a good example in which the risk faced by suppliers and consu-
mers are substantially different (Mosquera, Manotas and Uribe, 2017a), 
and where the negative or positive variations of prices are described in 
dissimilar ways by market fundamentals, such as weather (Mosquera, 
Manotas and Uribe, 2017b). Another example of the asymmetries that 
I investigate is found naturally in the context of insurance markets, in 
which mortality and longevity risks, from the perspective of insuran-
ce companies and pension funds on the one hand, and households on 
the other, are featured by different fundamentals and, therefore, should 
be measured in flexible and specific ways (Chuliá, Guillen and Uribe, 
2017a,b). 

The study of uncertainty and of risk nature and the asymmetric ways of 
their propagation across assets and markets is of paramount importance 
for the economics profession, yet it is still in its infancy. This book is 
only an initial step in this direction.
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This book adds to the resolution of two problems in finance and eco-
nomics: i) what is macro-financial uncertainty?: How to measure it? 
How is it different from risk? How important is it for the financial 
markets? And ii) what sort of asymmetries underlie financial risk 
and uncertainty propagation across the global financial markets? 
That is, how risk and uncertainty change according to factors 
such as market states or market participants. In Chapter 2, 
which is entitled “Momentum Uncertainties”, the relation-
ship between macroeconomic uncertainty and the abnormal 
returns of a momentum trading strategy in the stock market is studies. We show that high 
levels of uncertainty in the economy impact negatively and significantly the returns of a 
portfolio of stocks that consist of buying past winners and selling past losers. High uncer-
tainty reduces below zero the abnormal returns of momentum, extinguishes the Sharpe ratio 
of the momentum strategy, while increases the probability of momentum crashes both by 
increasing the skewness and the kurtosis of the momentum return distribution. Uncertainty 
acts as an economic regime that underlies abrupt changes over time of the returns generated 
by momentum strategies. In Chapter 3, “Measuring Uncertainty in the Stock Market”, a new 
index for measuring stock market uncertainty on a daily basis is proposed. The index considers 
the inherent differentiation between uncertainty and the common variations between the 
series. The second contribution of chapter 3 is to show how this financial uncertainty index 
can also serve as an indicator of macroeconomic uncertainty. Finally, the dynamic relation-
ship between uncertainty and the series of consumption, interest rates, production and stock 
market prices, among others, is analized. In chapter 4: “Uncertainty, Systemic Shocks and the 
Global Banking Sector: Has the Crisis Modified their Relationship?” we explore the stability of 
systemic risk and uncertainty propagation among financial institutions in the global economy, 
and show that it has remained stable over the last decade. Additionally, a new simple tool 
for measuring the resilience of financial institutions to these systemic shocks is provided. 
We examine the characteristics and stability of systemic risk and uncertainty, in relation to 
the dynamics of the banking sector stock returns. This sort of evidence is supportive of past 
claims, made in the field of macroeconomics, which hold that during the global financial 
crisis the financial system may have faced stronger versions of traditional shocks rather than 
a new type of shock. In chapter 5, “Currency downside risk, liquidity, and financial stability”, 
downside risk propagation across global currency markets and the ways in which it is related 
to liquidity is analyzed. Two primary contributions to the literature follow. First, tail-spillovers 
between currencies in the global FX market are estimated. This index is easy to build and 
does not require intraday data, which constitutes an important advantage. Second, we show 
that turnover is related to risk spillovers in global currency markets. Chapter 6 is entitled 
“Spillovers from the United States to Latin American and G7 Stock Markets: A VAR-Quan-
tile Analysis”. This chapter contributes to the studies of contagion, market integration and 
cross-border spillovers during both regular and crisis episodes by carrying out a multivariate 
quantile analysis. It focuses on Latin American stock markets, which have been characterized 
by a highly positive dynamic in recent decades, in terms of market capitalization and liquidity 
ratios, after a far-reaching process of market liberalization and reforms to pension funds 
across the continent during the 80s and 90s. We document smaller dependences between 
the LA markets and the US market than those between the US and the developed economies, 
especially in the highest and lowest quantiles.
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